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Abstract

Bandit Convex Optimization (BCO) is a fun-
damental framework for modeling sequen-
tial decision-making with partial information,
where the only feedback available to the player
is the one-point or two-point function val-
ues. In this paper, we investigate BCO in
non-stationary environments and choose the
dynamic regret as the performance measure,
which is defined as the difference between
the cumulative loss incurred by the algo-
rithm and that of any feasible comparator
sequence. Let T be the time horizon and
Pr be the path-length of the comparator
sequence that reflects the non-stationarity
of environments. We propose a novel algo-
rithm that achieves O(T%/4(1 + Pr)/?) and
O(TY?(1 + Pr)'/?) dynamic regret respec-
tively for the one-point and two-point feed-
back models. The latter result is optimal,
matching the Q(7T%/2(1+4 Pr)*/?) lower bound
established in this paper. Notably, our al-
gorithm is more adaptive to non-stationary
environments since it does not require prior
knowledge of the path-length Pr ahead of
time, which is generally unknown.

1 Introduction

Online Convex Optimization (OCO) is a powerful
tool for modeling sequential decision-making problems,
which can be regarded as an iterative game between
the player and environments [Shalev-Shwartz, 2012].
At iteration ¢, the player commits a decision x; from a
convex feasible set X C Rd, simultaneously, a convex
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function f; : X — R is revealed by environments, and
then the player will suffer an instantaneous loss fi(x;).
The standard performance measure is the regret,

T T
S-Regret, = tz_; fe(xe) — xm61£; fe(x) (1)
which is the difference between the cumulative loss
of the player and that of the best fized decision in
hindsight. To emphasize the fact that the comparator
in (1) is fixed, it is called static regret.

There are two setups for online convex optimization
according to the information that environments re-
veal [Hazan, 2016]. In the full-information setup, the
player has all the information of the function f;, in-
cluding the gradients of f; over X'. By contrast, in the
bandit setup, the instantaneous loss is the only feedback
available to the player. In this paper, we focus on the
latter case, which is referred to as the bandit convex
optimization (BCO).

BCO has attracted considerable attention because it
successfully models many real-world scenarios where
the feedback available to the decision maker is partial or
incomplete [Hazan, 2016]. The key challenge lies in the
limited feedback, i.e., the player has no access to gradi-
ents of the function. In the standard one-point feedback
model, the only feedback is the one-point function value,
based on which Flaxman et al. [2005] constructed an
unbiased estimator of the gradient and then appealed
to the online gradient descent algorithm that devel-
oped in the full-information setting [Zinkevich, 2003]
to establish an O(T3/*) expected regret. Another com-
mon variant is the two-point feedback model, where the
player is allowed to query function values of two points
at each iteration. Agarwal et al. [2010] demonstrated
an optimal O(v/T) regret for convex functions under
this feedback model. Algorithms and regret bounds
are further developed in later studies [Saha and Tewari,
2011, Hazan and Levy, 2014, Bubeck et al., 2015, Dekel
et al., 2015, Yang and Mohri, 2016, Bubeck et al., 2017].

Note that the static regret in (1) compares with a
fixed benchmark, so it implicitly assumes that there
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Table 1: Comparisons of dynamic regret for BCO problems. In the table, the column of “Parm-Free” indicates
whether the algorithm requires to know the path-length in advance. Meanwhile, T" is the time horizon, Py =

PT(ul, ceey uT) and P;i = maxxh_.’xTeX PT(Xl, e 7XT).

Feedback model Dynamic regret Type Parm-Free Reference
one-point O(T 1 (1+ Pr)) worst-case NO [Chen and Giannakis, 2019]
one-point O(Ti(1+ Pr) %) universal YES This work
two-point O(\/T(1+ P;))  worst-case NO [Yang et al., 2016]
two-point O(WT(1+ P;))  worst-case NO [Chen and Giannakis, 2019]
two-point O(V/T(1+ Pr)) universal YES This work

is a reasonably good decision over all iterations. Un-
fortunately, this may not be true in non-stationary
environments, where the underlying distribution of on-
line functions changes. To address this limitation, the
notion of dynamic regret is introduced by Zinkevich
[2003] and defined as the difference between the cu-
mulative loss of the player and that of a comparator
sequence uy,...,ur € X,

T

T
ur) =Y filxi) = Y filw). (2)

t=1

D-Regretp(uy, . ..

