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Abstract

Stochastic Variance-Reduced Cubic regular-
ization (SVRC) algorithms have received in-
creasing attention due to its improved gra-
dient/Hessian complexities (i.e., number of
queries to stochastic gradient/Hessian oracles)
to find local minima for nonconvex finite-sum
optimization. However, it is unclear whether
existing SVRC algorithms can be further im-
proved. Moreover, the semi-stochastic Hes-
sian estimator adopted in existing SVRC al-
gorithms prevents the use of Hessian-vector
product-based fast cubic subproblem solvers,
which makes SVRC algorithms computation-
ally intractable for high-dimensional problems.
In this paper, we first present a Stochastic
Recursive Variance-Reduced Cubic regular-
ization method (SRVRC) using a recursively
updated semi-stochastic gradient and Hes-
sian estimators. It enjoys improved gradient
and Hessian complexities to find an (ε,

√
ε)-

approximate local minimum, and outperforms
the state-of-the-art SVRC algorithms. Built
upon SRVRC, we further propose a Hessian-
free SRVRC algorithm, namely SRVRCfree,
which only needs Õ(nε−2 ∧ ε−3) stochastic
gradient and Hessian-vector product compu-
tations, where n is the number of component
functions in the finite-sum objective and ε is
the optimization precision. This outperforms
the best-known result Õ(ε−3.5) achieved by
stochastic cubic regularization algorithm pro-
posed in Tripuraneni et al. (2018).
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1 Introduction

Many machine learning problems can be formulated
as empirical risk minimization, which is in the form of
finite-sum optimization as follows:

minx∈RdF (x) := n−1
∑n
i=1fi(x), (1.1)

where each fi : Rd → R can be a convex or nonconvex
function. In this paper, we are particularly interested
in nonconvex finite-sum optimization, where each fi
is nonconvex. This is often the case for deep learning
(LeCun et al., 2015). In principle, it is hard to find the
global minimum of (1.1) because of the NP-hardness of
the problem (Hillar and Lim, 2013), thus it is reason-
able to resort to finding local minima (a.k.a., second-
order stationary points). It has been shown that local
minima can be the global minima in certain machine
learning problems, such as low-rank matrix factoriza-
tion (Ge et al., 2016; Bhojanapalli et al., 2016; Zhang
et al., 2018b) and training deep linear neural networks
(Kawaguchi, 2016; Hardt and Ma, 2016). Therefore,
developing algorithms to find local minima is impor-
tant both in theory and in practice. More specifically,
we define an (εg, εH)-approximate local minimum x of
F (x) as follows

‖∇F (x)‖2 ≤ εg, λmin(∇2F (x)) ≥ −εH , (1.2)

where εg, εH > 0 are predefined precision parameters.
The most classic algorithm to find the approximate lo-
cal minimum is cubic-regularized (CR) Newton method,
which was originally proposed in the seminal paper by
Nesterov and Polyak (2006). Generally speaking, in
the k-th iteration, cubic regularization method solves
a subproblem, which minimizes a cubic-regularized
second-order Taylor expansion at the current iterate
xk. The update rule can be written as follows:

hk = argmin
h∈Rd

〈∇F (xk),h〉+ 1/2〈∇2F (xk)h,h〉

+M/6‖h‖32, (1.3)

xk+1 = xk + hk, (1.4)
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where M > 0 is a penalty parameter. Nesterov
and Polyak (2006) proved that to find an (ε,

√
ε)-

approximate local minimum of a nonconvex function
F , cubic regularization requires at most O(ε−3/2) iter-
ations. However, when applying cubic regularization
to nonconvex finite-sum optimization in (1.1), a ma-
jor bottleneck of cubic regularization is that it needs
to compute n individual gradients ∇fi(xk) and Hes-
sian matrices ∇2fi(xk) at each iteration, which leads
to a total O(nε−3/2) gradient complexity (i.e., num-
ber of queries to the stochastic gradient oracle ∇fi(x)
for some i and x) and O(nε−3/2) Hessian complexity
(i.e., number of queries to the stochastic Hessian oracle
∇2fi(x) for some i and x). Such computational over-
head will be extremely expensive when n is large as is
in many large-scale machine learning applications.

