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A Proof of Main Theorem

This section presents the detailed proofs of Theorems 4.3 and 4.4 in Section 4.

A.1 Proof of Theorem 4.3

Proof. Let E = {x ∈ X : f(x) 6= f∗(x)} be the error region in the image space and Eε = {x ∈ X : ∆(x, E) ≤ ε}
be the ε-expansion of E in metric ∆. By Definition 3.1, we have

AdvRiskεµ(f) = µ(Eε) =

K∑
i=1

pi · µi(Eε) =

K∑
i=1

pi ·AdvRiskεµi(f).

Since according to Definition 3.3, we have AdvRiskεµi(f) ≥ In-AdvRiskεµi(f) for any i ∈ [K]. Thus, it remains
to lower bound each term In-AdvRiskεµi(f) individually. For any classifier f , we have

In-AdvRiskεµi(f) = Pr
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∃ z′ ∈ B
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︸ ︷︷ ︸
I

−δ (A.1)

where the first inequality is due to µi = (gi)∗(νd), and the second inequality holds because gi is Li(r)-locally
Lipschitz with probability at least 1− δ and B

(
z, ε/Li(r)

)
⊆ B

(
z, r
)

for any z ∈ Rd.

To further bound the term I, we make use of the Gaussian Isoperimetric Inequality as presented in Lemma 4.2.
Let Af = {z ∈ Rd : f(gi(z)) 6= f∗(gi(z))} be the corresponding error region in the latent space. By Lemma 4.2,
we have

I ≥ Φ

(
Φ−1

(
νd(Af )

)
+

ε

Li(r)

)
= Φ

(
Φ−1

(
Riskµi(f)

)
+

ε

Li(r)

)
. (A.2)

Finally, plugging (A.2) into (A.1), we complete the proof.

A.2 Proof of Theorem 4.4

Proof. According to Definition 3.2 and Theorem 4.3, for any f ∈ Fα, we have

Robεµ(Fα) ≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Li(r)

)

≤ 1 + δ −
K∑
i=1

pi · Φ
(

Φ−1
(
Riskµi(f)

)
+

ε

Lmax(r)

)
, (A.3)

where the last inequality holds because Φ(·) is monotonically increasing. For any f ∈ Fα, let E = {x ∈ X :
f(x) 6= f∗(x)} be the error region and αi = µi(E) be the measure of E under the i-th conditional distribution.

Thus, to obtain an upper bound on Robεµ(Fα) using (A.3), it remains to solve the following optimization problem:

minimize
α1,...,αK∈[0,1]

K∑
i=1

pi · Φ
(

Φ−1(αi) +
ε

Lmax(r)

)
subject to

K∑
i=1

piαi ≥ α. (A.4)

Note that for classifier in F̃α, by definition, we can simply replace αi = α in (A.4), which proves the upper bound

on Robεµ(F̃α).

Next, we are going to show that the optimal value of (A.4) is achieved, only if there exists a class i′ ∈ [K] such
that αi′ = α/pi′ and αi = 0 for any i 6= i′. Consider the simplest case where K = 2. Note that Φ(·) and Φ−1(·)
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are both monotonically increasing functions, which implies that
∑K
i=1 piαi = α holds when optimum achieved,

thus the optimization problem for K = 2 can be formulated as follows

min
α1,α2∈[0,1]

p1 · Φ
(

Φ−1(α1) +
ε

Lmax(r)

)
+ p2 · Φ

(
Φ−1(α2) +

ε

Lmax(r)

)
s.t. p1α1 + p2α2 = α. (A.5)

Suppose α1 ≥ α2 holds for the initial setting. Now consider another setting where α′1 > α1, α′2 < α2. Let
s1 = Φ−1(α′1)−Φ−1(α1) and s2 = Φ−1(α2)−Φ−1(α′2). According to the equality constraint of the optimization
problem (A.5), we have

p1 ·
∫ Φ−1(α1)+s1

Φ−1(α1)

1√
2π
· exp−x

2/2 dx = p2 ·
∫ Φ−1(α2)

Φ−1(α2)−s2

1√
2π
· exp−x

2/2 dx. (A.6)