In contrast to a fixed benchmark in the static regret, dy-
namic regret compares with a changing comparator se-
quence and therefore is more suitable in non-stationary
environments. We remark that (2) is also called the
universal dynamic regret, since it holds universally
for any feasible comparator sequence. In the litera-
ture, there is a variant named the worst-case dynamic
regret [Besbes et al., 2015], which specifies the com-
parator sequence to be minimizers of online functions,
namely, u; = x; € arg min,c» fi(x). As pointed out
by Zhang et al. [2018], the universal dynamic regret is
more desired, because the worst-case dynamic regret
is typically too pessimistic while the universal one is
more adaptive to the non-stationarity of environments.
Moreover, the universal dynamic regret is more general
since it accommodates the worst-case dynamic regret
and static regret as special cases.

Recently, there are some studies on the dynamic regret
of BCO problems [Yang et al., 2016, Chen and Gian-
nakis, 2019]. They provide the worst-case dynamic
regret only, and the algorithms require some quantities
as the input which are generally unknown in advance.
Therefore, it is desired to design algorithms that enjoy
universal dynamic regret for BCO problems.

In this paper, we start with the bandit gradient de-
scent (BGD) algorithm of Flaxman et al. [2005], and
analyze its universal dynamic regret. We demonstrate
that the optimal parameter configuration of vanilla
BGD also requires prior information of the unknown

path-length. To address this issue, we propose the
Parameter-free Bandit Gradient Descent algorithm
(PBGD), which is inspired by the strategy of main-
taining multiple learning rates [van Erven and Koolen,
2016]. Our approach is essentially an online ensemble
method [Zhou, 2012], consisting of meta-algorithm and
expert-algorithm. The basic idea is to maintain a pool
of candidate parameters, and then invoke multiple in-
stances of the expert-algorithm simultaneously, where
each expert-algorithm is associated with a candidate
parameter. Next, the meta-algorithm combines pre-
dictions from expert-algorithms by an expert-tracking
algorithm [Cesa-Bianchi and Lugosi, 2006]. However,
it is prohibited to run multiple expert-algorithms with
different parameters simultaneously in BCO problems,
since the player is only allowed to query one/two points
in the bandit setup. To overcome this difficulty, we
carefully design a surrogate function, as the lineariza-
tion of the smoothed version of the loss function in the
sense of expectation, and make the strategy suitable
for bandit convex optimization. Our algorithm and
analysis accommodate one-point and two-point feed-
back models, and Table 1 summarizes existing dynamic
regret for BCO problems and our results. The main
contributions of this work are listed as follows.

e We establish the first universal dynamic regret
that supports to compare with any feasible com-
parator sequence for the bandit gradient descent
algorithm, in a unified analysis framework.

e We propose a parameter-free algorithm, which does
not require to know the upper bound of the path-
length Pr ahead of time, and meanwhile enjoys
the state-of-the-art dynamic regret.

e We establish the first minimax lower bound of
universal dynamic regret for BCO problems.

2 Related Work

In this section, we briefly introduce related work of
bandit convex optimization and dynamic regret.
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2.1 Bandit Convex Optimization

In the bandit convex optimization setting, the player
is only allowed to query function values of one point
or two points, and the gradient information is not
accessible as opposed to the full-information setting.

For the one-point feedback model, the seminal work
of Flaxman et al. [2005] constructed an unbiased gra-
dient estimator and established an O(T3/*) expected
regret for convex and Lipschitz functions. A similar
result was independently obtained by Kleinberg [2004].
Later, an O(T%/?) rate was shown to be attainable with
either strong convexity [Agarwal et al., 2010] or smooth-
ness [Saha and Tewari, 2011]. When functions are both
strongly convex and smooth, Hazan and Levy [2014]
designed a novel algorithm that achieves a regret of
O(v/Tlog T') based on the follow-the-regularized-leader
framework with self-concordant barriers, matching the
Q(V/T) lower bound [Shamir, 2013] up to logarithmic
factors. Furthermore, recent breakthroughs [Bubeck
et al., 2015, 2017] showed that O(ploy(log T)V/T) re-
gret is attainable for convex and Lipschitz functions,
though with a high dependence on the dimension d.

