
Persistence Enhanced Graph Neural Network

Qi Zhao∗ Ze Ye† Chao Chen† Yusu Wang∗

∗ Department of Computer Science and Engineering
The Ohio State University

†Department of Biomedical Informatics
Stony Brook University

Abstract

Local structural information can increase the
adaptability of graph convolutional networks
to large graphs with heterogeneous topol-
ogy. Existing methods only use relatively
simple topological information, such as node
degrees. We present a novel approach lever-
aging advanced topological information, i.e.,
persistent homology, which measures the in-
formation flow efficiency at different parts of
the graph. To fully exploit such structural in-
formation in real world graphs, we propose a
new network architecture which learns to use
persistent homology information to reweight
messages passed between graph nodes dur-
ing convolution. For node classification tasks,
our network outperforms existing ones on a
broad spectrum of graph benchmarks.

1 INTRODUCTION

Deep learning methods have achieved immense suc-
cess in different domains such as computer vision and
natural language processing (Goodfellow et al., 2016).
While deep neural networks have shown strong per-
formance on image or text data, their learning power
is yet to be fully exploited on graph-structured data.
At the same time, data with a latent graph structure
is ubiquitous in modern data science. It is highly de-
sirable to develop deep learning techniques that best
suite graph structures, such as social network, knowl-
edge network, brain connectivity network, etc.

Earlier works on Graph Neural Networks (GNNs)
(Gori et al., 2005; Scarselli et al., 2009) use recur-
sive networks. Those GNNs process the graph using
a set of neurons, each corresponding to a node in the

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

graph. The neurons update nodes representation and
exchange information from linked neighbor nodes iter-
atively until reaching equilibrium.

Inspired by the power of convolutional networks on
image and text data, different ideas have been pro-
posed to implement the “convolution” on graph struc-
tures. There are two main directions, spectral convolu-
tions and spatial convolutions. Spectral convolutional
networks (Bruna et al., 2014; Defferrard et al., 2016)
apply convolutions to the spectral domain or the fre-
quency domain of the input graph. These methods
tend to be efficient, but are highly graph-dependent.

In a more explicit manner, spatial convolutional net-
works implement convolutions on graphs. The fea-
ture representation of each node is iteratively updated
by aggregating information from immediate neighbors
(Hamilton et al., 2017; Xu et al., 2019) or a receptive
field determined by special methods (Niepert et al.,
2016). A transformation of the information from
neighbors - either linear or non-linear - can be learned
through training. The node representation informa-
tion transferred between vertices are called messages.
Veličković et al. (2018) used self-attention mechanism
to further refine the messages based on local informa-
tion, namely, features of source and target nodes.

In spatial convolutions, it is essential to have shared
filter parameters across different parts of the graph.
However, it has been observed that the filters should
be adaptive to different local graph structures. In par-
ticular, node degrees have been used to reweight the
messages or as additional features of node representa-
tions (Kipf and Welling, 2017; Monti et al., 2017). This
way, messages relevant to hub nodes with high degrees
will be different from messages between normal nodes.
However, node degree is only the simplest graph struc-
tural property. There are much richer and advanced
structural information that should be exploited in or-
der to develop structure-adaptive convolutional filters.

In this paper, we propose a novel and principled ap-
proach to maximally leverage the structural informa-
tion in spatial graph convolution. In particular, for

Persistence Enhanced Graph Neural Network

v v

Figure 1: A node v is critical in a tree-structured
neighborhood with no loops (left). But it is dispens-
able in a clique-structured neighborhood with 10 tri-
angular loops containing v (right).

a node of the graph, we are interested in the loopi-
ness of its neighborhood, i.e., how well its neighbors
are inter-connected. Such structural property mea-
sures how critical the center node, v, is in information
flow. At one extreme, if the neighborhood forms a
loop-free tree, v is indispensable as any information
between these neighbors has to pass v locally.1 At an-
other extreme, a clique neighborhood with Nv neigh-
bors has

(
Nv
2

)
= Nv(Nv − 1)/2 many triangular loops

that contain v. In such case, any two neighbors can
easily exchange information without going through v.
See Figure 1 for illustrations. Such loopiness measure
of a neighborhood should be fully exploited in graph
learning, as it measures the information transmission
efficiency of each node.

However, a direct cycle-counting within the neighbor-
hood of v is insufficient. One major challenge is how to
generalize to the cases when a graph is endowed with a
metric, i.e., edges are annotated with different weights.
These edge weights may come as part of the input in-
formation, e.g., frequency of communication between
nodes in a social network, distance between nodes in a
traffic network, etc. In other cases, these edge weights
may be derived directly from the graph structural in-
formation. We need a robust ‘cycle-counting’ measure
which should be stable to such graph metrics, i.e., does
not change much when a metric is slightly perturbed.

To this end, we will use a principled mathematical tool,
persistent homology, as a novel structural information
measurement for graph convolutional networks. Per-
sistent homology (Edelsbrunner et al., 2002; Edels-
brunner and Harer, 2010), as a modern adaption of
the classic algebraic topology, can measure topological
information carried in a metric space. In graph con-
text, persistent homology not only counts the number
of loops, but also measures the saliency of all loops in
view of a given metric. The result of (Cohen-Steiner
et al., 2007, 2010) shows that the structural informa-
tion captured in persistent homology is stable with re-
gard to certain perturbation of the underlying metric.

