
Appendix for “Variational Autoencoders for Sparse and
Overdispersed Discrete Data”

He Zhao∗ Piyush Rai† Lan Du∗

Wray Buntine∗ Dinh Phung∗ Mingyuan Zhou‡
∗Faculty of Information Technology, Monash University, Australia

†Department of Computer Science and Engineering, IIT Kanpur, India
‡McCombs School of Business, The University of Texas at Austin, USA

1 EXPERIMENTS ON TEXT
ANALYSIS

1.1 Datasets

The statistics of the datasets used in the text analy-
sis experiments are shown in Table 1. The 20NG and
RCV datasets were downloaded from the code repos-
itory of Gan et al. (2015)1. The Wiki dataset was
downloaded from Wikipedia using the scripts provided
in Hoffman et al. (2010).

1.2 Evaluation Metric

We report per-heldout-word perplexity of all the mod-
els, which is a widely-used metric for text analysis.
Following the approach in Wallach et al. (2009), after
training a model with the training documents, we ran-
domly select some words as the observed words and use
the remaining words as the unobserved words in each
testing document, then use the observed words to es-
timate the predictive probability, and finally compute
the perplexity of the unobserved words. Specifically,
suppose that the matrix of the testing documents is
Y∗ ∈ NV×Ntest , which is split into the observed word
matrix Y∗o ∈ NV×Ntest and the unobserved word ma-
trix Y∗u ∈ NV×Ntest , where Y∗ = Y∗o + Y∗u. The
predictive rates of the testing documents are estimated
with Y∗o and used to compute the perplexity of Y∗u,

1https://github.com/zhegan27/dpfa_icml2015

Table 1: Statistics of the datasets in text analysis.
Ntrain: number of training instances, Ntest: number of
test instances. The number of nonzeros and density
are computed of each whole dataset.

Dataset Ntrain Ntest V #Nonzeros Density

20NG 11,315 7,531 2,000 774,984 0.0343
RCV 794,414 10,000 10,000 58,637,816 0.0074
Wiki 10,000,000 1,000 7,702 82,311,745 0.0107

detailed as follows2:

Perplexity = exp−

 1

y∗u··

Ntest∑
j

V∑
v

y∗uvj log
lvj
l·j

 , (1)

where y∗u·· =
∑Ntest

j

∑V
v y
∗u
vj . Note that lvj is the pre-

dictive rate, whose derivation is model specific shown
in Table

1.3 Experimental Settings

In the experiments of text analysis, in terms of model
settings of our proposed models, following (Liang
et al., 2018), we basically use the settings as for Mul-
tiVAE. Specifically, for both MultiVAE and NBVAE,

• We apply the fully connected multi-layer percep-
trons (MLP) with tanh as the nonlinear activation
function between the layers of the encoder and the
decoder.

2Our perplexity calculation is the same with the ones
in Gan et al. (2015); Henao et al. (2015); Cong et al. (2017),
but different from the ones in Miao et al. (2017, 2016);
Krishnan et al. (2018), which use ELBO obtained from
all the words of a testing document without splitting it.
The results of Miao et al. (2017, 2016); Krishnan et al.
(2018) can only be compared with models with variational
inference.

https://github.com/zhegan27/dpfa_icml2015


Appendix for “Variational Autoencoders for Sparse and Overdispersed Discrete Data”

• We use the same network architecture for the two
parametric functions in the decoder, fθr (·) and
fθp(·).

• The architecture of fφ(·) is symmetric to those of
fθr (·) and fθp(·). For example, if we use [32, 64,
128] as the architecture of the hidden layers for
the decoder, then K = 32 is the dimension of the
latent representations and the architecture of the
hidden layers for the encoder would be [128, 64,
32].

• The output layers of the encoder and decoder have
no activation function.

• We set the batch size to 500 and 2000 for 20NG
and the other two larger datasets, respectively.

• The number of training epochs was set to 800 and
the optimisation of the VAE models was done by
Adam (Kingma and Ba, 2014) with 0.003 as the
learning rate.

• We use the same KL annealing procedure men-
tioned in the MultiVAE paper (Liang et al., 2018).

For the baselines, we use the original model settings
provided in the code published by the authors. For
the VAE-based models, we report the perplexity com-
puted with the parameters (the encoder and decoder)
in the last iteration of the training phrase, whereas for
models with MCMC sampling (e.g., NBFA), we report
the perplexity averaged over multiple samples in the
collection iterations.