BCO with two-point feedback was proposed and stud-
ied by Agarwal et al. [2010], and was also independently
studied in the context of stochastic optimization [Nes-
terov, 2011]. Agarwal et al. [2010] first established the
expected regret of O(d?>v/T) and O(d?logT) for con-
vex Lipschitz and strongly convex Lipschitz functions,
respectively. These bounds are proved to be minimax
optimal in T' [Agarwal et al., 2010], and the dependence
on d was later improved to be optimal [Shamir, 2017].

Besides, bandit linear optimization is a special case
of BCO where the feedback is assumed to be a linear
function of the chosen decision, and has been studied
extensively [Awerbuch and Kleinberg, 2004, McMahan
and Blum, 2004, Dani et al., 2007, Abernethy et al.,
2008, Bubeck et al., 2012].

2.2 Dynamic Regret

There are two types of dynamic regret as aforemen-
tioned. The universal dynamic regret holds univer-
sally for any feasible comparator sequence, while the
worst-case one only compares with the sequence of the
minimizers of online functions.

For the universal dynamic regret, existing results are
only limited to the full-information setting. Zinkevich
[2003] showed that OGD achieves an O(v/T(1 + Pr))
regret, where Pr = Pr(uy,...,ur) is the path-length

of comparator sequence uy, ..., ur,

T
Pr(uy,...,ur) =3 Jlup 1 — uo. (3)
t=2

Recently, Zhang et al. [2018] demonstrated that
this upper bound is not optimal by establishing an
Q(/T(1+ Pr)) lower bound, and further proposed
an algorithm that attains an optimal O(y/T(1 + Pr))
dynamic regret for convex functions. However, there is
no universal dynamic regret in the bandit setting.

For the worst-case dynamic regret, there are many stud-
ies in the full-information setting [Besbes et al., 2015,
Jadbabaie et al., 2015, Yang et al., 2016, Mokhtari
et al., 2016, Zhang et al., 2017] as well as a few works
in the bandit setting [Gur et al., 2014, Yang et al., 2016,
Luo et al., 2018, Auer et al., 2019, Cheung et al., 2019,
Chen and Giannakis, 2019]. In the bandit convex opti-
mization, when the upper bound of P7 is known, Yang
et al. [2016] established an O(,/T'(1 + P})) dynamic
regret for the two-point feedback model. Here, P} =
maxy, . xpex Pr(x1,---,xr) is the longest path-
length of the feasible comparator sequence. Later, Chen
and Giannakis [2019] applied BCO techniques in
the dynamic Internet-of-Things management, show-
ing O(T%*(1 + P;)) and O(T'/?(1 + P;)) dynamic
regret bounds respectively for one-point and two-point
feedback models.

3 Bandit Gradient Descent (BGD)

In this section, we provide assumptions used in the
paper, then present the bandit gradient descent (BGD)
algorithm for BCO problems, as well as its universal
dynamic regret. To the best of our knowledge, this
is the first work that analyzes the universal dynamic
regret of BGD.

3.1 Assumptions

We make following common assumptions for BCO [Flax-
man et al., 2005, Agarwal et al., 2010].

Assumption 1 (Bounded Region). The feasible set
X contains the ball of radius r centered at the origin
and is contained in the ball of radius R,

B C X C RB (4)

where B = {x € R? | ||x|]2 < 1}.

Assumption 2 (Bounded Function Value). The abso-
lute values of all the functions are bounded by C,

vie(T], maxlfi(0] < C (5)
Assumption 3 (Lipschitz Continuity). All the func-

tions are L-Lipschitz continuous over domain X, that
is, for all x,y € X, we have

vte[T], [fi(x) = fi(y)| < Llix—yl2.  (6)

Meanwhile, we consider loss functions and the com-
parator sequence are chosen by an oblivious adversary.
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3.2 Algorithm and Regret Analysis

In this part, we present algorithm and regret analysis
of the bandit gradient descent.

We start from the online gradient descent (OGD) devel-
oped in the full-information setting [Zinkevich, 2003].
OGD begins with any x; € X and performs

Xt+1 = PijX[Xt - ﬁvft(xt)] (7)

where 7 > 0 is the step size and Projy[-] denotes the
projection onto the nearest point in X.