1The neighbors may communicate through other parts
of the graph, but at a higher expense (longer route).

We propose Persistence Enhanced Graph Network
(PEGN), a novel GNN to exploit the persistent homol-
ogy information. We focus on the node classification
task, while the method can be naturally generalized to
graph classification. Our contribution is two-fold.

• We propose a novel network architecture for
graphs, that uses persistent homology information
in a data-driven manner. Based on the input per-
sistent homology information of different neigh-
borhoods, we train a separate network to reweight
messages between nodes. This empowers the spa-
tial graph convolution to be highly adaptive with
regard to different local structures.

• We validate our proposed network on a broad
spectrum of synthetic and real world graph
datasets. Our method outperforms existing meth-
ods that only use node-feature-based attention or
node degree information. This confirms the power
of advanced structural information, i.e., persistent
homology, in graph learning.

To the best of our knowledge, we are the first to ex-
ploit advanced topological information beyond node de-
grees in spatial convolutional graph networks. Note
that spectral convolution methods, which run convo-
lutions on the spectral or Fourier space, indirectly use
advanced structural information. But for these meth-
ods, it is much harder to control the convolution with
regard to different local structures as we do.

Related Work. Persistent homology plays a cru-
cial role in topological data analysis, which extracts
topological information from various geometric ob-
jects such as shapes, images or point clouds. Much
progress has been made both on the theoretical front
(e.g, (Edelsbrunner et al., 2002; Carlsson and Zomoro-
dian, 2009; Chazal et al., 2009; Carlsson and de Silva,
2010; Chazal et al., 2016)) and the computational effi-
ciency (e.g, (Sheehy, 2012; Bauer et al., 2014; Clément
et al., 2014; Dey et al., 2016; Kerber and Schreiber,
2017; Bauer, 2016)). The extracted topological infor-
mation has been used as powerful features in various
contexts (Hofer et al., 2017; Adams et al., 2017; Carrire
et al., 2017; Kusano et al., 2017). Advanced topolog-
ical methods have been developed for image segmen-
tation (Wu et al., 2017; Hu et al., 2019), clustering
(Ni et al., 2017) and regularization of classifiers (Chen
et al., 2019).

For graphs, persistent homology information has been
used as a global structural signature for whole graph
classification (Rieck et al., 2019; Li et al., 2017; Zhao
and Wang, 2019). But no existing methods use such
information as a local structural information to im-
prove the adaptability of graph convolutional net-
works.

Qi Zhao∗, Ze Ye†, Chao Chen†, Yusu Wang∗

Outline. This paper is organized as follows. We first
introduce the concepts and mathematical properties
of persistent homology. We also show that the struc-
tural properties described as persistent homology are
both stable and discriminative. Reassured by these
theoretical guarantees, we propose the Persistence En-
hanced Graph Network (PEGN). We present details
of the network architecture. Finally, we show that our
approach has achieved or matched the state-of-the-art
across various graph benchmark datasets, in particular
on larger and denser graphs.

2 PERSISTENT HOMOLOGY

We first provide a brief introduction of persistent ho-
mology and persistence diagrams. We refer the readers
to (Edelsbrunner and Harer, 2010) for more details.

Suppose we are given a topological space X that we
want to characterize. A filtration of X is a sequence
of growing subsets: X1 ⊆ X2 ⊆ · · · ⊆ Xn = X, which
can be viewed as a specific way to inspect X. Dur-
ing the process of this inspection on X, sometimes
a new topological feature (such as a component, a
loop, a void, and so on) is created in Xi, and de-
stroyed when entering Xj . Persistent homology can
capture the birth and death of these topological fea-
tures (quantified by homology classes). In particu-
lar, the k-dimensional persistence diagram DgkX con-
sists of the diagonal2 and a multi-set of persistence
points in the (so-called “birth-death”) plane, and each
of the persistence point (b, d) records that some k-
dimensional topological feature appears when entering
Xb and disappears upon entering Xb. The persistence
of this feature is its lifespan |d−b|. Overall, DgX sum-
marizes features of X w.r.t. the input filtration in a
multi-scale manner.

There are many ways to build a filtration for a space
X: different filtrations reflect different views of X and
their corresponding persistence diagrams summarize
different features of X. One common way to induce
a filtration is via the superlevel-sets of a descriptor
function f : X → R defined on X. In particular, let
X≥a := {x ∈ X|f(x) ≥ a} be the superlevel-set of f
at a. Given an increasing sequence a1 > a2 > · · · > an
of real values, the superlevel-set filtration on X w.r.t.
f is

X≥a1 ⊆ X≥a2 ⊆ · · · ⊆ X≥an = X (1)

Denote the persistence diagram induced by f as Dgf .
A persistence point p = (ai, aj) indicates some topo-
logical features are created when entering X≥ai and
destroyed upon entering X≥aj . The persistence of

2Note that as is common in the literature, we also in-
clude the diagonal line into the persistence diagram DgkX.

the features is defined as its lifespan time pers(p) =
|aj−ai|. Similarly, if X is swept bottom-up in increas-
ing values, one gets the persistence diagram induced
by sublevel-set filtration of X w.r.t. f .