To overcome the aforementioned computational burden
of cubic regularization, Kohler and Lucchi (2017); Xu
et al. (2017) used subsampled gradient and subsam-

pled Hessian, which achieve Õ(nε−3/2∧ ε−7/2) gradient

complexity and Õ(nε−3/2 ∧ ε−5/2) Hessian complex-
ity. Zhou et al. (2018d) proposed a stochastic variance
reduced cubic regularization method (SVRC), which
uses novel semi-stochastic gradient and semi-stochastic
Hessian estimators inspired by variance reduction for
first-order finite-sum optimization (Johnson and Zhang,
2013; Reddi et al., 2016; Allen-Zhu and Hazan, 2016),
which attains O(n4/5ε−3/2) Second-order Oracle (SO)
complexity1. Zhou et al. (2018b); Wang et al. (2018b);
Zhang et al. (2018a) used a simpler semi-stochastic
gradient compared with (Zhou et al., 2018d), and semi-
stochastic Hessian, which achieves a better Hessian
complexity, i.e., O(n2/3ε−3/2). However, it is unclear
whether the gradient and Hessian complexities of the
aforementioned SVRC algorithms can be further im-
proved. Furthermore, all these algorithms need to use
the semi-stochastic Hessian estimator, which is not
compatible with Hessian-vector product-based cubic
subproblem solvers (Agarwal et al., 2017; Carmon and
Duchi, 2016, 2018). Therefore, the cubic subproblem
(1.4) in each iteration of existing SVRC algorithms has
to be solved by computing the inverse of the Hessian
matrix, whose computational complexity is at least
O(dw)2. This makes existing SVRC algorithms not
very practical for high-dimensional problems.

In this paper, we first show that the gradient and
Hessian complexities of SVRC-type algorithms can be
further improved. The core idea is to use novel recur-

1Second-order Oracle (SO) returns triple
[fi(x),∇fi(x),∇2fi(x)] for some i and x, hence the
SO complexity can be seen as the maximum of gradient
and Hessian complexities.

2w is the matrix multiplication constant, where w =
2.37... (Golub and Van Loan, 1996).

sively updated semi-stochastic gradient and Hessian
estimators, which are inspired by the stochastic path-
integrated differential estimator (SPIDER) (Fang et al.,
2018) and the StochAstic Recursive grAdient algoritHm
(SARAH) (Nguyen et al., 2017) for first-order optimiza-
tion. We show that such kind of estimators can be
extended to second-order optimization to reduce the
Hessian complexity. Nevertheless, our analysis is very
different from that in Fang et al. (2018); Nguyen et al.
(2017), because we study a fundamentally different op-
timization problem (i.e., finding local minima against
finding first-order stationary points) and a completely
different optimization algorithm (i.e., cubic regulariza-
tion versus gradient method). In addition, in order
to reduce the runtime complexity of existing SVRC
algorithms, we further propose a Hessian-free SVRC
method that can not only use the novel semi-stochastic
gradient estimator, but also leverage the Hessian-vector
product-based fast cubic subproblem solvers. Experi-
ments on benchmark nonconvex finite-sum optimiza-
tion problems illustrate the superiority of our newly
proposed SVRC algorithms over the state-of-the-art
(Due to space limit, we include the experiments in
Appendix A).

In detail, our contributions are summarized as follows:

1. We propose a new SVRC algorithm, namely SRVRC,
which can find an (ε,

√
ε)-approximate local mini-

mum with Õ(nε−3/2 ∧ ε−3) gradient complexity and

Õ(n ∧ ε−1 + n1/2ε−3/2 ∧ ε−2) Hessian complexity.
Compared with previous work in cubic regulariza-
tion, the gradient and Hessian complexity of SRVRC
is strictly better than the algorithms in Zhou et al.
(2018b); Wang et al. (2018b); Zhang et al. (2018a),
and better than that in Zhou et al. (2018d); Shen
et al. (2019) in a wide regime.