The key challenge of BCO problems is the lack of gra-
dients. Therefore, Flaxman et al. [2005] and Agarwal
et al. [2010] proposed to replace V fi(x;) in (7) with
a gradient estimator g;, obtained by evaluating the
function at one (in the one-point feedback model) or
two random points (in the two-point feedback model)
around x;. Details will be presented later. We unify
their algorithms in Algorithm 1, called the Bandit Gra-
dient Descent (BGD). Notice that in lines 8 and 14 of
the algorithm, the projection of y;;1 is on a slightly
smaller set (1 — a)X instead of X to ensure that the
final decision x;41 lies in the feasible set X', and the
idea is originated in the works of tracking the best
experts [Herbster and Warmuth, 1998, 2001].

In the following, we describe the gradient estimator and

analyze the universal dynamic regret for each model.

One-Point Feedback Model. Flaxman et al.
[2005] proposed the following gradient estimator,

gt = gft(}’t +ds¢) - sy (8)

where s; is a unit vector selected uniformly at random
and 0 > 0 is the perturbation parameter. Then, the
following lemma [Flaxman et al., 2005, Lemma 2.1]
guarantees that (8) is an unbiased gradient estimator
of the smoothed version of the loss function f;.

Lemma 1. For any convex (but not necessarily dif-
ferentiable) function f: X — R, define its smoothed

version f(x) = Eyep[f(x+ dv)]. Then, for any § > 0,

Eacolf(x +05) -] = OV Fix) )

where S is the unit sphere centered around the origin,
namely, S = {x € R|||x||s = 1}.

Therefore, we adopt ¢; to perform the online gradient
descent in (7). The main update procedures of the
one-point feedback model are summarized in the case 1
(line 4-7) of Algorithm 1. We have the following result
regarding its universal dynamic regret.

Algorithm 1 Bandit Gradient Descent (BGD)

Input: time horizon T, perturbation parameter d,
shrinkage parameter «, step size 7
1: Let y; =0
2: fort=1to T do
3:  Select a unit vector s; uniformly at random
{Case 1. One-Point Feedback Model}

4:  Submit x; =y + Js;
5:  Receive fi(x:) as the feedback
6:  Construct the gradient estimator by (8)
7o Yier1 = Projo_qx[ye — 19t
{Case 2. Two-Point Feedback Model}
8 Submit xgl) =1y + 0s; and x§2) =y; — 0S¢
9:  Receive ft(xgl)) and ft(x?)) as the feedback

10:  Construct the gradient estimator by (11)

11:  yer1 = Proj_q)x [yt — ng¢]
12: end for

Theorem 1. Under Assumptions 1, 2, and 3, for any
0>0,n>0, and a =/r, the expected dynamic regret
of BGD(T,é,a,n) for the one-point feedback model
satisfies

T T
E|Y ft(Xt)] = > filw)
t=1 t=1 (10)
TR?+ RPr  nd*C?T LR
< -
< ot (3L + . )T,
for any feasible comparator sequence uy,...,ur € X.

Remark 1. By setting n = ((TR? + RPr)/T)3/* and
§ = n'/3, we obtain an O(T%/*(1 + Pr)'/*) dynamic
regret. However, such a configuration requires prior
knowledge of Pr, which is generally unavailable. We
will develop a parameter-free algorithm to eliminate
the undesired dependence later.

Two-Point Feedback Model. In this setup, the
1 _
=Yyt +0st

player is allowed to query two points, x;

and XEQ) = y¢ — ds¢. Then, the function values ft(x,gl))
and ft(xﬁz)) are revealed as the feedback. We use the
following gradient estimator [Agarwal et al., 2010],

gt = %(ft(Yt+5St) = filye = 6s1)) - s (11)

The major limitation of the one-point gradient esti-
mator (8) is that it has a potentially large magnitude,
proportional to the 1/§ which is usually quite large
since the perturbation parameter § is typically small.
This is avoided in the two-point gradient estimator (11),
whose magnitude can be upper bounded by Ld, inde-
pendent of the perturbation parameter §. This crucial
advantage leads to the substantial improvement in the
dynamic regret (also static regret).
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Theorem 2. Under Assumptions 1, 2, and 3, for any
60>0,n>0, and o = &/r, the expected dynamic regret
of BGD(T,6,a,n) for the two-point feedback model
satisfies

T T
1
E |35 (Rb) + L) | =D fulw)
t=1 =1 (12)
TR? + RP L2d? LR
L A S Y JRELL
4n 2 r
for any feasible comparator sequence uy,...,ur € X.

