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Figure 1: Plots of logarithmic function value gap with respect to CPU time (in seconds) for nonconvex regularized
binary logistic regression on (a) a9a (b) ovtype (c) ijennl and for nonconvex regularized multiclass logistic
regression on (d) mnist (e) cifar10 (f) SVHN. Best viewed in color.

In this section, we present numerical experiments on different nonconvex Empirical Risk Minimization (ERM)
problems and on different datasets to validate the advantage of our proposed SRVRC and SRVRCyee algorithms
for finding approximate local minima.

Baselines: We compare our algorithms with the following algorithms: SPIDER+ (Fang et al., 2018), which is the
local minimum finding version of SPIDER, stochastic trust region (STR1, STR2) (Shen et al., 2019), subsampled
cubic regularization (SCR) (Kohler and Lucchi, 2017), stochastic cubic regularization (STC) (Tripuraneni et al.,
2018), stochastic variance-reduced cubic regularization (SVRC) (Zhou et al., 2018d), sample efficient SVRC
(Lite-SVRC) (Zhou et al., 2018b; Wang et al., 2018b; Zhang et al., 2018a).

Parameter Settings and Subproblem Solver For each algorithm, we set the cubic penalty parameter M;
adaptively based on how well the model approximates the real objective as suggested in (Cartis et al., 2011a,b;
Kohler and Lucchi, 2017). For SRVRC, we set S(9) = S for the simplicity and set gradient and Hessian batch

sizes Bfg ) and Bt(h) as follows:

B,Eg) — B(g),th) =B, mod(t,S) =0,
BY = |B®W/s| B™ = |BM /3], mod(t, S) # 0.

For SRVRCfree, We set gradient batch sizes Bt(g ) the same as SRVRC and Hessian batch sizes Bt(h) = B, We tune
S over the grid {5,10,20,50}, B over the grid {n,n/10,7/20,1/100}, and B" over the grid {50, 100, 500, 1000}
for the best performance. For SCR, SVRC, Lite-SVRC, and SRVRC, we solve the cubic subproblem using the
cubic subproblem solver discussed in (Nesterov and Polyak, 2006). For STR1 and STR2, we solve the trust-region
subproblem using the exact trust-region subproblem solver discussed in (Conn et al., 2000). For STC and
SRVRCfree, we use Cubic-Subsolver (Algorithm 3 in Appendix H) to approximately solve the cubic subproblem.
All algorithms are carefully tuned for a fair comparison.

Datasets and Optimization Problems We use 6 datasets a9a, covtype, ijennl , mnist, cifar10 and SVHN
from Chang and Lin (2011) . For binary logistic regression problem with a nonconvex regularizer on a9a, covtype,
and ijcnnl, we are given training data {x;,y;}",, where x; € R? and y; € {0, 1} are feature vector and output
label corresponding to the i-th training example. The nonconvex penalized binary logistic regression is formulated
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as follows
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where ¢(r) is the sigmoid function and A = 1073. For multiclass logistic regression problem with a nonconvex
regularizer on mnist, cifar10 and SVHN, we are given training data {x;,y;}" ,, where x; € R? and y; € R™ are
feature vectors and multilabels corresponding to the i-th data points. The nonconvex penalized multiclass logistic
regression is formulated as follows

n

1
i — , log[softmax(Wx;)]) + A 1+ ,
Wrerﬂléwlw}x a ; (yi, log] x(Wx; )] ; ; wl J

where softmax(a) = exp(a)/ Z?:l exp(a;) is the softmax function and A = 1073.

We plot the logarithmic function value gap with respect to CPU time in Figure 1. From Figure 1(a) to 1(f), we
can see that for the low dimension optimization task on a9a, covtype and ijcnni, our SRVRC outperforms all
the other algorithms with respect to CPU time. We can also observe that the stochastic trust region method
STR1 is better than STR2, which is well-aligned with our discussion before. The SPIDER+ does not perform as
well as other second-order methods, even though its stochastic gradient and Hessian complexity is comparable
to second-order methods in theory. Meanwhile, we also notice that SRVRCy.ee always outperforms STC, which
suggests that the variance reduction technique is useful. For high dimension optimization task mnist, cifar10 and
SVHN, only SPIDER+, STC and SRVRCy,.e. are able to make notable progress and SRVRCyee outperforms the
other two. This is again consistent with our theory and discussions in Section 5. Overall, our experiments clearly
validate the advantage of SRVRC and SRVRCpe, and corroborate the theory of both algorithms.

