
One Sample Stochastic Frank-Wolfe

A Experiments

In this section, we empirically validate the efficiency of the proposed 1-SFW algorithm by comparing it with the
baseline methods: Stochastic Frank-Wolfe (SFW) Hazan and Luo [2016] and Stochastic Conditional Gradient
(SCG) Mokhtari et al. [2018b]. Note that SCG is the only existing provably convergent Frank-Wolfe variant that
accepts a constant per-iteration mini-batch size (possibly 1). Denote the constant mini-batch size of 1-SFW and
SCG by m. The growing mini-batch size of SFW is set to m · t2, where t is the iteration count.

We study three types of problems, i.e., `1-constrained logistic-regression (convex), robust low rank matrix
recovery (nonconvex), and maximization of multilinear extensions of monotone discrete submodular functions
(DR-submodular).

A.1 Logistic Regression
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Figure 1: Logistic Regression. (a) uses digit 2 and 4 in MNIST, (b) uses cat and dog in CIFAR10.

In this task, we consider `1-constrained logistic regression problem. Concretely, denote each data point i by
(ai, yi) ∈ Rd × {−1,+1}, where ai is a feature vector and yi ∈ {1, . . . , C} is the corresponding label. Our goal is
to minimize the following loss

F (W) =
1

n

n∑
i=1

log(1 + exp(−yiWT
c ai)),

over the constraint C = {W ∈ Rd×C : ‖W‖1≤ r} for some constant r ∈ R+, where ‖W‖1 is the matrix `1 norm,
i.e., ‖W‖1= max1≤j≤C

∑d
i=1|[W]ij |. We note that the loss function F is convex and smooth.

Two datasets are used in our experiments: MNIST (digit 2 and 4 as positive and negative class respectively)
and CIFART10 (cat and dog as positive and negative class respectively). In terms of the parameter setting, we
grid search the step size ηt for all three methods over the set {min{1, c/(t+ 1)a}|c ∈ {0.1, 0.25, 0.5, 1.0, 2.0}, a ∈
{1, 2/3, 1/2}}, set the mixing weights ρt of SCG and 1-SFW to 1/(t + 1)2/3, and set the constant mini-batch
parameter m = 16. We report the results in Figure 1. We can see the advantage of 1-SFW over its competitors.

A.2 Robust Low-Rank Matrix Recovery

LRMR plays a key role in solving many important learning tasks, such as collaborative filtering [Koren et al.,
2009], dimensionality reduction [Weinberger and Saul, 2006], and multi-class learning [Xu et al., 2013]. The loss
of LRMR is defined as

min
X∈RM×N

∑
(i,j)∈Ω

ψ(Xij −Yij)

s.t. ‖X‖∗≤ B,
(13)
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Figure 2: Matrix Recovery. (a) compares the Frank-Wolfe gap, (b) compares the accuracy of gradient estimation,
(c) compares the Root Mean Square Error (RMSE) between the prediction matrix and the underlying true matrix.

where ψ : R→ R is the potentially nonconvex empirical loss function, Xij is the i, j th element of matrix X, and
Ω is the set of observed indices in target matrix Y ∈ RM×N . Here we focus on a robust version of LRMR with
the loss ψ being:

ψ(z;σ) = 1− exp(−z2/2σ), (14)

where σ is a tunable parameter. Loss (14) is less sensitive to the discrepancy Xij −Yij compared to the common
least square loss ψ(z) = z2/2, and hence is robust to adversarial outliers [Qu et al., 2017].

In each trial, we first generate an underlying matrix M of size 200× 200 and rank γ = 15. The singular values of
M are set as 2[γ]/2γ × 50 and hence ‖M‖∗≤ C = 100, where [γ] = {1, . . . , γ}. We then inject adversarial noise
into M by (1) uniformly sampling 5% of the entries in M and (2) adding random noise uniformly sampled from
[−ρ, ρ] to each selected entry, where the noise level ρ equals 10. Denote M̂ as the matrix after noise injection.
We uniformly sample 10% of the entries in M̂ to obtain the observations, i.e., Yij . Hence |Ω|, the number of
observation is M ×N × 10% = 4, 000.

In terms of algorithmic parameter setting, we set the mini-batch size m to |Ω|/20. The number of epoch T is set
to 50 for all cases, and the step size parameter ηt is set to 1/(T ∗ |Ω|/m) = 1/1000 in all cases for all methods.