Graph Setting. In our applications, our input will
be graphs. Given a graph G = (V,E), we can view
it as a 1-dimensional simplicial complex. A (descrip-
tor) function f defined on V or E will then induce
a filtration as well as its persistence diagram sum-
mary. In particular, suppose f : V → R is de-
fined on the node set of G (e.g, the degree function).
Then we can extend f to edges E of G by setting
f(u, v) = max{f(u), f(v)}, and the sublevel-set at a
is defined as G≤a := {σ ∈ V ∪ E | f(σ) ≤ a}. Sim-
ilarly, if we are given f : E → R, then we can ex-
tend f to V by setting f(u) = minu∈e,e∈E f(e). As
we sweep G via the superlevel-set filtration of f , con-
nected components in the swept subgraphs will be cre-
ated and merged, and new cycles will be created. The
formal events are encoded in the 0-dimensional persis-
tence diagram Dg0f . The 1-dimensional features (cy-
cles), however, we note that cycles created will never
be killed, as they are present in the total space X = G
(which is the last space in the sequence in Eqn (1)).
To this end, we use the so-called extended persistence
introduced in (Cohen-Steiner et al., 2009) which can
record information of cycles.

An example of the persistence diagram induced by a
function on graph is given in Figure 2. In this exam-
ple, the descriptor function f : V = {u1, . . . , u10} → R
is the shortest path distance function to the base point
u1; that is, for any ui, f(ui) = dG(ui, u1) where dG de-
notes the shortest path metric on G. See Figure 2 (b),
as the level decreases, the vertices enter the filtration
in groups: {U4}, {U3, U8, U5}, {U2, U6, U7} and {U1}.
Components are connected and cycles are created in
this process. Points in the 0-D persistence diagram
and the 1-D extended persistence diagram are shown
in Figure 2 (c). For example, there are three inde-
pendent loops in this graph, and a specific basis (the
so-called “thinnest” system of loops) are captured in
the 1-D extended persistence diagram (giving rise to
three persistence points). u4 gives rise to the 0-dim
persistence point at (3, 0), u3, u5, and u8 induce the
0-dim persistence points at (2, 1), while u2, u6, and
u7 induce the 0-dim persistence points at (1, 0). Cycle
L1, L2 and L3 induce the 1-dim persistence points at
(3, 1), (2, 1) and (1, 0) respectively.

Metrics for Persistence Diagrams. Two most
common ways to measure distances between persis-
tence diagrams are the so-called bottleneck distance
and the p-th Wasserstein distance. Both of these dis-
tances have been well studied in the literature, includ-

Persistence Enhanced Graph Neural Network

Figure 2: (a). An input weighted graph, where all edges have weight 1, other than edge (u2, u4) with weight
w(u2, u4) = 2. (b). We re-plot the graph where the height of each node ui equals to the descriptor function
value f(ui). (c) shows the union of 0-D standard persistence diagram induced by the superlevel-set filtration
(blue dots) and 1D extended persistence diagram (purple triangles).

ing stability results under these distances (e.g, (Cohen-
Steiner et al., 2007, 2010; Chazal et al., 2016)) and ef-
ficient implementations (Kerber et al., 2017, 2018). In
this paper, we focus on the Wassertein distance, which
we define below. Recall that the diagonal of the plane
belongs to the persistence diagram.

Definition 1. Let D1 and D2 be two persistence di-
agrams. The p-th Wasserstein distance between them
is defined as:

Wp(D1,D2)) = inf
γ:D1→D2

[
∑
x∈D1

||x− γ(x)||p]1/p (2)

where the infimum is over all bijections γ : D1 → D2

and the summation is over all points in D1.

Persistence Images. In recent years, there have
been several approaches to further convert persistence
diagrams to yet another representation, as a vector in
a finite or infinite-dimensional Hilbert space, so as to
facilitate downstream machine learning tasks; see e.g,
(Bubenik, 2015). Below we introduce one such rep-
resentations, called the persistence images (originally
introduced in (Adams et al., 2017)), which we will use
later in our persistence-enhanced GNN framework.

Set T : R2 → R2 to be the linear transformation
T (x, y) = (x, y − x). Given a persistence diagram D,
let T (D) Denote the transformed diagram of a persis-
tence diagram D as T (D). Let φu : R2 → R be a dif-
ferentiable distribution function whose mean locates at
u ∈ R2: For example, in our implementation later, we
will use the Gaussian distribution function (a common

choice), where for any z ∈ R2, φu(z) = 1
2πτ2e

− ||z−u||
2

2τ2 .

Definition 2 (Persistence images). Let α : R2 → R be
a non-negative weight function for the persistent plane
R2. Given a persistence diagram DgX, its persistence
surface ρD : R2 → R (w.r.t. α) is defined as: for any
z ∈ R2,

ρD(z) =
∑

u∈T (D)

α(u)φu(z). (3)

The persistence image is a discretization of the per-
sistence surface as follows. Set a fixed grid within a
rectangle in the plane with a collection P of N pixels.
The persistence image for a persistence diagram D is
PID = {PID[p]}p∈P , where PID[p] :=

∫ ∫
p
ρDg(X)dydx.