Remark 2. By setting n = \/(TR2 + RPr)/(2L2d>?T)
and 6 = 1/+/T, BGD algorithm achieves an O(T*/?(1 +
Pr)'/?) dynamic regret. However, this configuration
has an unpleasant dependence on the unknown quantity
Pr, which will be removed in the next part.

4 Parameter-Free BGD

From Theorems 1 and 2, we observe that the optimal
parameter configurations of BGD algorithm require to
know the path-length Pr in advance, which is generally
unknown. In this section, we develop a parameter-free
algorithm to address this limitation.

4.1 Algorithm

The fundamental obstacle in obtaining universal dy-
namic regret guarantees is that the path-length Pr
remains unknown even after all iterations, since the
comparator sequence ui,...,Ur can be chosen arbi-
trarily from the feasible set. Therefore, the well-known
doubling trick [Cesa-Bianchi et al., 1997] is not ap-
plicable to remove the dependence on the unknown
path-length. Another possible technique to overcome
this difficulty is to grid search the optimal parameter by
maintaining multiple learning rates in parallel and us-
ing expert-tracking algorithms to combine predictions
and track the best parameter [van Erven and Koolen,
2016]. However, it is infeasible to directly apply this
method to bandit convex optimization because of the
inherent difficulty of bandit setting — it is only allowed
to query the function value once at each iteration.

To address this issue, we need a closer investigation
of dynamic regret analysis of BCO problems. Taking
the one-feedback model as an example, the expected
dynamic regret can be decomposed into three terms,

HMH

ET: (ft X¢)

t=1

yt))}

term (a) term (b)

EY (fv) ft<ut))], (13)
t=1
term (c)
where vq,..., vy is the scaled comparator sequence
set as vi = (1 — a)u;. It turns out that term (b)

and term (c) can be bounded by 2L6T and (L +
LaR)T respectively, without involving the unknown
path-length. Hence, it suffices to design parameter-
free algorithms to optimize term (a), i.e., the dynamic
regret of the smoothed loss function ft

However, it remains infeasible to maintain multiple
learning rates for optimizing dynamic regret of f;. Sup-
pose there are in total N experts where each expert
is associated with a learning rate (step size), then at
iteration ¢, expert-algorithms will require the informa-
tion of Vft(yt) Vii(y2),...,Vi(y)) to perform the
bandit gradient descent. ThlS necessitates to query N
function values of original loss f;, which is prohibited
in bandit convex optimization.

Fortunately, we discover that the expected dynamic
regret of f; can be upper bounded by that of a linear
function, as demonstrated in the following proposition.

Proposition 1.

E[fi(ye) — fi(vo)] SE[@ye — ve)].  (14)

This feature motivates us to design the following sur-
rogate loss function ¢; : (1 — )X — R,

b(y) =

which can be regarded as a linearization of smoothed
function f; on the point y; in terms of expectation.
Furthermore, the surrogate loss function enjoys the
following two properties.

Property 1. Vy € (1 — )X, Vi (y) = g:.
Property 2. Vv e (1 — a)X,

Efi(ye) — [:(v)] < E[li(y:) — b(V)]-

@t’y —Yt>a (15)

(16)

Property 1 follows from the definition of surrogate
loss, and Proposition 1 immediately implies Property 2.
These two properties are simple yet quite useful, and
they together make the grid search feasible in bandit
convex optimization. Concretely speaking,

e Property 1 implies that we can now initialize N ex-
perts to perform the bandit gradient descent over
the surrogate loss where each expert is associated
with a specific learning rate, since all the gradients
Ve(yh), VE(y?), ..., VE(yN) essentially equal to
gt, which can be obtained by querying the function
value of f; only once.
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e Property 2 guarantees the expected dynamic regret
of smoothed functions f;’s is upper bounded by
that of the surrogate loss #;’s.