We present the comparison of listed methods in Figure 2, where we observe that 1-SFW has the best performance
in terms of the Frank-Wolfe gap (a), gradient estimation accuracy (b), and the Root Mean Square Error (RMSE)
between the prediction matrix and the underlying true matrix.

A.3 Discrete Monotone Submodular Maximization with Matroid Constraint

In this section, we consider the discrete monotone submodular maximization subject to a matroid constraint via
the maximizing the corresponding multilinear extension. Let V be a finite set of d elements and I be a collection
of its subsets. It is proved that to maximize a discrete monotone submodular function f : 2V → R+ subject to
the matroid constraintM def

= {V, I} is equivalent to maximize its multilinear extension, defined as

F (x) =
∑
S⊂[d]

f(S)
∏
j∈S

[x]j
∏
`/∈S

(1− [x]`), (15)

subject to the constraint x ∈ C, where C is the base polytope ofM. Further, it is known that F is monotone
DR-submodular.

We now focus on a concrete recommendation problem which can be formulated as discrete monotone submodular
maximization. We use r(u, j) to denote user u’s rating for item j ∈ [d] and set r(u, j) = 0 if item j is not rated
by user u. Our goal is to recommend a set of k = 10 items to all users such that they have the highest total
rating. Two types of utility functions can be defined for such task: facility location

f(S) =
∑
u

max
j∈S

r(u, j), (16)
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Figure 3: Submodular Maximization on Jester dataset. (a) uses the facility location utility and (b) uses the
concave over modular utility.

or concave over modular

f(S) =
∑
u

(
∑
j∈S

r(u, j))1/2. (17)

Here the matroid is {V, I def
= {S ⊆ V ||S|= k}}. Two datasets are used in this experiment, Jester 11 and movielens

1M2 with the results presented in Figure 3 and Figure 4 respectively. We observe that 1-SFW always achieves the
highest utility after sufficient function evaluations.

B Proof of Lemma 2

Proof. Let At = ‖∇F (xt)− dt‖2. By definition, we have

At = ‖∇F (xt−1)− dt−1 +∇F (xt)−∇F (xt−1)− (dt − dt−1)‖2.

Note that

dt − dt−1 = −ρtdt−1 + ρt∇F̃ (xt, zt) + (1− ρt)∆̃t,

and define ∆t = ∇F (xt)−∇F (xt−1), we have

At = ‖∇F (xt−1)− dt−1 + ∆t − (1− ρt)∆̃t − ρt∇F̃ (xt, zt) + ρtdt−1‖2

= ‖∇F (xt−1)− dt−1 + (1− ρt)(∆t − ∆̃t) + ρt(∇F (xt)−∇F̃ (xt, zt) + ρt(dt−1 −∇F (xt−1)))‖2

= ‖(1− ρt)(∇F (xt−1)− dt−1) + (1− ρt)(∆t − ∆̃t) + ρt(∇F (xt)−∇F̃ (xt, zt))‖2

Since ∆̃t is an unbiased estimator of ∆t, E[At] can be decomposed as

E[At] = E{(1− ρt)2‖∇F (xt−1)− dt−1‖2+(1− ρt)2‖∆t − ∆̃t‖2+ρ2
t‖∇F (xt)−∇F̃ (xt, zt)‖2

+ 2ρt(1− ρt)〈∇F (xt−1)− dt−1,∇F (xt)−∇F̃ (xt, zt)〉+ 2ρt(1− ρt)〈∆t − ∆̃t,∇F (xt)−∇F̃ (xt, zt)〉}.
(18)

1http://eigentaste.berkeley.edu/dataset/
2https://grouplens.org/datasets/movielens/
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Figure 4: Submodular Maximization on Movielens dataset. (a) uses the facility location utility and (b) uses the
concave over modular utility.

Then we turn to upper bound the items above. First, by Lemma 1, we have

E[‖∆̃t −∆t‖2] = E[‖∇̃2
t (xt − xt−1)− (∇F (xt)−∇F (xt−1))]‖2]

≤ E[‖∇̃2
t (xt − xt−1)‖2]

= E[‖∇̃2
t (ηt−1(vt−1 − xt−1))‖2]

≤ η2
t−1D

2E[‖∇̃2
t‖2]

≤ η2
t−1D

2L̄2.