B Proofs in Section 4

We define the filtration F; = o(xg, ..., X¢) as the o-algebra of x¢ to x;. Recall that v, and Uy are the semi-stochastic
gradient and Hessian respectively, h; is the update parameter, and M; is the cubic penalty parameter appeared in
Algorithm 1 and Algorithm 2. We denote m(h) := v h +h'"U;h/2 + M,||h||3/6 and h} = argminy,cpa m,(h).
In this section, we define § = £/(2T) for the simplicity.

B.1 Proof of Theorem 4.2

To prove Theorem 4.2, we need the following lemma adapted from Zhou et al. (2018d), which characterizes that
p(x: + h) can be bounded by ||h||2 and the norm of difference between semi-stochastic gradient and Hessian.

Lemma B.1. Suppose that m;(h) := v,/ h+h"U;h/2 + M;||h||3/6 and h; = argminy, cpa m(h). If M;/p > 2,
then for any h € R?, we have

3/2

(e + 1) < O[MEp 2|3 + MY 202V (x,) — il |2 + o732 | V2P () -

tHQ

+ M2 V)15 + M7 7 Iz — (g ]

Next lemma gives bounds on the inner products (VF(x;) — v;, h) and ((V2F(x;) — U;)h, h).
Lemma B.2. For any h € R?, we have
6V F(xe) —vall3”
50 ’
2 P i3 o 10 o2
((V*F(x;) = Us)h,h) < Shj}; + ?Hv F(x¢) —

(VF(x:) = ve,h) < 2]l +
3
Ut||2‘

We also need the following two lemmas, which show that semi-stochastic gradient and Hessian v, and Uy,
estimators are good approximations to true gradient and Hessian.

Lemma B.3. Suppose that {B,(Cg)} satisfies (4.1) and (4.3), then conditioned on F|; /s |.s(», With probability
at least 1 — & - (t — [t/S9) |- §9)) we have that for all [t/S)| .S <k <t

2

IVE(xx) — (B.1)

€
vill3 < 30°
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Lemma B.4. Suppose that {B,(Ch)} satisfies (4.2) and (4.4), then conditioned on JF, g |.gm , with probability
at least 1 — & - (t — [t/S™)] . S()) we have that for all [t/S)] .S <k <t

€
192 F(ee) = U3 < 5. (B.2)

Given all the above lemmas, we are ready to prove Theorem 4.2.

Proof of Theorem /.2. Suppose that SRVRC terminates at iteration 7% — 1, then [|h||2 > \/€/p for all 0 < ¢ <
T* —1. We have
1
F(xt41) < F(x¢) + (VF(xt), hy) + §<ht,V2F(Xt)ht> + g||ht||§

- M,
6

= F(x¢) +mi(hy) + P b3 + (hy, VE(x¢) — ve) + %(ht, (V2F(x¢) — Up)hy)

3/2
P P 6[[VE(xt) — v 10
< F(xe) = G5 + 7 lhe5 + 55 2+ ;IIVQF(Xt) - U3
/2
P s 6|VE(x:) —vi|[3* 10 ;
= F(x;) — I3+ 5‘1/[,) Tt S IVEE () — Ul (B.3)

where the second inequality holds due to the fact that m;(h;) < m;(0) = 0, M; = 4p and Lemma B.2. By
Lemmas B.3 and B.4, with probability at least 1 — 276, for all 0 <t < T — 1, we have that

3/2 €)3/2

IVEG) —villd? < S IVF) - UL < P (B.4)

for all 0 <t < T — 1. Substituting (B.4) into (B.3), we have

0p—1/2¢3/2
F(xis1) < F(xe) = SlIgll + = (B.5)
4 40
Telescoping (B.5) from ¢t =0,...,7* — 1, we have

Ap > F(x) — F(xp<) > p-T" - (¢/p)¥/? /4 —9/40 - p~1/263/2 . 7% = p=1/23/2 . 7% 40 (B.6)

Recall that we have T' > 40AF\/E/63/2 from the condition of Theorem 4.2, then by (B.6), we have T* < T. Thus,
we have ||hpr«_1||2 < v/€/p. Denote T =T* — 1, then we have
p(x7, ) = p(xg +hg)

_ 3/2 _— s 3/2
< 0[M3o~* 2 gl + MY 52|V F () v

)7 o VAR () - U]
< 600632,

where the first inequality holds due to Lemma B.1 with Vmgs(hz) = 0 and [[hz|2 = Hh%”g This completes our
proof. O
B.2 Proof of Corollary 4.3