2. We further propose a new algorithm SRVRCfree,
which requires Õ(ε−3 ∧ nε−2) stochastic gradient
and Hessian-vector product computations to find
an (ε,

√
ε)-approximate local minimum. SRVRCfree

is strictly better than the algorithms in (Agarwal
et al., 2017; Carmon and Duchi, 2016; Tripuraneni
et al., 2018) when n� 1. The runtime complexity
of SRVRCfree is also better than that of SRVRC
when the problem dimension d is large.

In an independent and concurrent work (Shen et al.,
2019), two stochastic trust region methods namely
STR1 and STR2 were proposed, which are based on
the same idea of variance reduction using SPIDER, and
are related to our first algorithm SRVRC. Our SRVRC
is better than STR1 because it enjoys the same Hes-
sian complexity but a better gradient complexity than
STR1. Compared with STR2, our SRVRC has a con-



Dongruo Zhou, Quanquan Gu

sistently lower Hessian complexity and lower gradient
complexity in a wide regime (i.e., ε � n−1/2). Since
Hessian complexity is the dominating term in cubic
regularization method (Zhou et al., 2018b; Wang et al.,
2018b), our SRVRC is arguably better than STR2, as
verified by our experiments.

For the ease of comparison, we summarize the compar-
ison of methods which need to compute the Hessian
explicitly in Table 1, the Hessian-free or Hessian-vector
product based methods in Table 2.

2 Additional Related Work

In this section, we review additional related work that
is not discussed in the introduction section.

Cubic Regularization and Trust-Region Meth-
ods Since cubic regularization was first proposed by
Nesterov and Polyak (2006), there has been a line of
followup research. It was extended to adaptive regular-
ized cubic methods (ARC) by Cartis et al. (2011a,b),
which enjoy the same iteration complexity as stan-
dard cubic regularization while having better empirical
performance. The first attempt to make cubic regu-
larization a Hessian-free method was done by Carmon
and Duchi (2016), which solves the cubic sub-problem

by gradient descent, requiring in total Õ(nε−2) stochas-
tic gradient and Hessian-vector product computations.
Agarwal et al. (2017) solved cubic sub-problem by
fast matrix inversion based on accelerated gradient
descent, which requires Õ(nε−3/2 + n3/4ε−7/4) stochas-
tic gradient and Hessian-vector product computations.
In the pure stochastic optimization setting, Tripura-
neni et al. (2018) proposed stochastic cubic regular-
ization method, which uses subsampled gradient and
Hessian-vector product-based cubic subproblem solver,
and requires Õ(ε−3.5) stochastic gradient and Hessian-
vector product computations. A closely related second-
order method to cubic regularization methods are trust-
region methods (Conn et al., 2000; Cartis et al., 2009,
2012, 2013). Recent studies (Blanchet et al., 2016; Cur-
tis et al., 2017; Mart́ınez and Raydan, 2017) proved that
the trust-region method can achieve the same iteration
complexity as the cubic regularization method. Xu
et al. (2017) also extended trust-region method to sub-
sampled trust-region method for nonconvex finite-sum
optimization.

Local Minima Finding Besides cubic regularization
and trust-region type methods, there is another line of
research for finding approximate local minima, which
is based on first-order optimization. Ge et al. (2015);

3The complexity for Natasha2 to find an (ε, ε1/4)-local

minimum only requires Õ(ε−3.25). Here we adapt the com-

plexity result for finding an (ε, ε1/2)-approximate local min-
imum.

Jin et al. (2017a) proved that (stochastic) gradient
methods with additive noise are able to escape from
nondegenerate saddle points and find approximate local
minima. Carmon et al. (2018); Royer and Wright
(2017); Allen-Zhu (2017); Xu et al. (2018); Allen-Zhu
and Li (2018); Jin et al. (2017b); Yu et al. (2017, 2018);
Zhou et al. (2018a); Fang et al. (2018) showed that by
alternating first-order optimization and Hessian-vector
product based negative curvature descent, one can find
approximate local minima even more efficiently. Very
recently, Fang et al. (2019); Jin et al. (2019) showed
that stochastic gradient descent itself can escape from
saddle points.