(19)

By Jensen’s inequality, we have

E[‖∆̃t −∆t‖] ≤
√
E[‖∆̃t −∆t‖2] ≤ ηt−1DL̄, (20)

and
E[‖∇F (xt)− dt‖] =

√
E[‖∇F (xt)− dt‖2] =

√
E[At]. (21)

Note that zt is sampled according to p(z;xt(a)), where xt(a) = axt + (1 − a)xt−1. Thus ∇F̃ (xt, zt) is NOT
an unbiased estimator of ∇F (xt) when a 6= 1, which occurs with probability 1. However, we will show that
∇F̃ (xt, zt) is still a good estimator. Let Ft−1 be the σ-field generated by all the randomness before round t, then
by Law of Total Expectation, we have

E[2ρt(1− ρt)〈∇F (xt−1)− dt−1,∇F (xt)−∇F̃ (xt, zt)〉]
=E[E[2ρt(1− ρt)〈∇F (xt−1)− dt−1,∇F (xt)−∇F̃ (xt, zt)〉|Ft−1,xt(a)]]

=E[2ρt(1− ρt)〈∇F (xt−1)− dt−1,E[∇F (xt)−∇F̃ (xt, zt)|Ft−1,xt(a)]〉],

(22)

where

E[∇F (xt)−∇F̃ (xt, zt)|Ft−1]〉] = ∇F (xt)−∇F (xt(a)) +∇F (xt(a))− E[∇F̃ (xt, zt)|Ft−1,xt(a)].

By Lemma 1, F is L̄-smooth, thus

‖∇F (xt)−∇F (xt(a))‖≤ L̄‖xt − xt(a)‖= L̄(1− a)‖ηt−1(vt−1 − xt−1)‖≤ ηt−1DL̄.
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We also have

‖∇F (xt(a))− E[∇F̃ (xt, zt)|Ft−1,xt(a)]‖ = ‖
∫

[∇F̃ (xt(a); z)−∇F̃ (xt; z)]p(z;xt(a))dz‖

≤
∫
‖∇F̃ (xt(a); z)−∇F̃ (xt; z)‖p(z;xt(a))dz

≤
∫
L‖xt(a)− xt‖p(z;xt(a))dz

≤ ηt−1DL,

where the second inequality holds because of Assumption 4. Combine the analysis above with Eq. (22), we have

E[2ρt(1− ρt)〈∇F (xt−1)− dt−1,∇F (xt)−∇F̃ (xt, zt)〉]
≤E[2ρt(1− ρt)‖∇F (xt−1)− dt−1‖·‖E[∇F (xt)−∇F̃ (xt, zt)|Ft−1]‖]
≤2ρt(1− ρt)E[‖∇F (xt−1)− dt−1‖] · (ηt−1DL̄+ ηt−1DL)

≤2ηt−1ρt(1− ρt)
√
E[At−1]D(L̄+ L).

(23)

Finally, by Assumption 3, we have ‖∇F (xt)−∇F̃ (xt, zt)‖≤ 2G. Thus

ρ2
t‖∇F (xt)−∇F̃ (xt, zt)‖2≤ 4ρ2

tG
2, (24)

and

E[2ρt(1− ρt)〈∆t − ∆̃t,∇F (xt)−∇F̃ (xt, zt)〉] ≤ E[2ρt(1− ρt)‖∆t − ∆̃t‖·‖∇F (xt)−∇F̃ (xt, zt)]‖
≤ 4ηt−1ρt(1− ρt)GDL̄.

(25)

Combine Eqs. (18), (19) and (23) to (25), we have

E[At] ≤ (1− ρt)2E[At−1] + (1− ρt)2η2
t−1D

2L̄2 + ρ2
t4G

2 + 2ηt−1ρt(1− ρt)
√
E[At−1]D(L̄+ L) + 4ηt−1ρt(1− ρt)GDL̄

For the simplicity of analysis, we replace t by t+ 1, and have

E[At+1]

≤(1− ρt+1)2E[At] + (1− ρt+1)2η2
tD

2L̄2 + ρ2
t+14G2 + 2ηtρt+1(1− ρt+1)

√
E[At]D(L̄+ L) + 4ηtρt+1(1− ρt+1)GDL̄

≤(1− 1

tα
)2E[At] +

D2L̄2 + 4G2 + 4GDL̄

t2α
+

2D(L̄+ L)

t2α

√
E[At].