Note that PID can also be viewed as a vector in RN ,
and thus persistence images are naturally equipped
with the L2-distance in RN . Theorem 5 of (Adams
et al., 2017) shows that the persistence images (under
L2-distance) are stable w.r.t. perturbations of the per-
sistence diagrams under the 1-Wasserstein distance.

2.1 An Example on Stochastic Block Model

In this section, we will consider a graph G = (V,E)
generated by stochastic block model (SBM) with 2
communities as a toy example, to illustrate the in-
formation encoded in the persistence diagrams of sub-
graphs, and show that such local information can be
used to differentiate nodes from different communities
when they have different density. We consider per-
sistence diagrams of local subgraphs, as they will be
used later in our Persistence-enhanced graph neural
networks. More explicitly, the following Theorem 1
indicates that the persistence diagrams of local sub-
graphs from different communities in SBM can be sep-
arated with a significantly large margin.

SBM Model. We assume that we are given a graph
G = (V,E) sampled from the following stochastic block
model. Assume the vertices V = C1 ∪ C2 are from
two disjoint communities C1 and C2, with n1 = |C1|,
n2 = |C2| and n = n1 + n2. The edge set is sampled
at random as follows: any two vertices u, v ∈ Ci are
connected by an edge with probability pi, for i = 1, 2,
while a pair of vertices u ∈ C1 and v ∈ C2 has an edge
connecting them with probability q < min{p1, p2}. In
other words, the in-cluster edge probability is p1 and
p2, respectively, while the between-cluster edge prob-

Qi Zhao∗, Ze Ye†, Chao Chen†, Yusu Wang∗

ability is q. We say that graph G = (V,E) is sam-
pled from SBM(p1, p2, q, n1, n2). Equivalent, G is sam-
pled from the n × n edge probability matrix P where
Puv = pi if both u, v ∈ Ci, and Puv = q otherwise.

Given such a graph G, we will use the following de-
scriptor function f : E → R to generate persistence
diagrams. (Eldridge et al., 2016) proposed a simple
edge-smoothing strategy to estimate the edge proba-
bility matrix P within L∞ error. In particular, their
algorithm outputs a new edge probability matrix P̂
such that with high probability µ = 1− O((lognn)1/6),

|P̂uv − Puv| ≤ δ for all u, v ∈ V , where δ = o(1) is a
quantity depending on n. For any edge (u, v) ∈ E, we

simply set f(u, v) = P̂uv.

Now given any node u from G, we consider its 1-hop
neighborhood subgraph Gu = (Vu, Eu), where Vu con-
tains u and all immediate neighbors of u, while Eu is
the set of edges in G spanned by Vu. Let fu : Eu → R
be the restriction of f over edge set Eu, and as de-
scribed earlier, we can extend fu to nodes Vu in Gu
as well by setting fu(v) = max(u,v)∈Eu f(u, v). Let
Dg0Gu and Dg1Gu denote the 0-D persistence dia-
gram induced by the super-level set filtration of fu,
and 1-D extended persistence diagram induced by fu,
respectively. These local persistence diagrams DgGu
provides a summary of the local neighborhood of u in
G. We have the following theorem, whose proof can
be found in the Supplement Material.

Theorem 1. Let G = (V,E) be a random graph
sampled from SBM(p1, p2, q, n1, n2). Let u ∈ C1 and
v ∈ C2, compute DgGu and DgGv as described above.
Given any constant ε > 0, the following two inequali-
ties hold with high probability:

W1(Dg0Gu,Dg0Gv) ≥
c ·max{n1|p1 − q − ε|, n2|p2 − q − ε|}

W1(Dg1Gu,Dg1Gv) ≥
c ·max{n2

1|p3
1 − p1q

2 − 2ε|, n2
2|p3

2 − p2q
2 − 2ε|}

(4)

These calculations can be generalized to SBM with
multiple (but fixed number of) communities.

Intuitively, Theorem 1 states that the persistence di-
agrams of local neighborhoods of nodes contain suffi-
cient information to differentiating different communi-
ties when they have different densities. While this is
a very simple example, it illustrates that persistence
diagrams can contain stable and useful information.
We remark that while for such simple models, it may
be possible to use information such as node degree
to differentiate nodes from different communities, in
general, persistence encodes much richer information
than node degree: for example, the extended persis-
tence also encodes the cycle information.

3 PERSISTENCE ENHANCED
GRAPH NETWORK

A Persistence Enhanced Graph Network (PEGN) is a
spatial GNN. The convolution can be viewed as a mes-
sage passing framework. Messages are passed between
nodes in order to update their feature representation.
After a fixed number of iterations, the feature repre-
sentation of each node is used for classification or other
tasks. Here we focus on a node classification task, in
which node representations are used to predict labels
of all nodes. In a graph classification task, these node
representations can be aggregated to a graph represen-
tation and be fed into a classifier.

To effectively incorporate structural information into
the framework, we propose a separate network, Persis-
tence Image Network (PIN), converting persistent ho-
mology information into message reweighting vectors.
These vectors are used to reweight messages and to ef-
fectively improve the graph convolution performance.
See Figure 3 for the architecture of our network.