Consequently, we propose to optimize surrogate loss /;
instead of original loss f; (or its smoothed version f).
We note that the idea of constructing surrogate loss for
maintaining multiple learning rates is originally pro-
posed by van Erven and Koolen [2016] but for different
purposes. They construct a quadratic upper bound
for original loss f; as surrogate loss, with the aim to
adapt to the potential curvature of online functions
in full-information online convex optimization. In this
paper, we design the surrogate loss as linearization
of smoothed function f; in terms of expectation, to
make the grid search of optimal parameter doable in
bandit convex optimization. To the best of our knowl-
edge, this is the first time to optimize surrogate loss
for maintaining multiple learning rates in bandit setup.

In the following, we describe the design details of
parameter-free algorithms for the one-point feedback
model, and will present configurations of BCO with
two-point feedback model in a longer version.

In the one-point feedback model, the optimal step size
is n* = /TRZ + RPr/(dCT?/*), whose value is unavail-
able due to the unknown path-length Pr. Nevertheless,
we confirm that

VTR - *<\N+QTR
dcTe/a =" = TqeTs/
always holds from the non-negativity and boundedness
of the path-length (0 < Pr < 2RT'). Hence, we first
construct the following pool of candidate step sizes H
to discretize the range of optimal parameter in (17),

1 VIR
H{mzlﬂmpran, (18)

where N = [1log,(1+27/7)] + 1. The above configu-
ration ensures there exists an index k € {1,..., N — 1}
such that gy < n* < 1 = 2n,. More intuitively,
there is a step size in the pool H that is not opti-
mal but sufficiently close to n7*. Next, we instantiate N
expert-algorithms, where the i-th expert is a BGD algo-
rithm with parameters n; € # and § = T~ /4. Finally,
we adopt an expert-tracking algorithm as the meta-
algorithm to combine predictions from all the experts
to produce the final decision. Owing to nice theoretical
guarantees of the meta-algorithm, dynamic regret of
final decisions is comparable to that of the best expert,
i.e., the expert-algorithm with near-optimal step size.

(17)

We present descriptions for expert-algorithm and meta-
algorithm of PBGD as follows.

Expert-algorithm. For each candidate step size
from the pool H, we initialize an expert, and the expert

Algorithm 2 PBGD: Meta-algorithm
Input: time horizon T, the pool of candidate step
sizes H, learning rate of the meta-algorithm e
1: Run expert-algorithms (19) with different step sizes
simultaneously
2: Initialize the weight of each expert as

N+1 1
N i(i+1)

Vi € [N]

w] =

3: fort=1toT do

4:  Receive yi from each expert i € [N]

5. Obtain y; = ;) wiyy

6:  Submit x; = y; + ds; and incur loss fi(x¢)
7. Compute gradient estimator g; by (8)

8:  Construct surrogate loss £;(-) as (15)

9:  Update the weight of each expert ¢ € [N] by

i wiesp(—eh(y])
o ZiG[N] wy exp(—ely(yy))

10:  Send the gradient estimator g; to each expert
11: end for

i € [N] performs the online gradient descent over the
surrogate loss defined in (15),

yiJrl = Proj(ka)x[yg - th(yi)] (19)
= Proj(lfa)){[yz - nigt]a

where n; is the step size of the expert i, shown in (18).

The above update procedure once again demonstrates
the necessity of constructing the surrogate loss. Due
to the nice property of surrogate loss (Property 1), at
each iteration, all the experts can perform the exact
online gradient descent in the same direction g;. By
contrast, suppose each expert is conducted over the
smoothed loss function f;, then at each iteration it
requires to query multiple gradients V f;(y?), or equiv-
alently, to query multiple function values f;(x!), which
are unavailable in bandit convex optimization.

Meta-algorithm. To combine predictions returned
from various experts, we adopt the exponentially
weighted average forecaster algorithm [Cesa-Bianchi
and Lugosi, 2006] with nonuniform initial weights as
the meta-algorithm, whose input is the pool of candi-
date step sizes H in (18) and its own learning rate e.
The nonuniform initialization of weights aims to make
regret analysis tighter, which will be clear in the proof.
Algorithm 2 presents detailed procedures. Note that
the meta-algorithm itself does not require any prior
information of the unknown path-length Pr.