(26)

We claim that E[At] ≤ Ct−α, and prove it by induction. Before the proof, we first analyze one item in the
definition of C : 2(2G+DL̄)2

2−2−α−α . Define h(α) = 2 − 2−α − α. Since h′(α) = 2−α ln(2) − 1 ≤ 0 for α ∈ (0, 1], so
1 = h(0) ≥ h(α) ≥ h(1) = 1/2 > 0,∀α ∈ (0, 1]. As a result, 2 ≤ 2

2−2−α−α ≤ 4.

When t = 1, we have

E[A1] = E[‖∇F (x1)−∇F̃ (x1; z1)‖2] ≤ (2G)2 ≤ 2(2G+DL̄)2

2− 2−α − α
/1 ≤ C · 1−α

When t = 2, since ρ2 = 1, we have

E[A2] = E[‖∇F̃ (x2, z2)−∇F (x2)‖2] ≤ (2G)2 ≤ 2(2G+DL̄)2

2− 2−α − α
/2 ≤ C · 2−α.
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Now assume for t ≥ 2, we have E[At] ≤ Ct−α, by Eq. (26) and the definition of C, we have

E[At+1] ≤ (1− 1

tα
)2 · Ct−α +

(2G+DL̄)2

t2α
+

2D(L̄+ L)

t(5/2)α

√
C

≤ Ct−α − 2Ct−2α + Ct−3α +
(2− 2−α − α)C

2t2α
+

C3/4

t(5/2)α

≤ C

tα
+
−2C + Ct−α + (2− 2−α − α)C/2 + t−α/2C/C1/4

t2α

≤ C

tα
+
C[−2 + 2−α + (2− 2−α − α)/2 + (2− 2−α − α)/2]

t2α

≤ C

tα
− αC

t2α
.

(27)

Define g(t) = t−α, then g(t) is a convex function for α ∈ (0, 1]. Thus we have g(t + 1) − g(t) ≥ g′(t), i.e.,
(t+ 1)−α − t−α ≥ −αt−(α+1). So we have

C

tα
− αC

t2α
≤ C(t−α − αt−(1+α)) ≤ C(t+ 1)−α. (28)

Combine with Eq. (27), we have E[At+1] ≤ C(t+ 1)−α. Thus by induction, we have E[At] ≤ Ct−α,∀t ≥ 1.

C Proof of Lemma 3

The only difference with the proof of Lemma 2 is the bound for E‖∆̃t −∆t‖. Specifically, we have

E[‖∆̃t −∆t‖2] = E[‖∆̃t − ∇̃2
t (xt − xt−1) + ∇̃2

t (xt − xt−1)− (∇F (xt)−∇F (xt−1))]‖2]

= E[‖∆̃t − ∇̃2
t (xt − xt−1)‖2] + E[‖∇̃2

t (xt − xt−1)− (∇F (xt)−∇F (xt−1))‖2]

≤ [D2L2δt(1 + F̃ (xt(a), zt))]
2 + η2

t−1D
2L̄2

≤ (1 +B)2L2
2D

4δ2
t + η2

t−1D
2L̄2

≤ 4η2
t−1D

2L̄2.

Then by the analysis same to the proof of Lemma 2, we have

E[At+1] ≤ (1− 1

tα
)2E[At] +

4(D2L̄2 +G2 +GDL̄)

t2α
+

4D(L̄+ L)

t2α

√
E[At],

and thus E[At+1] ≤ C(t+ 1)−α, where C=max

{
8(D2L̄2+G2+GDL̄)

2−2−α−α ,
[

2
2−2−α−α

]4
, [4D(L̄+L)]4

}
.

D Proof of Theorem 1

First, since xt+1 = (1 − ηt)xt + ηtvt is a convex combination of xt,vt, and x1 ∈ K,vt ∈ K,∀ t, we can prove
xt ∈ K,∀ t by induction. So xT+1 ∈ K.

Then we present an auxiliary lemma.

Lemma 4. Under the condition of Theorem 1, in Algorithm 1, we have

F (xt+1)− F (x∗) ≤ (1− ηt)(F (xt)− F (x∗)) + ηtD‖∇F (xt)− dt‖+
L̄D2η2

t

2
.