We first describe details of PEGN, such as how mes-
sages are computed and passed between nodes, and
how the messages are reweighted. Next, we show how
persistent homology information are converted into
message reweighting vectors by PIN.

3.1 PEGN: Message Reweighting Graph
Convolution

A graph neural network with L layers updates node
feature representations for L times. Together with
the input node features, we have L + 1 node fea-

ture representations, H` = [~h`1,
~h`2, · · · , ~h`N], ~h`n ∈ Rd` ,

` = 0, · · · , L. Here N is the number of nodes in the
graph. d` is the feature dimension for the `-th layer
representation. We denote by H0 the input node fea-
tures. HL is the final layer feature representations and
will be used for prediction.

A convolutional layer generates the `-th layer repre-
sentation using the (`− 1)-th layer representation. To

compute the representation of node u, ~h`u, we use the
previous layer representations of u and its immediate
neighbors, N (u) = {u}∪N (u). These representations
are transformed using a transformation matrixW ` and
are aggregated, formally,

~h`u = σ

(∑
v∈N (u)

W `~h`−1
v

)
. (5)

The transformation matrix W ` for the `-th layer is
learned in training. The additional function σ is
the nonlinear transformation, e.g., ReLU. The trans-
formed representation W `~h`−1

v is the message passed

Persistence Enhanced Graph Neural Network

from node v to node u. Note that all messages share
a same transformation matrix W `.

To incorporate structural information, we intro-
duce additional message reweighting vectors, τ `v→u.
Reweighting vectors have the same length as the num-
ber of channels of a message. They are different for
different edges, depending on the structural informa-
tion associated with the edge. Formally, we write the
representation updating equation as

~h`u = σ

(∑
v∈N (u)

diag(τ `v→u)W `~h`−1
v

)
. (6)

Node degree and self-attention mechanism have been
applied to reweight messages. However, the structural
information is much richer than simply node degree.

We propose to use persistent homology describing
topology of local neighborhood graphs of u and v to
generate the reweighting vector τ `v→u. It remains to
explain how persistent homology information, namely,
persistence diagrams can be transformed into the
reweighting vector using our Persistence Image Net-
work (PIN). See Figure 4 for the architecture. First,
it converts a persistence diagram into a fixed-length
vector, called the persistence image. Second, it con-
verts persistence images of u and v into a reweighting
vector using a multilayer perceptron (MLP).

3.2 Persistence Images from Subgraphs

We first describe how the demanded persistence im-
ages are generated. Consider the persistence images
corresponding to nodes, a subgraph Gu can be picked
around a node u by selecting a set of nodes closed to
u. One method is to pick its q − hop neighbourhood
(q ≥ 1) and another is to apply a random walk starting
from u. The filtration function f defined over node set
included in Gu is the minimum geodesic distance dux
between a node x and u. Naturally, a persistence di-
agram and, to a step further, a persistence image can
be computed as illustrated in Section 2. The condition
of edges is a little bit more complicated. The subgraph
Guv around an edge (u, v) can be constructed from the
union or intersection of Gu and Gv, and the filtration
function f over node set Vuv of Guv can be defined as

f(x) = min{dxu, dxv}, or

f(x) = max{dxu, dxv}
(7)

where x ∈ Guv. Or more simply, f(x) can be defined
as dxu or dxv directly.

If we extract topological features from edge-wise sub-
graph Guv, denote its corresponding persistence im-
ages as PI(u, v). If we extract those from node-wise
subgraph Gu, then the persistence image is denoted

as PI(u). Define the persistence information vector of
any edge (u, v) as

ψuv =

{
PI(u, v) in edge-wise subgraph

(PI(u), P I(v)) in node-wise subgraph
(8)

where (·, ·) is the simple concatenation.

3.3 How Persistence Images Improve GNNs

Next we present how ψuv acts on the reweighting pa-
rameter τkuv in graph convolution processes and pro-
motes the performance of GNNs. See Figure 3 for an
illustration of our framework.

Start from the setup that τkuv is a scalar, there is a
function fk : Rl → R mapping ψuv to τkuv where l is
the dimension of persistence information vectors. It
is desirable that fk is a learnable parametric function
with the idea of data-driven mechanism. As the multi-
layer perceptrons (MLPs) are universal function ap-
proximators shown by Cybenko’s theorem (Cybenko,
1989) and easily carried into more complicated neural
network models, we adopt MLPs to approximate the
mapping function fk. Notice the aggregations of mes-
sages are probably large arbitrarily, softmax functions
are supposed to be applied for normalization after the
MLPs processing. More exactly, denote the MLP and
softmax function in the kth layer as gk and sk respec-
tively, the function approximating τkuv is

fk(ψuv) = sk(gk(ψuv))

=
exp(gk(ψuv))∑

x∈N (u) exp(g
k(ψux))

(9)

Recall that in the kth layer, the messages passing
through edges are F k dimensional, it is intuitive that
a scalar form of τkuv cannot exert all effects of per-
sistence information vector ψuv. In other words, it
is not necessary that reweighting parameters for dif-
ferent dimensions of features keep uniform. Instead a
reweighting vector in F k dimensions is cast to function

fk : Rl → RFk .

fk(ψuv) = Sk(gk(ψuv)) (10)