Variance Reduction Variance reduction techniques
play an important role in our proposed algorithms.
Variance reduction techniques were first proposed
for convex finite-sum optimization, which use semi-
stochastic gradient to reduce the variance of the stochas-
tic gradient and improve the gradient complexity. Rep-
resentative algorithms include Stochastic Average Gra-
dient (SAG) (Roux et al., 2012), Stochastic Variance
Reduced Gradient (SVRG) (Johnson and Zhang, 2013;
Xiao and Zhang, 2014), SAGA (Defazio et al., 2014)
and SARAH (Nguyen et al., 2017), to mention a few.
For nonconvex finite-sum optimization problems, Gar-
ber and Hazan (2015); Shalev-Shwartz (2016) studied
the case where each individual function is nonconvex,
but their sum is still (strongly) convex. Reddi et al.
(2016); Allen-Zhu and Hazan (2016) extended SVRG
to noncovnex finite-sum optimization, which is able to
converge to first-order stationary point with better gra-
dient complexity than vanilla gradient descent. Fang
et al. (2018); Zhou et al. (2018c); Wang et al. (2018a);
Nguyen et al. (2019) further improved the gradient
complexity for nonconvex finite-sum optimization to
be (near) optimal.

3 Notation and Preliminaries

In this work, all index subsets are multiset. We use
∇fI(x) to represent 1/|I| ·

∑
i∈I ∇fi(x) if |I| < n

and ∇F (x) otherwise. We use ∇2fI(x) to represent
1/|I| ·

∑
i∈I ∇2fi(x) if |I| < n and ∇2F (x) otherwise.

For a vector v, we denote its i-th coordinate by vi. We
denote vector Euclidean norm by ‖v‖2. For any matrix
A, we denote its (i, j) entry by Ai,j , its Frobenius
norm by ‖A‖F , and its spectral norm by ‖H‖2. For a
symmetric matrix H ∈ Rd×d, we denote its minimum
eigenvalue by λmin(H). For symmetric matrices A,B ∈
Rd×d, we say A � B if λmin(A − B) ≥ 0. We use
fn = O(gn) to denote that fn ≤ Cgn for some constant

C > 0 and use fn = Õ(gn) to hide the logarithmic
factors of gn. We use a ∧ b = min{a, b}.

We begin with a few assumptions that are needed for
later theoretical analyses of our algorithms.
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Table 1: Comparisons of different methods to find an (ε,
√
ρε)-local minimum on gradient and Hessian complexity.

Algorithm Gradient Hessian

CR
O
(
n
ε3/2

)
O
(
n
ε3/2

)
(Nesterov and Polyak, 2006)

SCR
Õ
(
n
ε3/2
∧ 1
ε7/2

)
Õ
(
n
ε3/2
∧ 1
ε5/2

)
(Kohler and Lucchi, 2017; Xu et al., 2017)

SVRC
Õ
(
n4/5

ε3/2

)
Õ
(
n4/5

ε3/2

)
(Zhou et al., 2018d)

(Lite-)SVRC
Õ
(
n
ε3/2

)
Õ
(
n2/3

ε3/2

)
(Zhou et al., 2018b; Wang et al., 2018b; Zhou et al., 2019)

SVRC
O
(
n
ε3/2
∧ n2/3

ε5/2

)
O
(
n2/3

ε3/2

)
(Zhang et al., 2018a)

STR1
Õ
(
n
ε3/2
∧ n1/2

ε2

)
Õ
(
n1/2

ε3/2
∧ 1
ε2

)
(Shen et al., 2019)

STR2
Õ
(
n3/4

ε3/2

)
Õ
(
n3/4

ε3/2

)
(Shen et al., 2019)

SRVRC
Õ
(
n
ε3/2
∧ n1/2

ε2 ∧
1
ε3

)
Õ
(
n1/2

ε3/2
∧ 1
ε2

)
(This work)

Table 2: Comparisons of different methods to find an
(ε,
√
ρε)-local minimum both on stochastic gradient and

Hessian-vector product computations.