By Jensen’s inequality and Lemma 2 with α = 1, we have

E[‖∇F (xt)− dt‖] ≤
√

E[‖∇F (xt)− dt‖2] ≤
√
C√
t
,
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where C = max{4(2G+DL̄)2, 256, [2D(L̄+ L)]4}. Then by Lemma 4, we have

E[F (xT+1)− F (x∗)]

≤(1− ηT )E[F (xT )− F (x∗)] + ηTDE[‖∇F (xT )− dT ‖] +
L̄D2η2

T

2

=

T∏
i=1

(1− ηi)E[F (x1)− F (x∗)] +D

T∑
k=1

ηkE[‖∇F (xk)− dk‖]
T∏

i=k+1

(1− ηi) +
L̄D2

2

T∑
k=1

η2
k

T∏
i=k+1

(1− ηi)

≤ 0 +D

T∑
k=1

k−1

√
C√
k

T∏
i=k+1

i− 1

i
+
L̄D2

2

T∑
k=1

k−2
T∏

i=k+1

i− 1

i

=

√
CD

T

T∑
k=1

1√
k

+
L̄D2

2T

T∑
k=1

k−1.

(29)

Since
T∑
k=1

1√
k
≤
∫ T

0

x−1/2dx = 2
√
T ,

and
T∑
k=1

k−1 ≤ 1 +

∫ T

1

x−1dx = 1 + lnT,

by Eq. (29), we have

E[F (xT+1)− F (x∗)] ≤ 2
√
CD√
T

+
L̄D2

2T
(1 + lnT ).

E Proof of Theorem 2

First, since xt+1 = (1 − ηt)xt + ηtvt is a convex combination of xt,vt, and x1 ∈ K, vt ∈ K,∀ t, we can prove
xt ∈ K,∀ t by induction. So xo ∈ K.

Note that if we define v′t = arg minv∈K〈v,∇F (xt)〉, then G(xt) = 〈v′t − xt,−∇F (xt)〉 = −〈v′t − xt,∇F (xt)〉. So
we have

F (xt+1)
(a)

≤F (xt) + 〈∇f(xt),xt+1 − xt〉+
L̄

2
‖xt+1 − xt‖2

= F (xt) + 〈∇F (xt), ηt(vt − xt)〉+
L̄

2
‖ηt(vt − xt)‖2

(b)

≤F (xt) + ηt〈∇F (xt),vt − xt〉+
L̄η2

tD
2

2

= F (xt) + ηt〈dt,vt − xt〉+ ηt〈∇F (xt)− dt,vt − xt〉+
L̄η2

tD
2

2
(c)

≤F (xt) + ηt〈dt,v′t − xt〉+ ηt〈∇F (xt)− dt,vt − xt〉+
L̄η2

tD
2

2
= F (xt) + ηt〈∇F (xt),v

′
t − xt〉+ ηt〈dt −∇F (xt),v

′
t − xt〉

+ ηt〈∇F (xt)− dt,vt − xt〉+
L̄η2

tD
2

2

= F (xt)− ηtG(xt) + ηt〈∇F (xt)− dt,vt − v′t〉+
L̄η2

tD
2

2
(d)

≤F (xt)− ηtG(xt) + ηt‖∇F (xt)− dt‖‖vt − v′t‖+
L̄η2

tD
2

2
(e)

≤F (xt)− ηtG(xt) + ηtD‖∇F (xt)− dt‖+
L̄η2

tD
2

2
,
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where we used the fact that F is L̄-smooth in inequality (a). Inequalities (b), (e) hold because of Assumption 1.
Inequality (c) is due to the optimality of vt, and in (d), we applied the Cauchy-Schwarz inequality.

Rearrange the inequality above, we have

ηtG(xt) ≤ F (xt)− F (xt+1) + ηtD‖∇F (xt)− dt‖+
L̄η2

tD
2

2
. (30)

Apply Eq. (30) recursively for t = 1, 2, · · · , T , and take expectations, we attain the following inequality:

T∑
t=1

ηtE[G(xt)] ≤ F (x1)− F (xT+1) +D

T∑
t=1

ηtE[‖∇F (xt)− dt‖] +
L̄D2

2

T∑
t=1

η2
t .