The meta-algorithm in Algorithm 2, together with
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the expert-algorithm (19), gives PBGD (short for
Parameter-free Bandit Gradient Descent).

4.2 Regret Analysis

The following theorem states the dynamic regret of the
proposed PBGD algorithm.

Theorem 3. Under Assumptions 1, 2, and 3, with
a proper setting of the pool of candidate step sizes H
and the learning rate ¢, PBGD algorithm enjoys the
following expected dynamic regret,

e One-Point Feedback Model: O(T%(l + PT)%);
e Two-Point Feedback Model: O(T%(l + PT)%).

The above results hold universally for any feasible com-
parator sequence uy,...,ur € X.

Remark 3. Theorem 3 shows that the dynamic
regret can be improved from O(T%(l + PT)%) to
O(T% (1 —I—PT)%) when it is allowed to query two points
at each iteration. The attained dynamic regret (though
in expectation) of BCO with two-point feedback, sur-
prisingly, is in the same order with that of the full-
information setting [Zhang et al., 2018]. This extends
the claim argued by Agarwal et al. [2010] knowing the
value of each loss function at two points is almost as
useful as knowing the value of each function everywhere
to dynamic regret analysis. Furthermore, we will show
that the obtained dynamic regret for the two-point
feedback model is minimax optimal in the next section.

Due to the limitation of space, we only present the
proof sketch of one-point feedback model. More details
and all the other proofs (for two-point feedback model)
will be presented in a longer version.

Proof Sketch. To obtain dynamic regret, it suf-
fices to bound term (a) as shown in (13). Proposi-
tion 1 implies that term (a) can be upper bounded by
E[Zthl(Et(yt) — £(vy))], expected dynamic regret in
terms of surrogate loss, denoted by Dr. Notice that
D7 can be further decomposed into two terms,

T

T
Dr = (tlys) = ta(yf)) + D (t(yf) — telve)) -

t=1 t=1

meta-regret expert-regret

First, we bound the meta-regret. Since the path-length
Pr is bounded by 2RT and the optimal tuning is n* =
((TR?+ RPr)/T)3/*, there exists an index k € [N] such
that nx, < n* < nry1 with

k< [ log, (1+ fR)] 41 (20)

The regret analysis of exponentially weighted average
forecaster algorithm implies

meta-regret < GRV2T (14 In(1/w}))

d((’;R\/ﬁ(l +2In(k+1)). (21)

c c
R 2 Ght1)?

and G is the magnitude of the gradient estimator.

The last inequality holds due to w¥ =

Next, we bound the expert-regret. At each iteration,
each expert performs deterministic OGD over surrogate
loss, so we can employ the existing dynamic regret
guarantee for OGD and obtain that

TR? + RP G°T
expert-regret < + 4 T (22)
41]k 2
TR? + RP *d*C*T
P M (23)

- 2n* 262
= idCT4 VTR? + RPp

where (22) follows from the dynamic regret guarantee
of OGD, (23) holds due to n; < n* < 21, and the last
equation holds due to the setting of n* and § = T—1/4,

Therefore, by combining upper bounds of meta-regret
and expert-regret, we conclude that the term (a) is
upper bounded by

V2dCRT**(1 + 2In(k + 1) + 3\/7TR2 + RPr/4).

Finally, we bound the expected dynamic regret of orig-
inal loss functions by combining above results,

E th(xt)] > fi(w)
. )

=" term (a) + term (b) + term (c)

< term (a) + 2L0T + (L0 + LaR)T

< V2dCRT**(1 + 21n(k + 1) + 3/7TR? + RPr/4)
+ (3L 4 LR/r)T?/*

=0(T%*(1 + Pr)"/?),

where the first inequality makes use of the fact that
term (b) and term (c) are bounded by 2LJT and (L +
LaR)T, respectively. O

5 Lower Bound and Extension

In this section, we investigate the attainable dynamic
regret for BCO problems, and then extend our algo-
rithm to an anytime version, that is, an algorithm
without requiring the time horizon in advance.