Proof of Corollary 4.3. Suppose that SRVRC terminates at T* — 1 < T — 1 iteration. Telescoping (B.5) from
t=0toT* —1, we have

T*—1 T* -1
Ap > F(xo) = F(xre) > p > |[he|3/4—9p7"2¥2/40- T = p >~ ||hy[3/4 - 9- Ap, (B.7)
t=0 t=0

where the last inequality holds since T" is set to be 40Ag,/p/ €3/2 as the conditions of Corollary 4.3 suggests. (B.7)
implies that Z;:o_l |Ih¢||3 < 40AF/p. Thus, we have

T -1 T -1 2/3 A0A w2\ 3 7 40A -\ 2/3 A0A
2 #\1/3 3 FpP ) F _ F
S g < (1 (;ﬂnhtng) s( o ) ( - ) i (B.8)
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where the first inequality holds due to Holder’s inequality inequality, and the second inequality is due to
T* < T = 40Ap/p/e’/?. We first consider the total gradient sample complexity Zt -l B(Q), which can be
bounded as

T -1

t=0

_ Z Bt(g) + Z Bt(g)

mod(¢,5(9))=0 mod(t,S(9))£0
M?log®(d/d S| h,_q]2
= > min{m 1440052(/)} + > min {n 144012 1og2(d/§)”6;1”2}
mod(t,5(9))=0 mod(t S(9))#£0

M2 T* M? £25) .
gcl{m =+ <o <n/\ = >+( Z ||ht||2>/\nT]

M2 Appt? (M2 AFLZS N\ nApp'/?
§4001 |:Tl/\2+3/25(g)<n/\62> < p1/2€5/2 > 63/2 :|

5(71/\]\642 S/Q{J AL\/{ Z%D,

where C = 14401og?(d /), the second inequality holds due to (B.8), and the last equality holds due to the choice

of S = /pe/L - \/n A M?2]/e2. We then consider the total Hessian sample complexity Zt::gl Bt(h)7 which can
be bounded as

T -1

B
; :
SO L o

mod(t,S(h))=0 mod(t,S(h))#0

L?log?(d/s SM|h,_ |12
= Z min {n,8000g(/)} + Z min{n,800p10g2(d/6)”tl|2}
mod(¢,5("))=0 pe mod(t,S(")#£0 €
1

L2 T L? pSh
< Oy [n/\ + < (n/\ p ) Z |ht||2]

I2 AFpl/ L2 AF,Ol/2S(h)
§4002{n/\p€+63/25(h)<n/\> 63/2:|

_ 1.2 AFp1/2 1.2
=0|nn=— A=
[n pe P ar " pe]’

where Cy = 8001og?(d/d), the second inequality holds due to (B.8), and the last equality holds due to the choice
of S = /n AL/(pe). O

C Proofs in Section 5

In this section, we denote § = £/(3T") for simplicity.

C.1 Proof of Theorem 5.1

We need the following two lemmas, which bound the variance of semi-stochastic gradient and Hessian estimators.

Lemma C.1. Suppose that {B,(Cg)} satisfies (5.2) and (5.3), then conditioned on F|;/g|.g, with probability at
least 1 — ¢ - (t — [t/S] - S), we have that for all |[t/S]|-S <k <t,

2
€
VF — 2< —.
H (ch) VkHQ =55
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Proof of Lemma C.1. The proof is very similar to that of Lemma B.3, hence we omit it. O

Lemma C.2. Suppose that {B,ih)} satisfies (5.1), then conditioned on Fy, with probability at least 1 — 4, we
have that

pe
IV2F(x1) — Ugll; < 30"
Proof of Lemma C.2. The proof is very similar to that of Lemma B.4, hence we omit it. O

We have the following lemma to guarantee that by Algorithm 3 Cubic-Subsolver, the output h; satisfies that
sufficient decrease of function value will be made and the total number of iterations is bounded by T".

Lemma C.3. For any t > 0, suppose that ||h|[2 > \/€/p or ||v¢||2 > max{M;e/(2p), /LM, /2(e/p)>/*}. We set
n=1/(16L). Then for € < 16L?p/M?, with probability at least 1 — &, Cubic-Subsolver(Uy, v;, My, n,/€/p, 0.5, )
will return h; satisfying my(h;) < —M;p~3/2€3/2 /24. within

L

T =Csg—Fr—
Miv/¢€/p

iterations, where C's > 0 is a constant.

We have the following lemma which provides the guarantee for the dynamic of gradient steps in Cubic-Finalsolver.