By Jensen’s inequality Lemma 2 with α = 2/3, we have

E[‖∇F (xt)− dt‖] ≤
√

E[‖∇F (xt)− dt‖2] ≤
√
C

t1/3
,

where C = max{ 2(2G+DL̄)2

4/3−2−2/3 ,
(

2
4/3−2−2/3

)4

, [2D(L̄+ L)]4}. Since ηt = T−2/3, we have

E[G(xo)] =

∑T
t=1 E[G(xt)]

T

≤ 1

T · T−2/3
[F (x1)− F (xT+1) +D

T∑
t=1

T−2/3

√
C

t1/3
+
L̄D2

2

T∑
t=1

T−4/3]

≤ 1

T 1/3
[2B +D

√
CT−2/3 3

2
T 2/3 +

L̄D2

2T 1/3
]

=
2B + 3

√
CD/2

T 1/3
+

L̄D2

2T 2/3
,

where the second inequality holds because
∑T
t=1 t

−1/3 ≤
∫ T

0
x−1/3dx = 3

2T
2/3.

F Proof of Theorem 3

First, since xt+1 = xt+ηtvt = xt+T
−1vt, we have xT+1 =

∑T
t=1 vt
T ∈ K. Also, because now ‖xt+1−xt‖= ‖ηtvt‖≤

ηtR, (rather than ηtD), Lemma 2 holds with new constant C = max{ 2(2G+RL̄)2

2−2−α−α ,
(

2
2−2−α−α

)4

, [2R(L̄ + L)]4}.
Since α = 1, we have C = max{4(2G+RL̄)2, 256, [2R(L̄+ L)]4}. Then by Jensen’s inequality, we have

E[‖∇F (xt)− dt‖] ≤
√

E[‖∇F (xt)− dt‖2] ≤
√
C√
t
.



One Sample Stochastic Frank-Wolfe

We observe that

F (xt+1)
(a)

≥ F (xt) + 〈∇F (xt),xt+1 − xt〉 −
L̄

2
‖xt+1 − xt‖

= F (xt) +
1

T
〈∇F (xt),vt〉 −

L̄

2T 2
‖vt‖

(b)

≥ F (xt) +
1

T
〈dt,vt〉+

1

T
〈∇F (xt)− dt,vt〉 −

L̄R2

2T 2

(c)

≥ F (xt) +
1

T
〈dt,x∗〉+

1

T
〈∇F (xt)− dt,vt〉 −

L̄R2

2T 2

= F (xt) +
1

T
〈∇F (xt),x

∗〉+
1

T
〈∇F (xt)− dt,vt − x∗〉 − L̄R2

2T 2

(d)

≥ F (xt) +
F (x∗)− F (xt)

T
− 1

T
〈∇F (xt)− dt,−vt + x∗〉 − L̄R2

2T 2

(e)

≥ F (xt) +
F (x∗)− F (xt)

T
− 1

T
‖∇F (xt)− dt‖·‖−vt + x∗‖− L̄R

2

2T 2

(f)

≥ F (xt) +
F (x∗)− F (xt)

T
− 1

T
2R‖∇F (xt)− dt‖−

L̄R2

2T 2
,

(31)

where inequality (a) holds because of the L̄-smoothness of F , inequalities (b), (e) comes from Assumption 1. We
used the optimality of vt in inequality (c), and applied the Cauchy-Schwarz inequality in(e). Inequality (d) is a
little involved, since F is monotone and concave in positive directions, we have

F (x∗)− F (xt) ≤ F (x∗ ∨ xt)− F (xt) ≤ 〈∇F (xt),x
∗ ∨ xt − xt〉 = 〈∇F (xt), (x

∗ − xt) ∨ 0〉 ≤ 〈∇F (xt),x
∗〉.

Taking expectations on both sides of Eq. (31),

E[F (xt+1)] ≥ E[F (xt)] +
F (x∗)− E[F (xt)]

T
− 2R

T

√
C√
t
− L̄R2

2T 2
.

Or

F (x∗)− E[F (xt+1)] ≤ (1− 1

T
)[F (x∗)− E[F (xt)]] +

2R

T

√
C√
t

+
L̄R2

2T 2

Apply the inequality above recursively for t = 1, 2, · · · , T , we have

F (x∗)− E[F (xT+1)] ≤ (1− 1

T
)T [F (x∗)− F (x1)] +

2R
√
C

T

T∑
t=1

t−1/2 +
L̄R2

2T

≤ e−1F (x∗) +
4R
√
C

T 1/2
+
L̄R2

2T
,

where the second inequality holds since
∑T
t=1 t

−1/2 ≤
∫ T

0
x−1/2dx = 2T 1/2. Thus we have

E[F (xT+1)] ≥ (1− e−1)F (x∗)− 4R
√
C

T 1/2
− L̄R2

2T
.