5.1 Lower Bound

We have the following minimax lower bound of universal
dynamic regret for BCO problems.
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Theorem 4. For any 7 € [0,2RT], there exists a
comparator sequence uy,...,ur € X satisfying As-
sumption 1 whose path-length Pr is less than T, and
a sequence of functions satisfying Assumption 3, such
that for any algorithm designed for BCO with one-/two-
point feedback who returns xq,...,Xr,

T T
> filx) =Y filw) > C-dL\/(R? + Rr)T, (24)

where C' is a positive constant independent of T .

From the above lower bound and the upper bounds
in Theorem 3, we know that our dynamic regret for
the two-point feedback model is optimal, while the
rate for one-point feedback model remains sub-optimal,
where the desired rate is of order O(T3/*(1 + Pr)'/%)
as demonstrated in Remark 1. Note that the desired
bound does not contradict with the minimax lower
bound, since O(T%/*(1 + Pp)Y/*) = O(T*/?TY4(1 +
Pr)/*) is larger than the Q(T"/2(1 + Pr)/?) lower
bound by noticing that Pr = o(T).

Our attained O(T%/4(1 4+ Pr)'/?) dynamic regret ex-
hibits a square-root dependence on the path-length,
and it will become meaningless when Pr > /T, though
the path-length is typically small. The challenge is that
the grid search technique cannot support to approxi-
mate the optimal perturbation parameter 6* which is
also dependent on Pr. Otherwise, we have to query
the function more than once at each iteration. We will
investigate a sharper bound for BCO with one-point
feedback in the future.

Remark 4. The lower bound holds even all the func-
tions f;’s are strongly convex and smooth in BCO with
one-point feedback. This is to be contrasted with that
in the full-information setting. The reason is that the
minimax static regret of BCO with one-point feedback
can neither benefit from strongly convexity nor smooth-
ness [Shamir, 2013]. This implies the inherent difficulty
of learning with bandit feedback.

5.2 Extension to Anytime Algorithm

Notice that the proposed PBGD algorithm requires
the time horizon T as an input, which is not available
in advance. In this part, we remove the undesired
dependence and develop an anytime algorithm.

Our method is essentially a standard implementation
of the doubling trick [Cesa-Bianchi et al., 1997]. Specifi-
cally, the idea is to initialize the interval by 2, and once
the actual number of iterations exceeds the current
counts, double the counts and restart the algorithm.
So there will be K = [logT| + 1 epochs and the i-th
epoch contains 2! iterations. We have the following
regret guarantees for the above anytime algorithm.

Theorem 5. Under the same conditions with The-
orem 3, the anytime version of PBGD enjoys the
following expected dynamic regret,

o One-Point Feedback Model: O(T%(logT + PT)%);
o Two-Point Feedback Model: O(T%(logT + PT)%).

The above results hold universally for any feasible com-
parator sequence uy,...,up € X.

We take the one-point feedback model as an example
and provide a brief analysis as follows. Actually, by the
strategy of doubling trick, we can bound the dynamic
regret of the anytime algorithm by

K 3 1 K 3 K
Zi:l T+ P2 < \/Zi_l T \/Zi_l(l +B)
= \/S°" 2% iogT + Pr = O(T% (tog T + Pr)?).

Compared with the O(T%/%(1 4+ Pr)'/?) rate of the
original PBGD algorithm, we observe that an extra
log T term is suffered due to the anytime demand.

6 Conclusion and Future Work

In this paper, we study the bandit convex optimization
(BCO) problems in non-stationary environments. We
propose the Parameter-free Bandit Gradient Descent
(PBGD) algorithm that achieves the state-of-the-art
O(T3/*(1 4 Pp)'/?) and O(T"/?(1 + Pr)/?) dynamic
regret bounds for one-point and two-point feedback
models respectively. The regret bounds hold univer-
sally for any feasible comparator sequence. Meanwhile,
the algorithm does not need to know prior information
of the path-length, which is unknown but required in
previous studies. Furthermore, we demonstrate the
regret bound for the two-point feedback model is mini-
max optimal by establishing the first lower bound for
the universal dynamic regret in the bandit convex op-
timization setup. We also extend the algorithm to an
anytime version.

In the future, we will investigate a sharper bound
for BCO with one-point feedback. Moreover, we will
consider incorporating other properties, like strong con-
vexity and smoothness, to further enhance the dynamic
regret for bandit convex optimization.
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