Lemma C.4. (Carmon and Duchi, 2016) For b, A, 7, suppose that ||[Als < L. We denote that g(h) =
b'h+h"Ah/2+7/6 ||h||3, s = argminy,cga g(h), and let R be

L L\ |bl
R=— — —.
2T (27’) + T

Then for Cubic-Finalsolver, suppose that n < (4(L + 7R))™!, then each iterate A in Cubic-Finalsolver satisfies
that ||All2 < |[|s||2, and g(h) is (L + 27 R)-smooth.

With these lemmas, we begin our proof of Theorem 5.1.

Proof of Theorem 5.1. Suppose that SRVRCy,e terminates at iteration 7 — 1. Then T* < T. We first claim
that T* < T. Otherwise, suppose 7% = T', then we have that for all 0 <t < T™,

1
F(x¢41) < F(x¢) + (VF(x¢), hy) + §<ht» V2F (x¢)hy) + g”ht”g

p— M,
6

= F(x¢) +mi(hy) + Ihe||3 + (hy, VE(x¢) — vi) + %(ht, (V2F(x¢) — Up)hy)

6IVF(x) iy | 10, 3
F -U 1
St VR - U (c.)

where the second inequality holds due to M; = 4p and Lemma B.2. By Lemma C.3 and union bound, we know
that with probability at least 1 — T'0, we have

< F(xe) = 2103+ ma(he) +

my(hy) < —Myp~3/2e/2 )24 = —p1/263/2 /6, (C.2)

where we use the fact that M; = 4p. By Lemmas C.1 and C.2, we know that with probability at least 1 — 279,
forall 0 <t <T* —1, we have

IVF(x0) = villa® < €¥/2/20,  |V?F(x:) = Usl[3 < (pe)*/?/160. (C.3)
Substituting (C.2) and (C.3) into (C.1), we have

Flxesr) = F(xi) < —p~ /226 — pllg3/4+ p~ /2628 < —pllbg3/4— p~ /262 /4. (C.4)
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Telescoping (C.4) from ¢t =0 to T* — 1, we have

T* -1 T -1
Ap > Flxo) — F(xpe) > p S [Iill3/d+p~ 22 T /24> p 3 | [3/4+ A, (C5)
t=0 t=0

where the last inequality holds since we assume T* = T > 25App/2¢=3/2 from the condition of Theorem
5.1. (C.5) leads to a contradiction, thus we have T* < T. Therefore, by union bound, with probability at
least 1 — 37§, Cubic-Finalsolver is executed by SRVRCgee at T* — 1 iteration. We have that |[vy«_1|l2 <

max{ Mp-_1€/(2p), /TMz-_1/2(¢/p)*>/*} and ||h¥. |2 < v/¢/p by Lemma C.3.

The only thing left is to check that we indeed find a second-order stationary point, x7+, by Cubic-Finalsolver.
We first need to check that the choice of n = 1/(16L) satisfies that 1/n > 4(L + M, R) by Lemma C.4, where

L L\ [veeale
R=—— + + :
2MT*,1 \/<2MT*1) MT*fl

We can check that with the assumption that ||[vy-_1||s < max{Mz-_1¢/(2p), /L Mr-_1/2(¢/p)?/*}, if € <
4L2p/M?. |, then 1/n > 4(L + Mz«_1R) holds.

For simplicity, we denote T =T* — 1. Then we have

3/2

p(x7 +hy )<9[M3 2|z f + MY o2 VE(xz) — Ve, + 72| VEF(xz) — Uz,

+ MY |z (b)lly + Mo bz 2 — |||
< 9[2M2p 23 + MY 2o~ 2| VP (xz) = vzlly” + o7 V2P (xz) - Uz

3/2 _ 3/2
+ MY~ Vg (b3 ]
< 1300€%/2,
where the first inequality holds due to Lemma B.1, the second inequality holds due to the fact that [[hz (2 < |[hX |l

from Lemma C.4, the last inequality holds due to the facts that [[Vmsz(hg)|[2 < € from Cubic-Finalsolver and
[h%[l2 < \/¢/p by Lemma C.3. O

C.2 Proof of Corollary 5.2
We have the following lemma to bound the total number of iterations 7" of Algorithm 4 Cubic-Finalsolver.

Lemma C.5. If € < 4L?p/M}, then Cubic-Finalsolver will terminate within 7" = CpL/,/p€ iterations, where
Cr > 0 is a constant.