Algorithm
Gradient & Hessian-vector

product

SGD
Õ
(

1
ε7/2

)
(Fang et al., 2019)

SGD
Õ
(

1
ε4

)
(Jin et al., 2019)

Fast-Cubic
Õ
(
n
ε3/2

+ n3/4

ε7/4

)
(Agarwal et al., 2017)

GradientCubic
Õ
(
n
ε2

)
(Carmon and Duchi, 2016)

STC
Õ
(

1
ε7/2

)
(Tripuraneni et al., 2018)

SPIDER
Õ
(
(
√
n
ε2 + 1

ε2.5 ) ∧ 1
ε3

)
(Fang et al., 2018)

SRVRCfree
Õ
(
n
ε2 ∧

1
ε3

)
(This work)

The following assumption says that the gap between the
function value at the initial point x0 and the minimal
function value is bounded.

Assumption 3.1. For any function F (x) and an ini-
tial point x0, there exists a constant 0 < ∆F <∞ such
that F (x0)− infx∈Rd F (x) ≤ ∆F .

We also need the following L-gradient Lipschitz and
ρ-Hessian Lipschitz assumption.

Assumption 3.2. For each i, we assume that fi is
L-gradient Lipschitz continuous and ρ-Hessian Lips-
chitz continuous, where we have ‖∇fi(x)−∇fi(y)‖2 ≤

L‖x− y‖2 and ‖∇2fi(x)−∇2fi(y)‖2 ≤ ρ‖x− y‖2 for
all x,y ∈ Rd.

Note that L-gradient Lipschitz is not required in the
original cubic regularization algorithm (Nesterov and
Polyak, 2006) and the SVRC algorithm (Zhou et al.,
2018d). However, for most other SVRC algorithms
(Zhou et al., 2018b; Wang et al., 2018b; Zhang et al.,
2018a), they need the L-gradient Lipschitz assumption.

In addition, we need the difference between the stochas-
tic gradient and the full gradient to be bounded.

Assumption 3.3. We assume that F has M -
bounded stochastic gradient, where we have ‖∇fi(x)−
∇F (x)‖2 ≤M,∀x ∈ Rd,∀i ∈ [n].

It is worth noting that Assumption 3.3 is weaker than
the assumption that each fi is Lipschitz continuous,
which has been made in Kohler and Lucchi (2017);
Zhou et al. (2018b); Wang et al. (2018b); Zhang et al.
(2018a). We would also like to point out that we can
make additional assumptions on the variances of the
stochastic gradient and Hessian, such as the ones made
in Tripuraneni et al. (2018). Nevertheless, making
these additional assumptions does not improve the
dependency of the gradient and Hessian complexities
or the stochastic gradient and Hessian-vector product
computations on ε and n. Therefore we chose not
making these additional assumptions on the variances.

4 The Proposed SRVRC Algorithm

In this section, we present SRVRC, a novel algorithm
which utilizes new semi-stochastic gradient and Hessian
estimators compared with previous SVRC algorithms.
We also provide a convergence analysis of the proposed
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Algorithm 1 Stochastic Recursive Variance-Reduced Cubic Regularization (SRVRC)

1: Input: Total iterations T , batch sizes {B(g)
t }Tt=1, {B

(h)
t }Tt=1, cubic penalty parameter {Mt}Tt=1, inner gradient

length S(g), inner Hessian length S(h), initial point x0, accuracy ε and Hessian Lipschitz constant ρ.
2: for t = 0, . . . , T − 1 do

3: Sample index set Jt with |Jt| = B
(g)
t ; It with |It| = B

(h)
t ;

vt ←

{
∇fJt

(xt), mod(t, S(g)) = 0

∇fJt
(xt)−∇fJt

(xt−1) + vt−1, else
(3.1)

Ut ←

{
∇2fIt(xt), mod(t, S(h)) = 0

∇2fIt(xt)−∇2fIt(xt−1) + Ut−1, else
(3.2)

ht ← argmin
h∈Rd

mt(h) := 〈vt,h〉+
1

2
〈Uth,h〉+

Mt

6
‖h‖32 (3.3)

4: xt+1 ← xt + ht
5: if ‖ht‖2 ≤

√
ε/ρ then

6: return xt+1

7: end if
8: end for

algorithm.