If we view each dimension of ψuv as a channel, then
Sk is channel-wise softmax function and gk is an MLP
outputting a F k-dim vector. Notice that τkuv is a F k-
dimensional vector rather than a scalar. Look back
the messages aggregation and features update function
(6), embed the persistence reweighting function into it,

Qi Zhao∗, Ze Ye†, Chao Chen†, Yusu Wang∗

Figure 3: The framework of Persistence Enhanced Graph Network

Figure 4: The framework of Persistence Image Net-
work

the convolution layer of PEGN is

~hku = σk−1(
∑

v∈̄N (u)

diag(τk−1
uv)W k−1~hk−1

v)

= σk−1(
∑

v∈N̄ (u)

diag(Sk−1(gk−1(ψuv)))W
k−1~hk−1

v)

(11)
where diag(τk−1

uv) is the diagonal matrix whose main
diagonal entries are elements of τk−1

uv .

From layers above, we see the reweighting parameters

τkuv can even be a higher dimensional matrix, say RFk×
RFk dimensions. However, the increasing of learnable
parameters without significant mathematical meaning
is not necessarily positive. In our experiments, the F k-
dimension vector formed τkuv works well sufficiently.

4 EXPERIMENTS

We have compared our Persistence Enhanced Graph
Network against a couple of popular and strong
baselines across two categories of graph benckmark
datasets. In this section, we introduce these datasets
and baselines. We summarize our experimental setup
and discuss results. We show that our model has

achieved or matched the state-of-the-arts in these node
classification benckmarks.

Datasets. We evaluate our graph network on three
standard and widely used citation network bench-
marks: Cora, Citeseer and Pubmed (Sen et al., 2008).
We also use graph benchmarks such as Coauthor-CS,
Coauthor-Physics, Amazon-Computers and Amazon-
Photo (Shchur et al., 2018). The detailed introduction
and statistics of these datasets are listed in the supple-
mental material. Pubmed, Coauthor and Amazon are
larger and denser. Some of them consist of over 10,000
nodes and 200,000 edges with higher average node de-
grees. They are more challenging in node classification
tasks.

Experimental setup. We compare our Persistence
Enhanced Graph Network with a list of baselines:
GCN (Kipf and Welling, 2017) reweighting messages
according to node degrees, GraphSAGE (Hamilton
et al., 2017) with mean aggregation of messages re-
ceived within a sampled neighbourhood which works
well in large graphs, MoNet (Monti et al., 2017), Graph
U-Net (Gao and Ji, 2019), GAT (Veličković et al.,
2018) adopting self-attention methods to reweight
node features, and WLCN (Morris et al., 2019) also
taking subgraph structures information. In addition,
we provide the node classification performance for all
datasets of MLP which does not incorporate any graph
structure information.

In the practical experiments, as the graph is un-
weighted, we apply Ollivier’s Ricci curvature (Ni et al.,
2018) as the weight function in graphs, and construct
subgraphs by picking 1− hop and 2− hop neighbour-
hoods around each node. Denote them as PEGN-

Persistence Enhanced Graph Neural Network

Table 1: Classification Accuracies on Benchmark Datasets

Method Cora Citeseer PubMed Coauthor Coauthor Amazon Amazon
CS Physics Computer Photo

MLP 58.2 59.1 70.0±2.1 88.3±0.7 88.9±1.1 44.9±5.8 69.6±3.8
MoNet 81.7 71.2 78.6±2.3 90.8±0.6 92.5±0.9 83.5±2.2 91.2±1.3

GraphSAGE 79.2 71.2 77.4±2.2 91.3±2.8 93.0±0.8 82.4±1.8 91.4±1.3
U-Net 82.5 72.0 78.9 92.7 94.0 86.0 91.9
WLCN 78.9 67.4 78.1 89.1 90.7 67.6 82.1
GCN 81.5±0.5 70.9±0.5 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.4 91.2±1.2
GAT 83.0±0.7 72.5±0.7 79.0±0.3 90.5±0.6 92.5±0.9 78.0±19.0 85.1±20.3

PEGN-RC-2 82.7±0.5 71.9±0.6 79.4±0.7 92.9±0.3 94.1±0.3 84.2±1 91.7±0.5
PEGN-RC-1 82.6±0.6 71.7±0.6 78.8±0.5 92.7±0.3 94.2±0.2 86.3±0.6 92.5±0.4

RC-1 and PEGN-RC-2 respectively. All persistence
images in the experiments are 25-dimension. A two-
layer graph network model is evaluated. The first layer
makes a linear transformation over the input node rep-
resentations, and then reweights the output feature
vectors by pairing with a vector computed from three
layer MLP. The non-linear function σ0 is an exponen-
tial linear unit function. The second layer has the same
structure with the first layer except the dimension of
output feature vector is the number of classes, namely
the second layer is for classification.

The train-validation-test split policy is exactly the
same as that of GCN and GAT in (Kipf and Welling,
2017; Veličković et al., 2018). Train graph networks
with 20 nodes from each class, validate the algorithms
on 500 nodes and test them on 1000 nodes. Models
are initialized by Glorot initialization and the cross-
entropy losses are minimized by Adam SGD optimizier
with learning rate r = 5e− 3. Additionally, we use L2

regularization with λ = 5e−4 and early stopping based
on the validation accuracy within 200 epochs.