Proof of Corollary 5.2. We have that

2/3 172 1/3 2/3
25App 4AF AF
*\1/3
§ : Il < (1) ( §j i) s (P ()T ae e

where the first inequality holds due to Hélder s inequality, the second inequality holds due to the facts that
T* < T =25App"?/3/? and Ap > pzt YIhy|13/4 by (C.5). We first consider the total stochastic gradient
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computations, ZtT:*O_ ! Bt(g), which can be bounded as

T -1

B(.‘?)
; :
_ Z ng) + Z B}Eg)

mod(t,5(9))=0 mod(t,S(9))=£0
M?log*(d/s 9|[h,_|I2
= ) min {n 26400%(/)} + Y min {n 26401 1og2(d/5)5”2“”2}
mod(t,5(9))=0 € mod(t S(9))#£0 €

M? T M? L2S< .

[ M2 App1/2 M2 AFLQS(Q) nAFp1/2
< 8Ch _n/\ -t 3/25(9) <n A e2> < pL/265/2 > A €3/2 }

62
[ M?  App'?2 (1 M? L2509
[ M? Appt/? Lyn LM
,801_71/\6—2+ 372 (n/\ \/ﬁ/\pl/%?’/?ﬂ

where C; = 26401log®(d/d), the second inequality holds due to (C.6), the last equality holds due to the fact
S = VPE/L - \/n AN M?/e?. We now consider the total amount of Hessian-vector product computations T,
which includes 7; from Cubic-Subsolver and 75 from Cubic-Finalsolver. By Lemma C.3, we know that at k-th

iteration of SRVRCjpee, Cubic-Subsolver has T” iterations, which needs B,gh) Hessian-vector product computations
each time. Thus, we have

T -1 2 1/2 2 2
=y 1. B <y <T T {nALD < 2502<T’A*;’;2 [n/\ LD < 7C2CS<LAF . {n/\L]>,
€ pe

k=0 pe pe
(C.8)

(C.7)

where Cy = 12001log?(d/d), the first inequality holds due to the fact that B = Con A (L?/pe), the second
inequality holds due to the fact that 7' = 25App'/2/e3/2, the last inequality holds due to the fact that T/ =

CsL/M;-+/p/e = CsL/(4\/pe). For Tz, we have

T, = B T”<CT”n/\L—2 <o L. n/\L—2 (C.9)
2 = Dpx_q pe 2UF \/[TG pe .

where the first inequality holds due to the fact that ng@il = Con A (L?/pe), the second inequality holds due to
the fact that 7" = CrL/,/pe by Lemma C.5. Since at each iteration we need Bgi)q Hessian-vector computations.

Combining (C.7), (C.8) and (C.9), we know that the total stochastic gradient and Hessian-vector product
computations are bounded as

T -1
S BY AT+ T
t=0
T M? AppV/ Lyan LM LAp L L2
=0|nn (”A\/ﬁeApl/zes/z>+(e2+\/ﬁe o)) (€10

D Proofs of Technical Lemmas in Appendix B

D.1 Proof of Lemma B.1
We have the following lemmas from Zhou et al. (2018d)
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Lemma D.1. (Zhou et al., 2018d) If M; > 2p, then we have
1 2
IVF(x; +h)|l2 < My|[hl3 + [[VE(x) = vel|,, + MHVQF(XO = Uy[, + [[Vmy ()2

Lemma D.2. (Zhou et al., 2018d) If M; > 2p, then we have
—Amin(V2F(x¢ + 1)) < My||hlls + || V2F(x¢) — U], + My ||}z — [[hi]2].

Proof of Lemma B.1. By Lemma D.1, we have

1 3/2
IVFGe 4B < (M3 +[[VEG) = villy + 571V FGe) = Ol + Vo))

3/2

< 2[ MBI + [V () = vl

+ MRV E () = Uy + [9ma@) 3], ()

where the second inequality holds due to the fact that for any a, b, ¢ > 0, we have (a+b4c)3/? < 2(a®/2+b%/2+c3/2).
By Lemma D.2, we have

3
— A (V2 (e + B))? < o7 [Myllblls + [[V2F (x0) = Udl, + Mo IBll> — 17 2]
< 95722 [ M| + |92 F(x0) = Uiy + M7z = g 1], (D.2)

where the second inequality holds due to the fact that for any a,b,c > 0, we have (a + b+ ¢)® < 9(a® + b® + ¢3).
Thus we have

p(x; + ) = max{||VF(x; + h)[3%, —p~*/ 2 \win (V2 F(x; + h))*}

< 9| Mo~ 3 + M2 2|V E(xe) — vl |3 + o7 V2 F(xe) — U

3
2

3/2 _ 3/2 - w13
+ M2 Ve (013 + M7 a2 — b o]
where the inequality holds due to (D.1), (D.2) and the fact that M; > 4p. O