4.1 Algorithm Description

In order to reduce the computational complexity for
calculating full gradient and full Hessian in (1.3), sev-
eral ideas such as subsampled/stochastic gradient and
Hessian (Kohler and Lucchi, 2017; Xu et al., 2017;
Tripuraneni et al., 2018) and variance-reduced semi-
stochastic gradient and Hessian (Zhou et al., 2018d;
Wang et al., 2018b; Zhang et al., 2018a) have been
used in previous work. SRVRC follows this line of
work. The key idea is to use a new construction of
semi-stochastic gradient and Hessian estimators, which
are recursively updated in each iteration, and reset
periodically after certain number of iterations (i.e., an
epoch). This is inspired by the first-order variance
reduction algorithms SPIDER (Fang et al., 2018) and
SARAH (Nguyen et al., 2017). SRVRC constructs
semi-stochastic gradient and Hessian as in (3.1) and
(3.2) respectively. To be more specific, in the t-th itera-
tion when mod(t, S(g)) = 0 or mod(t, S(h)) = 0, where
S(g), S(h) are the epoch lengths of gradient and Hes-
sian, SRVRC will set the semi-stochastic gradient vt
and Hessian Ut to be a subsampled gradient ∇fJt

(xt)
and Hessian ∇2fJt(xt) at point xt, respectively. In the
t-th iteration when mod(t, S) 6= 0 or mod(t, S(h)) 6= 0,
SRVRC constructs semi-stochastic gradient and Hes-
sian vt and Ut based on previous estimators vt−1 and
Ut−1 recursively. With semi-stochastic gradient vt,
semi-stochastic Hessian Ut and t-th Cubic penalty
parameter Mt, SRVRC constructs the t-th Cubic sub-
problem mt and solves for the solution to mt as t-th
update direction as (3.3). If ‖ht‖2 is less than a given

threshold which we set it as
√
ε/ρ, SRVRC returns

xt+1 = xt + ht as its output. Otherwise, SRVRC
updates xt+1 = xt + ht and continues the loop.

The main difference between SRVRC and previous
stochastic cubic regularization algorithms (Kohler and
Lucchi, 2017; Xu et al., 2017; Zhou et al., 2018d,b;
Wang et al., 2018b; Zhang et al., 2018a) is that
SRVRC adapts new semi-stochastic gradient and semi-
stochastic Hessian estimators, which are defined recur-
sively and have smaller asymptotic variance. The use of
such semi-stochastic gradient has been proved to help
reduce the gradient complexity in first-order nonconvex
finite-sum optimization for finding stationary points
(Fang et al., 2018; Wang et al., 2018a; Nguyen et al.,
2019). Our work takes one step further to apply it to
Hessian, and we will later show that it helps reduce
the gradient and Hessian complexities in second-order
nonconvex finite-sum optimization for finding local
minima.

4.2 Convergence Analysis

In this subsection, we present our theoretical results
about SRVRC. While the idea of using variance reduc-
tion technique for cubic regularization is hardly new,
the new semi-stochastic gradient and Hessian estima-
tors in (3.1) and (3.2) bring new technical challenges
in the convergence analysis.

To describe whether a point x is a local minimum, we
follow the original cubic regularization work (Nesterov
and Polyak, 2006) to use the following criterion µ(x):

Definition 4.1. For any x, define µ(x) as µ(x) =

max{‖∇F (x)‖3/22 ,−λ3min

(
∇2F (x)

)
/ρ3/2}.
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It is easy to note that µ(x) ≤ ε3/2 if and only if x is an
(ε,
√
ρε)-approximate local minimum. Thus, in order to

find an (ε,
√
ρε)-approximate local minimum, it suffices

to find a point x which satisfies µ(x) ≤ ε3/2.