The average classification accuracy and standard devi-
ation are reported in Table 1 coming from 50 runs. We
also collect the performances of baselines from (Monti
et al., 2017; Shchur et al., 2018; Veličković et al., 2018).

Persistence Enhanced Graph Network is comparable
with the state-of-the-art in the two small datasets,
Cora and Citeseer, and outperforms baselines in
other datasets, the larger and denser ones. Notice
that although the performances of PEGN-RC-1 are
slightly worse than PEGN-RC-2 on several datasets,
it achieves higher average accuracy on dense Amazon
graphs. Compared to GraphSAGE and U-Net aggre-
gating information from multi-hop neighborhood and
WLCN also taking subgraph structures information,
it is fair to claim advanced topological structure infor-
mation captured by persistence images indeed improve
the performance of GNN in general, as the architecture

of PEGN without reweighting mechanism is similar to
that in GCN. We also provide the experiment results
taking Jaccard index as the weight function in Sup-
plement, which is similar to PEGN-RC. What’s more,
although multi-hop neighbourhood catches topologi-
cal features from a wider range, it is not necessarily as
distinguished as 1-hop neighbourhood in dense graphs.
In particular, almost all of the 2-hop neighbourhood
subgraphs in Amazon-Computers have more than 3000
nodes, which are considerably large parts of the entire
graph. In other words, the topological features in 2-
hop neighbourhood are not “local” sufficiently. Hence,
multi-hop messages converge fast and are averaged out
over the whole graph and produce similar node repre-
sentations.

5 CONCLUSION

In this paper, we present Persistence Enhanced Graph
Network, a novel architecture leveraging topological
structure information with persistence images, a sta-
ble vectorized representation of persistence diagrams.
Experiments show the scheme that passing messages
are reweighted in accordance with topological fea-
tures achieves or matches state-of-the-art across node
classification benchmarks. One potential improve-
ment comes from more elaborately designed subgraphs
around nodes or edges and filtration functions. More-
over, extending Persistence Enhanced Graph Network
to graph classification tasks would be an interesting
research direction.

Acknowledgement. Zhao and Wang’s research
was partially supported by NSF grants CCF-1740761,
CCF-1733798, and IIS-1815697. Ye and Chen’s re-
search was partially supported by NSF IIS-1909038,
IIS-1855759, CCF-1855760.

Qi Zhao∗, Ze Ye†, Chao Chen†, Yusu Wang∗

References

Henry Adams, Tegan Emerson, Michael Kirby, Rachel
Neville, Chris Peterson, Patrick Shipman, Sofya
Chepushtanova, Eric Hanson, Francis Motta, and
Lori Ziegelmeier. Persistence images: a stable vec-
tor representation of persistent homology. Journal
of Machine Learning Research, 18:218–252, 2017.

Ulrich Bauer. Ripser. https://github.com/Ripser/
ripser, 2016.

Ulrich Bauer, Michael Kerber, Jan Reininghaus, and
Hubert Wagner. Phat – persistent homology algo-
rithms toolbox. In Hoon Hong and Chee Yap, ed-
itors, Mathematical Software – ICMS 2014, pages
137–143, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. Spectral networks and locally con-
nected networks on graphs. International Confer-
ence on Learning Representations, 2014.

Peter Bubenik. Statistical topological data analysis
using persistence landscapes. Journal of Machine
Learning Research, 16(1):77–102, 2015.

G. Carlsson and A. Zomorodian. The theory of multi-
dimensional persistence. Discrete & Computational
Geometry, 42(1):71–93, 2009.

Gunnar Carlsson and Vin de Silva. Zigzag persistence.
Foundations of Computational Mathematics, 10(4):
367–405, 2010.

Mathieu Carrire, Marco Cuturi, and Steve Oudot.
Sliced Wasserstein kernel for persistence diagrams.
International Conference on Machine Learning,
pages 664–673, 2017.

Frédéric Chazal, David Cohen-Steiner, Marc Glisse,
Leonidas J. Guibas, and Steve Oudot. Proximity of
persistence modules and their diagrams. In Proc.
25th ACM Sympos. on Comput. Geom., pages 237–
246, 2009.

Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve
Oudot. The structure and stability of persistence
modules. SpringerBriefs in Mathematics. Springer,
2016.

Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang.
A topological regularizer for classifiers via persistent
homology. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 2573–
2582, 2019.

Maria Clément, Jean-Daniel Boissonnat, Marc
Glisse, and Mariette Yvinec. The gudhi li-
brary: simplicial complexes and persistent homol-
ogy. http://gudhi.gforge.inria.fr/python/

latest/index.html, 2014.

David Cohen-Steiner, Herbert Edelsbrunner, and John
Harer. Stability of persistence diagrams. Discrete &
Computational Geometry, 37(1):103–120, 2007.

David Cohen-Steiner, Herbert Edelsbrunner, and John
Harer. Extending persistence using poincaré and lef-
schetz duality. Foundations of Computational Math-
ematics, 9(1):79–103, 2009.