D.2 Proof of Lemma B.2

Proof of Lemma B.2. We have

6V F (x:) = vill5*
5\/p ’

where the first inequality holds due to CauchySchwarz inequality, the second inequality holds due to Young’s
inequality. We also have

p
(VF(xt) = vi,h) < [|VF(xe) = vi|, [l < T3 +

10
(VF(x) = U b) < [[VFGx) = Ul Il < SR + 592 F )~ U5

where the first inequality holds due to CauchySchwarz inequality, the second inequality holds due to Young’s
inequality. O
D.3 Proof of Lemma B.3

We need the following lemma:

Lemma D.3. Conditioned on Fy, with probability at least 1 — § , we have

HVfgk (Xk) - ijk (kal) - VF(Xk) + VF(Xk,1)|}2 S 6L long(lg/)(s)lxk - Xk,1||2. (D3)
k
We also have
1 1
IV £, (x1) = VE (i) 2 < 6M fg(}/)) (D.4)

k
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Proof of Lemma B.3. First, we have v; — VF(x;) = ZZ:U/S(Q)J_S(Q) uy, where
up = Vg (%) = Vg, (xk-1) = VF(xi) + VF(xp-1), k> [t/59] .59,
up = ijk (Xk) - VF(Xk), k= Lt/S(Q)J . S(g)

Meanwhile, we have E[ug|Fx_1] = 0. Conditioned on F,_1, for mod(k, S)) # 0, from Lemma D.3, we have that
with probability at least 1 — § the following inequality holds :

log(1/0) <
< 6L ~Xk-1ll2 S| 5 e @ Toal1 73] Do
ol < 624 =pr e =il < Eaggm o) o7

where the second inequality holds due to (4.1). For mod(k, S¥)) = 0, with probability at least 1 — &, we have

log(1/4) < € (D.6)

B ~ \/540log(1/5)’

where the second inequality holds due to (4.3). Conditioned on F|; s .5t , by union bound, with probability
at least 1 — & - (t — [t/S@ ] . S9) (D.5) or (D.6) holds for all [t/S@) | .S <k <t. Then for given k, by vector
Azuma-Hoeffding inequality in Lemma G.1, conditioned onFy, with probability at least 1 — § we have

[l < 60

t

> o

2
Vi = VF(x)ll5 =

2

k:Lt/S(g)J.S@)
@] . g €’ €’
< _ 9. g@)y.
< 9log(d/8) (¢t — L1/5)] - 59) 5405(9)10g(d/5)+54Olog(1/5)}
2
€
< R
< 910g(1/9) - Sor10a(17)
< €2/30. (D.7)

Finally, by union bound, we have that with probability at least 1—25-(t—|t/S@) |-S9)), for all [t/S@)|.S9) <k < t,
we have (D.7) holds. O

D.4 Proof of Lemma B.4

We need the following lemma:

Lemma D.4. Conditioned on Fj, with probability at least 1 —§ , we have the following concentration inequality

IV 2.5 = V22, (xe0) = T2 0) + PG, < 00y G - sl (08)
k

We also have

192 1, () = T F )l < L, <2, (D.9)
k

Proof of Lemma B.J. First, we have U; — V2F(x;) = ZZ:U/SWJ-SW V., where
Vi = V2 fr, (xk) — V2 f1, (Xp_1) — VEF(x) + V2F (x4_1), k> [t/S™]. M)
Vi = szk (Xk) — VF‘(X;C)7 k= Lt/S(h)J . S(h)

Meanwhile, we have E[V|o(V}_1, ..., Vo)] = 0. Conditioned on Fy_1, for mod(k, S?) # 0, from Lemma D.4,
we have that with probability at least 1 — 4, the following inequality holds :

log(d/d) pe
\% < —_— — Xp— <, |/ D.1
Vil = 00y [ =gy e = el < \/3605(h) log(d/5)’ (D-10)
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where the second inequality holds due to (4.1). For mod(k, S™) = 0, with probability at least 1 — &, we have

/log(d/d) pe
< <./ :
[Vill2 < 6L B,(Ch) <\ 360Tog(d/0)’ (D.11)

where the second inequality holds due to (4.3). Conditioned on F|;,gx |.gx), by union bound, with probability
at least 1 — 4 - (t — [t/S™)] . S (D.10) or (D.11) holds for all [¢t/S") ] .S < k < t. Then for given k, by
Matrix Azuma inequality Lemma G.2, conditioned onF}, with probability at least 1 — § we have

t

>

2
Uk — V2F(xi) I3 =

2

k=|t/Sh)|.S(H)
< 9log(d/8)|(t — |t/S™ | . 8M)y. Pe pe
< 910g(d/0)| (¢ = [t/ - 5W) - S S + S Te B
pe
< e
< 9log(d/0) 1801og(d/4)
< pe/20. (D.12)

Finally, by union bound, we have that with probability at least 1 — 24 - (t — [¢t/S™) |- S™) for all [t/S™)|. S0 <
k <'t, we have (D.12) holds.