The following theorem provides the convergence guar-
antee of SRVRC for finding an (ε,

√
ρε)-approximate

local minimum.

Theorem 4.2. Under Assumptions 3.1, 3.2 and 3.3,
set the cubic penalty parameter Mt = 4ρ for any t and
the total iteration number T ≥ 40∆F ρ

1/2ε−3/2. For t
such that mod(t, S(g)) 6= 0 or mod(t, S(h)) 6= 0, set the

gradient sample size B
(g)
t and Hessian sample size B

(h)
t

as

B
(g)
t ≥ n ∧ 1440L2S(g)‖ht−1‖22 log2(2T/ξ)

ε2
, (4.1)

B
(h)
t ≥ n ∧ 800ρS(h)‖ht−1‖22 log2(2Td/ξ)

ε
. (4.2)

For t such that mod(t, S(g)) = 0 or mod(t, S(h)) = 0,

set the gradient sample size B
(g)
t and Hessian sample

size B
(h)
t as

B
(g)
t ≥ n ∧ 1440M2 log2(2T/ξ)

ε2
, (4.3)

B
(h)
t ≥ n ∧ 800L2 log2(2Td/ξ)

ρε
. (4.4)

Then with probability at least 1− ξ, SRVRC outputs
xout satisfying µ(xout) ≤ 600ε3/2, i.e., an (ε,

√
ρε)-

approximate local minimum.

Next corollary spells out the exact gradient complexity
and Hessian complexity of SRVRC to find an (ε,

√
ρε)-

approximate local minimum.

Corollary 4.3. Under the same conditions as The-
orem 4.2, if we set S(g), S(h) as S(g) =

√
ρε/L ·√

n ∧M2/ε2 and S(h) =
√
n ∧ L/(ρε), and set

T, {B(g)
t }, {B

(h)
t } as their lower bounds in (4.1)- (4.4),

then with probability at least 1−ξ, SRVRC will output
an (ε,

√
ρε)-approximate local minimum within

Õ

(
n ∧ L

2

ρε
+

√
ρ∆F

ε3/2

√
n ∧ L

2

ρε

)
stochastic Hessian evaluations and

Õ

(
n ∧ M

2

ε2
+

∆F

ε3/2

[
√
ρn ∧ L

√
n√
ε
∧ LM
ε3/2

])
stochastic gradient evaluations.

Remark 4.4. For SRVRC, if we assume M,L, ρ,∆F

to be constants, then its gradient complexity is
Õ(n/ε3/2 ∧

√
n/ε2 ∧ ε−3), and its Hessian complexity is

Õ(n ∧ ε−1 + n1/2ε−3/2 ∧ ε−2). Regarding Hessian com-
plexity, suppose that ε� 1, then the Hessian complex-
ity of SRVRC can be simplified as Õ(n1/2ε−3/2 ∧ ε−2).
Compared with existing SVRC algorithms (Zhou et al.,
2018b; Zhang et al., 2018a; Wang et al., 2018b), SRVRC
outperforms the best-known Hessian sample complex-
ity by a factor of n1/6 ∧ n2/3ε1/2. In terms of gradient
complexity, SRVRC outperforms STR2 (Shen et al.,
2019) by a factor of n3/4ε3/2 when ε� n−1/2.

Remark 4.5. Note that both Theorem 4.2 and Corol-
lary 4.3 still hold when Assumption 3.3 does not hold.
In that case, M =∞ and SRVRC’s Hessian complexity
remains the same, while its gradient complexity can
be potentially worse, i.e., Õ(n/ε3/2 ∧

√
n/ε2), which

degenerates to that of STR1 (Shen et al., 2019).