2 EXPERIMENTS ON
COLLABORATIVE FILTERING

2.1 Datasets

ML-10M and ML-20M are downloaded from https:

//grouplens.org/datasets/movielens/; Netflix is
downloaded from http://www.netflixprize.com/;
MSD (Bertin-Mahieux et al., 2011) is down-
loaded from https://labrosa.ee.columbia.edu/

millionsong/. All the datasets are preprocessed and
binarised by the Python code provided by Liang et al.
(2018), using the same settings described in the paper.
The statistics of the datasets are shown in Table 1.
Note that following Liang et al. (2018), we also gener-
ate a validation set with the same size of the testing
set.

2.2 Evaluation Metrics

Two ranking-based metrics are used, which are
Recall@R and the truncated normalized discounted

Table 2: Statistics of the datasets in collaborative fil-
tering. Ntrain: number of training instances, Ntest:
number of test instances. The number of nonzeros
and density are computed of each whole dataset.

Dataset Ntrain Ntest V #Nonzeros Density

ML-10M 49,167 10,000 10,066 4,131,372 0.0059
ML-20M 116,677 10,000 20,108 9,128,733 0.0033
Netflix 383,435 40,000 17,769 50,980,816 0.0062
MSD 459,330 50,000 36,716 29,138,887 0.0014

cumulative gain (NDCG@R). To compute those met-
rics, following Liang et al. (2018), we first estimate the
predictive rate l′j of user j given the observed items
y∗oj , and then rank the unobserved items y∗uj by sort-
ing l′j . The metrics are computed as follows:

Recall@R =

∑R
r=1 1

(
y∗uω(r)j = 1

)
min(R, y∗u·j )

, (2)

DCG@R =

R∑
r=1

21(y∗uω(r)j=1) − 1

log(r + 1)
, (3)

where ω(r) ∈ {1, · · · , V } is the item at rank r, ob-
tained by sorting the predictive rate of the user;

1
(
y∗uω(r)j = 1

)
indicates whether the item is actually

clicked on by user j; NDCG@R is computed by linearly
normalising DCG@R into [0, 1]. Intuitively, Recall@R
measures the number of the R predicted items that are
within the set of the ground-truth items but does not
consider the item rank in R, while NDCG@R assigns
larger discounts to lower ranked items. In the experi-
ments, we use the code provided in (Liang et al., 2018)
to compute the above two metrics. Moreover, we re-
port the testing performance of the models with the
best NDCG@50 on the validation set.

2.3 Experimental Settings

For NBVAE and NBVAEb, we used the same settings
as in the text analysis experiments, except that:

• The batch size is set to 500 for all the datasets.

• We use two hidden layers in the encoder with
[200-600] (The architectures of the two paramet-
ric functions in the decoder are symmetric to that
in the encoder).

• Following MultiVAE, we use the annealing cap β,
which is set to 0.2, detailed in Liang et al. (2018).

Note that all the above settings are consistent with
those in (Liang et al., 2018) The original code of Mul-
tiVAE and MultiDAE and their best settings provided
by the authors are used in the comparison.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
http://www.netflixprize.com/
https://labrosa.ee.columbia.edu/millionsong/
https://labrosa.ee.columbia.edu/millionsong/


He Zhao∗, Piyush Rai†, Lan Du∗, Wray Buntine∗, Dinh Phung∗, Mingyuan Zhou‡

Table 3: The statistics of the datasets used in the ex-
periments. Ntrain: number of training instances, Ntest:
number of test instances, D: number of features, V :
number of labels.

Dataset Ntrain Ntest D V

Delicious 12920 3185 500 983
Mediamill 30993 12914 120 101
EURLex 15539 3809 5000 3993

3 EXPERIMENTS ON
MULTI-LABEL LEARNING

3.1 Datasets

All the datasets are downloaded from http:

//manikvarma.org/downloads/XC/XMLRepository.

html and the statistics of the datasets are shown in
Table 3.

3.2 Evaluation Metrics

We report Precision@R (R ∈ {1, 3, 5}), which is a
widely-used ranking-based evaluation metric for multi-
label learning, following Jain et al. (2017). To compute
this metric, after training NBVAEc, given the feature
vector of a testing sample j∗, we can feed xj∗ into the
feature encoder to sample the latent representation,
zj∗ , then feed it into the decoder to get the predic-
tive rate l′j∗ . With the predictive rate, we can rank
the labels and compute Precision@R, which is simi-
lar to the computation of Recall and NDCG used in
collaborative filtering.

3.3 Experimental Settings

For NBVAEc in multi-label learning, we used the same
settings as NBVAEb in the text analysis experiments,
specifically:

• In the Delicious and Mediamill datasets, we use
[200-600] for two hidden layers in the encode and
for EURLex, we use one hidden layer in the en-
coder with 600 units.

• We use relu as the activation function for De-
licious and EURLex and tanh as the activation
function for Mediamill.

4 RUNNING SPEED COMPARISON

Here we compare the running speeds of NBVAE and
MultiVAE.