O

E Proofs of Technical Lemmas in Appendix C
E.1 Proof of Lemma C.3

We have the following lemma which guarantees the effectiveness of Cubic-Subsolver in Algorithm 3.

Lemma E.1. (Carmon and Duchi, 2016) Let A € R¥< and ||A|s < 8, b€ R 7> 0,( > 0,¢ € (0,1),8 € (0,1)
and 1 < 1/(83 +27¢). We denote that g(h) =b 'h+h"Ah/2+7/6-||h||3 and s = argminy,cga g(h). Then with
probability at least 1 — ¢/, if

sl > ¢ or ||blls > max{+\/B7/2¢3/2, 7¢2/2}, (E.1)
then x = Cubic-Subsolver(A, b, 7,1, (, €,d") satisfies that g(x) < —(1 — €)7¢3/12.
Proof of Lemma C.35. We simply set A = Uy, b= vy, 7 = My, n = (16L)71, ( = \/¢/p, € = 0.5 and &' = 6.
We have ||U¢|l2 < L, then we set 8 = L. With the choice of M; where M; = 4p and the assumption that

€ <4L?p/M?, we can check that n < 1/(83 + 27¢). We also have that s = h} and (E.1) holds. Thus, by Lemma
E.1, we have

me(hy) < —(1—€)7¢3/12 < =M, p~3/263/2 /24,

By the choice of 77 in Cubic-Subsolver, we have

, 480 , 12 A L
= e s (1) cmos (200) )| = )

E.2 Proof of Lemma C.5

We have the following lemma which provides the guarantee for the function value in Cubic-Finalsolver.

Lemma E.2. (Carmon and Duchi, 2016) We denote that g(h) = b h+h" Ah/2+7/6-||h|3, s = argminy, cga g(h),
then g(s) > [|b|2ls|l2/2 — |s[|3/6.
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Proof of Lemma C.5. In Cubic-Finalsolver we are focusing on minimizing my+_1(h). We have that ||v¢]|2 <
max{Me/(2p), /LM /2(¢/p)>/*} and ||hk. |2 < \/¢/p by Lemma C.3. We can check that n = (16L) ™" satisfies
that n < (4(L + 7R))~!, where R is defined in Lemma C.4, when € < 4L?p/M?. From Lemma C.4 we also know
that mp-_1 is (L + 2Mp+_1 R)-smooth, which satisfies that 1/n > 2(L + 2Mp+_1 R). Thus, by standard gradient
descent analysis, to get a point A where ||[Vmp-_1(A)]2 < ¢, Cubic-Finalsolver needs to run

y o mre—1(Ao) —mp- 1 (. _q)Y mr+—1(Ao) — mp+—1(hj._)
T _0< o ~o(L 62

(E.2)

iterations, where we denote by Ay the starting point of Cubic-Finalsolver. By directly computing, we have
mr+_1(Ag) < 0. By Lemma E.2, we have

—mp 1 (e _y) < MW _y[[3/6 — [V 12l _y[l2/2 < Myl|h3. 1 13/6 = O(p(e/p)*/?) = O(2 /\/p).

Thus, (E.2) can be further bounded as 7" = O(L/,/pe). O

F Proofs of Additional Lemmas in Appendix D
F.1 Proof of Lemma D.3
Proof of Lemma D.3. We only need to consider the case where B,ig) = |Jk| < n. For each ¢ € Ji, let
a; = Vfi(xx) — Vfi(xg—1) — VF(xx) + VF(x5_1), (F.1)
then we have E;a; = 0, a; i.i.d., and
laille < IV fi(xk) = Vfi(xk-1)ll2 + [VF(xx) = VF(x-1)|l2 < 2L[|xx — xx-12,

where the second inequality holds due to the L-smoothness of f; and F. Thus by vector Azuma-Hoeffding
inequality in Lemma G.1, we have that with probability at least 1 — 9,

|V 7 (x1) = Vg (x1-1) = VE(x1) + VF(x-1) |,

1
= @ 162% {Vfi(xk) = Vfi(xk-1) = VF(xy) + VF(xk,l)} i
<6r, |80 . (F.2)
B](gg)

