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1 Proof of Theorem 1

Theorem 1. Let G = (V,E) be a random graph
sampled from SBM(p1, p2, q, n1, n2). Let u ∈ C1 and
v ∈ C2, compute DgGu and DgGv as described above.
Given any constant ε > 0, the following two inequali-
ties hold with high probability:

W1(Dg0Gu,Dg1Gv) ≥
c ·max{n1|p1 − q − 2ε|, n2|p2 − q − 2ε|}

W1(Dg1Gu,Dg1Gv) ≥
c ·max{n21|p31 − p1q2 − 2ε|, n22|p32 − p2q2 − 2ε|}

(1)

Proof. Denote the number of nodes in Gu from Ci(i =
1, 2) as Ni(i = 1, 2), the number of edges in Gu con-
necting two nodes from the same community Ci except
u as Nii, and the number of edges across two commu-
nities as Ne, then by Hoeffding’s inequality, with any
constant ε > 0 we can conclude that

Pr(|N1 − n1p1| ≤ εn1) ≥1− 2exp(−2ε2n1)

Pr(|N2 − n2q| ≤ εn2) ≥1− 2exp(−2ε2n2)

Pr(|N11 − n21p31| ≤ εn21) ≥1− 2exp(−2ε2n21))

Pr(|N22 − n22q2p2| ≤ εn22) ≥1− 2exp(−2ε2n22)

Pr(|Ne − n1n2p1q2| ≤ εn1n2) ≥1− 2exp(−2ε2n1n2))
(2)

Consider 0-dim persistent homology, since all nodes
in Gu are connected to u, the death of all topological
features is 0. Recall the algorithm used for deriving our
descriptor function (Eldridge et al., 2016), there are
N1 persistence points locating at the segment between
(p1−δ, 0) and (p1 +δ, 0) and N2 points in the segment
between (p2 − δ, 0) and (p2 + δ, 0) with probability µ.

Consider 1-dim extended persistent homology, we
category cycles in Gu into 3 sets: CS1 =
{(u, u′, u′′)|u′, u′′ ∈ C1}, CS2 = {(u, u′, u′′)|u′, u′′ ∈
C2} and the set of all other cycles, CS3. Each cy-
cle in CS1 or CS2 leads to a persistence point in
Dg1Gu lying in the segment between (p1 − δ, 0) and
(p1 + δ, 0) or (p2 − δ, 0) and (p2 + δ, 0) with probabil-

ity µ. Cycles in CS3 corresponds to points along the
diagonal with deviation of 2δ or within [p1 − δ, p1 +
δ]× [q − δ, q + δ] ∪ [p2 − δ, p2 + δ]× [q − δ, q + δ] with
the same probability. The size of CS1 and CS2 are
determined by N11, N22 and Ne. If p1 > p2, then
|CS1| = N11 + Ne and |CS2| = N22. Otherwise
|CS1| = N11 and |CS2| = N11 +Ne.

The numbers of such nodes and edges are induced anal-
ogously within Gv. Specially, denote the number of
nodes in Gv from Ci(i = 1, 2) as N ′i(i = 1, 2), the
number of edges connecting two nodes in the same
community Ci except v as N ′ii, it follows that

Pr(|N ′11 − n21q2p1| ≤ εn21) ≥1− 2exp(−2ε2n21))

Pr(|N ′22 − n22p32| ≤ εn22) ≥1− 2exp(−2ε2n22)
(3)

The computation of 1 − th Wasserstein distance be-
tween Dg0Gu and Dg0Gv is somewhat counting persis-
tence points in the two segments, diagonal and rectan-
gle regions mentioned above. We focus on those lying
along two segments. Clearly, the distance between two
persistence points in the same segment is smaller than
2δ. After pairing persistence points from Dg0Gu and
Dg0Gv in the same segment, the persistence points left
unpaired and the diagonals are paired by a bijection
function minimizing their summation distance. After
given p1, p2 and q, the distance among points in dif-
ferent segments or diagonal are lower bounded by

c = min{|p1 − p2|, |p1 − q|, |p2 − q|, q/
√

2} (4)

The number of persistence points unpaired with points
lying in the same segment is |N1 −N ′1|+ |N2 −N ′2|, it
follows that

W1(Dg0Gu,Dg1Gv) ≥
c ·max{n1|p1 − q − 2ε|, n2|p2 − q − 2ε|}

(5)

with probability (1− 2e−2ε
2n1)2(1− 2e−2ε

2n1))2µ.

The computation of 1-dim persistence diagrams
Wasserstein distance follows the same method. Notice
that persistence points locating within two rectangle
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Table 1: Statistics of experimental benchmark datasets

#Classes #Features #Nodes #Edges Edge density Label rate

Cora 7 1433 2708 5429 0.0014 0.036
Citeseer 6 3703 3327 4732 0.0008 0.052
Pubmed 3 500 19717 44338 0.0002 0.003

Coauthor-CS 15 6805 18333 81894 0.0005 0.016
Coauthor-Physics 5 8415 34493 247962 0.0005 0.003

Amazon-Computers 10 767 13381 245779 0.0027 0.015
Amazon-Photo 8 745 7487 119043 0.0042 0.021

Table 2: Classification Accuracies on Benchmark Datasets

Method Cora Citeseer PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computer Photo

PEGN-JI-2 82.5±0.5 71.7±0.6 78.7±0.6 92.7±0.3 94.1±0.3 84.0±1.0 92.2±0.5
PEGN-JI-1 82.4±0.5 71.7±0.5 78.5±0.6 92.7±0.3 94.1±0.2 86.1±0.6 92.7±0.4

regions can be paired as well. The number of persis-
tence points unpaired with points lying in the same
segment is |N11 −N ′11|+ |N22 −N ′22|, which leads to

W1(Dg1Gu,Dg1Gv) ≥
c ·max{n21|p31 − p1q2 − 2ε|, n22|p32 − p2q2 − 2ε|}

(6)

with probability (1− 2e−2ε
2n2

1))2(1− 2e−2ε
2n2

1))2µ.

2 Introduction of Datasets

Cora, Citeseer and Pubmed are citation graphs in
which nodes represent documents and edges represent
the undirected citation relations. Node features are
elements of a bag-of-words representations of docu-
ments. In two Coauthor graphs, nodes represent au-
thors which are connected by an edge if they jointly
authored a paper. Node features are keywords for each
author’s papers, and node class labels are given by
the authors’ most active study fields. In two Ama-
zon graphs, nodes represent goods and two nodes are
connected if consumers frequently buy them together.
Node features are bag-of-words encoded product re-
views, and class labels indicate the product category.
See Table 1 for the statistics of these datasets.

3 More Experiments Results

Besides Ollivier Ricci curvature, we also make exper-
iments by taking Jaccard index as the weight func-
tion for graphs and construct subgraphs by picking
1-hop and 2-hop neighbourhoods around each node.

Denote them PEGN-JI-1 and PEGN-JI-2, respec-
tively. The results are reported in Table 2.
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