Table 4: Running time (seconds) per iteration on the
text datasets.

Model 20NG RCV Wiki

MultiVAE 0.12 48.21 42.18
NBVAE 0.17 49.49 48.57

Table 5: Running time (seconds) per iteration on the
collaborative filtering datasets.

Model ML-10M ML-20M Netflix MSD

MultiVAE 2.91 14.79 46.90 105.33
NBVAE 3.47 17.54 52.12 124.43

Analytically, NBVAE has additional computational
cost over MultiVAE in two aspects: (1) there are two
parameters p and r in NBVAE so we use two de-
coders fθr and fθp (one more than MultiVAE); (2)
an additional term in the log likelihood for zeros, as
pointed out by the reviewer. In terms of (2), accord-
ing to our description under Eq. (3) of the main
paper, we just need to compute the Bernoulli pa-
rameter temp = 1 − (1 − pj)

rj and then compute
yj ∗ log temp + (1−yj)∗ log(1− temp), where the RHS
is for zeros.

Empirically, as our models are implemented in Tensor-
Flow running on GPUs, the overhead as compared to
MultiVAE is not large. Here we report the running
time (seconds) per iteration of NBVAE (NBVAEb)
and MultiVAE on the text and collaborative filtering
datasets in Table 4 and Table 5, respectively. All the
experiments are implemented in TensorFlow and with
the same settings in the paper, and run on the same
machine with Nvidia Tesla P100 GPU.

In addition, in Figure 1, we plot the validation set
performance of NBVAE (NBVAEb) and MultiVAE in
the training phase.

References

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In Interna-
tional Conference on Music Information Retrieval,
2011.

Y. Cong, B. Chen, H. Liu, and M. Zhou. Deep la-
tent Dirichlet allocation with topic-layer-adaptive
stochastic gradient Riemannian MCMC. In ICML,
pages 864–873, 2017.

Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin.
Scalable deep Poisson factor analysis for topic mod-
eling. In ICML, pages 1823–1832, 2015.

R. Henao, Z. Gan, J. Lu, and L. Carin. Deep Poisson
factor modeling. In NIPS, pages 2800–2808, 2015.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


Appendix for “Variational Autoencoders for Sparse and Overdispersed Discrete Data”

(a) Perplexity on 20NG over iterations.

0 100 200 300 400 500 600 700 800
Iteration

600

700

800

900

1000

1100

1200

1300

1400

1500

1600
P

er
pl

ex
ity

MultiVAE
NBVAE

(b) Perplexity on 20NG over seconds.

0 20 40 60 80 100
Seconds

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

P
er

pl
ex

ity

MultiVAE
NBVAE

(c) NDCG@20 on ML-10M over iterations.

20 40 60 80 100 120 140 160 180 200
Iteration

0.1

0.15

0.2

0.25

0.3

0.35

N
D

C
G

@
20

MultiVAE
NBVAEb

(d) NDCG@20 on ML-10M over seconds.

0 100 200 300 400 500
Seconds

0.15

0.2

0.25

0.3

0.35

N
D

C
G

@
20

MultiVAE
NBVAEb

Figure 1: Performance of NBVAE and MultiVAE on the validation set during training.

M. Hoffman, F. R. Bach, and D. M. Blei. Online learn-
ing for latent Dirichlet allocation. In NIPS, pages
856–864, 2010.

V. Jain, N. Modhe, and P. Rai. Scalable generative
models for multi-label learning with missing labels.
In ICML, pages 1636–1644, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980,
2014.

R. Krishnan, D. Liang, and M. Hoffman. On the chal-
lenges of learning with inference networks on sparse,
high-dimensional data. In AISTATS, pages 143–151,
2018.

D. Liang, R. G. Krishncan, M. D. Hoffman, and T. Je-
bara. Variational autoencoders for collaborative fil-
tering. In WWW, pages 689–698, 2018.

Y. Miao, L. Yu, and P. Blunsom. Neural variational
inference for text processing. In ICML, pages 1727–
1736, 2016.

Y. Miao, E. Grefenstette, and P. Blunsom. Discov-
ering discrete latent topics with neural variational
inference. In ICML, pages 2410–2419, 2017.

H. M. Wallach, I. Murray, R. Salakhutdinov, and

D. Mimno. Evaluation methods for topic models.
In ICML, pages 1105–1112, 2009.


	EXPERIMENTS ON TEXT ANALYSIS
	Datasets
	Evaluation Metric
	Experimental Settings

	EXPERIMENTS ON COLLABORATIVE FILTERING
	Datasets
	Evaluation Metrics
	Experimental Settings

	EXPERIMENTS ON MULTI-LABEL LEARNING
	Datasets
	Evaluation Metrics
	Experimental Settings

	RUNNING SPEED COMPARISON