For each i € Jg, let
bi = Vfl(xk) - VF(Xk),

then we have E;b; = 0 and ||b;||2 < M. Thus by vector Azuma-Hoeflding inequality in Lemma G.1, we have that
with probability at least 1 — ¢,

1972, 600) = VE Gl = 5| 5 [0 = V()] | < o, [EE (F.3)
k €Tk k

O

F.2 Proof of Lemma D.4

Proof of Lemma D.4. We only need to consider the case where B,gh') = |Zx| < n. For each i € Zy, let
A; =V fi(xi) = V2 fi(xg-1) = V2F(xg) + V2F (x4-1),

then we have E;A; = O,AZ-T =A;, A;iid. and

[As]l2 < [|V? fi(xi) = V2 fi(xk1) ||, + [ V2F(xk) — V2F(xk-1)]|, < 205k — xp—1]l2,



Stochastic Recursive Variance-Reduced Cubic Regularization Methods

where the second inequality holds due to p-Hessian Lipschitz continuous of f; and F. Then by Matrix Azuma
inequality Lemma G.2, we have that with probability at least 1 — 6,

||V2f1k (xx) — V2 fr, (xp-1) — V2F(xz) + VQF(qu)H2

1
= | 2 (V2 filxi) = V2 fix-1) = V2F(x) + V2F (x5-1)|
ke, 2
log(d/é
<6p %ka = Xp—1l2-
Bk

For each ¢ € 7}, let
B; = V*fi(xx) — V2F(xy),

then we have E;B; = 0, B;r = B,, and ||B;||2 < 2L. Then by Matrix Azuma inequality in Lemma G.2, we have
that with probability at least 1 — 4,

1 log(d/é
192 ) = V2F )2 = 5 | 32 [V26000) - V2P0 | < 6, 2200,
ke, 2 By
which completes the proof. O

G Auxiliary Lemmas

We have the following vector Azuma-Hoeffding inequality:

Lemma G.1. (Pinelis, 1994) Consider {vi} be a vector-valued martingale difference, where
E[vilo(vi,...,vk—1)] = 0 and ||vg||2 < Ak, then we have that with probability at least 1 — 4,

’ > Vi i <3, [log(1/6) ) A2 (G.1)
k

k
We have the following Matrix Azuma inequality :

Lemma G.2. (Tropp, 2012) Counsider a finite adapted sequence {Xj} of self-adjoint matrices in dimension d,
and a fixed sequence {Ay} of self-adjoint matrices that satisfy

E[X|o(Xk_1,...,X1)] = 0 and X? < A? almost surely.

Then we have that with probability at least 1 — 4,
|zx
k

H Additional Algorithms and Functions

Due to space limit, we include the approximate solvers (Carmon and Duchi, 2016) for the cubic subproblem in
this section for the purpose of self-containedness.

k

E 3wog<d/a> > IAxE. (@2)
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Algorithm 3 Cubic-Subsolver(A[-],b,7,7n,¢,€,d)

1: x = CauchyPoint(A[-], b, 7)

2: if CubicFunction(A[],b,7,x) < —(1 — €')7¢3/12 then
3:  return x

4: end if

5: Set

7= 480 {GIOg (1 + \/3/5’) + 32log < 12 ))}
nrce nt(e

6: Draw q uniformly from the unit sphere, set b=b+ oq where o = 723/ /(B + 7¢) /576
7: x = CauchyPoint(A[], b, T)
8 fort=1,...,T—1do _
9:  x + x —1n - CubicGradient(A[], b, 7,x)
10:  if CubicFunction(A[],b,7,x) < —(1 — €)7¢3/12 then

11: return x
12: end if
13: end for

14: return x

Algorithm 4 Cubic-Finalsolver(A[-], b, 7,7, ¢€4)

1: A +CauchyPoint(A[], b, 7)

2: while ||Gradient(A[-],b, 7, A)|2 > ¢, do
3 A<« A—n-Gradient(A[],b, 7, A)

4: end while

5: return A

1: Function: CauchyPoint(A[-],b, )
2: return —R.:b/||bl||2, where

—bT A[b) ¢ <bTA[b]>2 2|bl
R.=———+ — ) 4+
©= 7ol e -

3: Function: CubicFunction(A[], b, 7,x)
4: return b'x +x" A[x]/2 + 7||x[|3/6

5: Function: CubicGradient(A[], b, 7,x)
6: return b’ + A[x] + 7|x||2x/2
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