David Cohen-Steiner, Herbert Edelsbrunner, John
Harer, and Yuriy Mileyko. Lipschitz functions have
Lp-stable persistence. Foundations of computational
mathematics, 10(2):127–139, 2010.

George Cybenko. Approximation by superpositions of
a sigmoidal function. Mathematics of control, sig-
nals and systems, 2(4):303–314, 1989.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Ad-
vances in neural information processing systems,
pages 3844–3852, 2016.

Tamal K. Dey, Dayu Shi, and Yusu Wang. Simba:
An efficient tool for approximating Rips-filtration
persistence via simplicial batch-collapse. In 24th
Annual European Symposium on Algorithms (ESA
2016), volume 57 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 35:1–35:16,
2016. ISBN 978-3-95977-015-6.

H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete
Comput. Geom., 28:511–533, 2002.

Herbert Edelsbrunner and John Harer. Computational
Topology : an Introduction. American Mathematical
Society, 2010. ISBN 978-0-8218-4925-5.

Justin Eldridge, Mikhail Belkin, and Yusu Wang.
Graphons, mergeons, and so on! In Advances
in Neural Information Processing Systems, pages
2307–2315, 2016.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In In-
ternational Conference on Machine Learning, pages
2083–2092, 2019.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

Marco Gori, Gabriele Monfardini, and Franco
Scarselli. A new model for learning in graph do-
mains. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., vol-
ume 2, pages 729–734. IEEE, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In Ad-
vances in Neural Information Processing Systems,
pages 1024–1034, 2017.

Christoph Hofer, Roland Kwitt, Marc Niethammer,
and Andreas Uhl. Deep learning with topological

Persistence Enhanced Graph Neural Network

signatures. In Advances in Neural Information Pro-
cessing Systems, pages 1634–1644, 2017.

Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao
Chen. Topology-preserving deep image segmenta-
tion. In Advances in Neural Information Processing
Systems, pages 5658–5669, 2019.

Michael Kerber and Hannah Schreiber. Barcodes of
towers and a streaming algorithm for persistent ho-
mology. In 33rd International Symposium on Com-
putational Geometry (SoCG 2017), page 57. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik GmbH,
2017.

Michael Kerber, Dmitriy Morozov, and Arnur Nig-
metov. Geometry helps to compare persistence
diagrams. J. Exp. Algorithmics, 22:1.4:1–1.4:20,
September 2017. ISSN 1084-6654.

Michael Kerber, Dmitriy Morozov, and Arnur Nigme-
tov. HERA: software to compute distances for per-
sistence diagrams. https://bitbucket.org/grey_
narn/hera, 2018.

Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks.
International Conference on Learning Representa-
tions, 2017.

Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka.
Kernel method for persistence diagrams via kernel
embedding and weight factor. The Journal of Ma-
chine Learning Research, 18(1):6947–6987, 2017.

Yanjie Li, Dingkang Wang, Giorgio A Ascoli, Partha
Mitra, and Yusu Wang. Metrics for comparing
neuronal tree shapes based on persistent homology.
PloS one, 12(8):e0182184, 2017.

Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and
manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5115–5124, 2017.

Christopher Morris, Martin Ritzert, Matthias Fey,
William L Hamilton, Jan Eric Lenssen, Gaurav Rat-
tan, and Martin Grohe. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 4602–4609, 2019.

Chien-Chun Ni, Yu-Yao Lin, Jie Gao, and Xianfeng
Gu. Network alignment by discrete ollivier-ricci
flow. In International Symposium on Graph Drawing
and Network Visualization, pages 447–462. Springer,
2018.

Xiuyan Ni, Novi Quadrianto, Yusu Wang, and Chao
Chen. Composing tree graphical models with per-
sistent homology features for clustering mixed-type

data. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
2622–2631. JMLR. org, 2017.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. Learning convolutional neural networks
for graphs. In International conference on machine
learning, pages 2014–2023, 2016.

Bastian Rieck, Christian Bock, and Karsten Borg-
wardt. A persistent weisfeiler-lehman procedure for
graph classification. In International Conference on
Machine Learning, pages 5448–5458, 2019.

F Scarselli, M Gori, Ah Chung Tsoi, M Hagenbuchner,
and G Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, 1(20):61–
80, 2009.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI magazine,
29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar
Bojchevski, and Stephan Günnemann. Pitfalls of
graph neural network evaluation. arXiv preprint
arXiv:1811.05868, 2018.

D. Sheehy. Linear-size approximations to the Vietoris-
Rips filtration. In Proc. 28th. Annu. Sympos. Com-
put. Geom., pages 239–248, 2012.

Petar Veličković, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. Inter-
national Conference on Learning Representations,
2018.

Pengxiang Wu, Chao Chen, Yusu Wang, Shaot-
ing Zhang, Changhe Yuan, Zhen Qian, Dimitris
Metaxas, and Leon Axel. Optimal topological cy-
cles and their application in cardiac trabeculae
restoration. In International Conference on Infor-
mation Processing in Medical Imaging, pages 80–92.
Springer, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks?
International Conference on Learning Representa-
tions, 2019.

Qi Zhao and Yusu Wang. Learning metrics for
persistence-based summaries and applications for
graph classification. In Advances in Neural Infor-
mation Processing Systems, pages 9855–9866, 2019.