Let η = ε/Lmax(r) for simplicity. By simple algebra, we have

p1 ·
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Φ−1(α1)+η

1√
2π
· exp−x
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1√
2π
· exp−u

2/2 du

< p2 ·
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Φ−1(α2)−s2+η
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· exp−x
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where the first inequality holds because exp−η·u < exp−η·Φ
−1(α1) for any u > Φ−1(α1), the second inequality

follows from (A.6) and the fact that Φ−1(α1) ≥ Φ−1(α2), and the last inequality holds because exp−η·Φ
−1(α2) <

exp−η·u for any u < Φ−1(α2). Therefore, the optimal value of (A.5) will be achieved when α1 = 0 or α2 = 0.
For general setting with K > 2, since α1, . . . , αK are independent in the objective, we can fix α3, . . . , αK and
optimize α1 and α2 first, then deal with αi incrementally using the same technique.

B Experimental Details

This section provides additional details for our experiments.

B.1 Network Architectures and Hyper-parameter Settings

For the certified robust defense (LP-Certify), we adopt the the same four-layer neural network architecture as
implemented in Wong et al. (2018), with two convolutional layers and two fully connected layers, and use the an
Adam optimizer with learning rate 0.001 and batch size 50 for training the robust classifier. In particular, the
adversarial loss function is based on the robust certificate under `2 proposed in Wong et al. (2018).

For training attack-based robust models (Adv-Train and TRADES), we use a seven-layer CNN architecture
which contains four convolution layers and three fully connected layers. We use a SGD optimizer to minimize
the attack-based adversarial loss with learning rate 0.05 on MNIST and learning rate 0.01 on ImageNet10. Table
4 summarizes all the hyper-parameters we used for training the robust models (β is an additional parameter
specifically used in TRADES).

For evaluating the unconstrained adversarial robustness, we implemented PGD attack with `2 metric. Table 5
shows all the hyper-parameters we used for robustness evaluation.

B.2 Strategies for Estimating In-distribution Adversarial Robustness

Initialization of z: For MNIST data, we design an initialization strategy for z in order to make sure the
perturbation term ‖G(z, y)−x‖2 can be efficiently optimized. To be more specific, starting from random noise,
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Table 4: Hyper-parameters used for training robust models.

Para.
Generated MNIST ImageNet10

LP-Certified Adv Training TRADES Adv Training TRADES

ε (in `2) 2.0 3.0 3.0 3.0 3.0
optimizer ADAM SGD SGD SGD SGD
learning rate 0.001 0.05 0.05 0.01 0.01
#epochs 60 100 100 100 100
attack step size - 0.5 0.5 0.5 0.5
#attack steps - 40 40 10 10
β - - 6.0 - 6.0

Table 5: Hyper-parameters used for evaluating the model robustness via PGD attack.

Para.
Generated MNIST ImageNet10

ε = 1.0 ε = 2.0 ε = 3.0 ε = 1.0 ε = 2.0 ε = 3.0

attack step size 0.1 0.3 0.5 0.1 0.3 0.5
#attack steps 100 100 100 100 100 100

we first solve another optimization problem:

zinit = argmin
z
‖G(z, y)− x‖2.

By setting zinit as our initial point, we minimize the initial perturbation distance. Here z can start from any
random initial point as we will then optimize the generated image under `2 distance.

For ImageNet10 data, even applying the above optimization procedure doesn’t result in an initial z such that
‖G(z, y)−x‖2 ≤ ε when ε is small. Therefore, we use another strategy by recording the z∗ when generating the
test sample x, i.e., G(z∗, y) = x. And we adopt z∗ as the initial point for z in solving (5.2). This makes sure
that the whole optimization procedure could at least find one point satisfying the perturbation constraint2.

The choice of λ: Inspired by Carlini and Wagner (2017), we also adopt binary search strategy for finding better
regularization parameter λ. Specifically, we set initial λ = 1.0 and if we successfully find an adversarial example,
we lower the value of λ via binary search. Otherwise, we raise the value of λ. For each batch of examples, we
perform 5 times binary search in order to find qualified in-distribution adversarial examples.

Hyper-parameters: We use Adam optimizer with learning rate 0.01 for finding in-distribution adversarial
examples. We set maximum iterations for each λ binary search as 10000.

2We didn’t use z∗ as the initialization for MNIST data as our empirical study shows that the optimization-based
initialization achieves better performances on MNIST.