5 Hessian-Free SRVRC

While SRVRC adapts novel semi-stochastic gradient
and Hessian estimators to reduce both the gradient and
Hessian complexities, it has three limitations for high-
dimensional problems with d� 1: (1) it needs to com-
pute and store the Hessian matrix, which needs O(d2)
computational time and storage space; (2) it needs
to solve cubic subproblem mt exactly, which requires
O(dw) computational time because it needs to compute
the inverse of a Hessian matrix (Nesterov and Polyak,
2006); and (3) it cannot leverage the Hessian-vector
product-based cubic subproblem solvers (Agarwal et al.,
2017; Carmon and Duchi, 2016, 2018) because of the
use of the semi-stochastic Hessian estimator. It is in-
teresting to ask whether we can modify SRVRC to
overcome these shortcomings.

5.1 Algorithm Description

We present a Hessian-free algorithm SRVRCfree to ad-
dress above limitations of SRVRC for high-dimensional
problems, which only requires stochastic gradient and
Hessian-vector product computations. SRVRCfree uses
the same semi-stochastic gradient vt as SRVRC. As op-
posed to SRVRC which has to construct semi-stochastic
Hessian explicitly, SRVRCfree only accesses to stochas-
tic Hessian-vector product. In detail, at each iter-
ation t, SRVRCfree subsamples an index set It and
defines a stochastic Hessian-vector product function
Ut[·] : Rd → Rd as follows:

Ut[v] = ∇2fIt(xt)[v], ∀v ∈ Rd.

Note that although the subproblem depends on Ut,
SRVRCfree never explicitly computes this matrix. In-
stead, it only provides the subproblem solver access
to Ut through stochastic Hessian-vector product func-
tion Ut[·]. The subproblem solver performs gradient-
based optimization to solve the subproblem mt(h) as
∇mt(h) depends on Ut only via Ut[h]. In detail,
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Algorithm 2 Hessian Free Stochastic Recursive Variance-Reduced Cubic Regularization (SRVRCfree)

1: Input: Total iterations T , batch sizes {B(g)
t }Tt=1, {B

(h)
t }Tt=1, cubic penalty parameter {Mt}Tt=1, inner gradient

length S(g), initial point x0, accuracy ε, Hessian Lipschitz constant ρ, gradient Lipschitz constant L and
failure probability ξ.

2: for t = 0, . . . , T − 1 do

3: Sample index set Jt, |Jt| = B
(g)
t ; It, |It| = B

(h)
t ;

vt ←

{
∇fJt

(xt), mod(t, S(g)) = 0

∇fJt
(xt)−∇fJt

(xt−1) + vt−1, else
,Ut[·]← ∇2fIt(xt)[·]

4: ht ← Cubic-Subsolver(Ut[·],vt,Mt, 1/(16L),
√
ε/ρ, 0.5, ξ/(3T )) {See Algorithm 3 in Appendix H}

5: if mt(ht) < −4ρ−1/2ε3/2 then
6: xt+1 ← xt + ht
7: else
8: ht ← Cubic-Finalsolver(Ut[·],vt,Mt, 1/(16L), ε) {See Algorithm 4 in Appendix H}
9: return xt+1 ← xt + ht

10: end if
11: end for

following Tripuraneni et al. (2018), SRVRCfree uses
Cubic-Subsolver (See Algorithms 3 and 4 in Appendix
H) and Cubic-Finalsolver from (Carmon and Duchi,
2016), to find an approximate solution ht to the cu-
bic subproblem in (3.3). Both Cubic-Subsolver and
Cubic-Finalsolver only need to access gradient vt and
Hessian-vector product function Ut[·] along with other
problem-dependent parameters. With the output ht
from Cubic-Subsolver, SRVRCfree decides either to up-
date xt as xt+1 ← xt + ht or to exit the loop. For
the later case, SRVRCfree will call Cubic-Finalsolver to
output ht, and takes xt+1 = xt + ht as its final output.

The main differences between SRVRC and SRVRCfree

are two-fold. First, SRVRCfree only needs to compute
stochastic gradient and Hessian-vector product. Since
both of these two computations only take O(d) time
in many applications in machine learning, SRVRCfree

is suitable for high-dimensional problems. In the se-
quel, following Agarwal et al. (2017); Carmon et al.
(2018); Tripuraneni et al. (2018), we do not distinguish
stochastic gradient and Hessian-vector product compu-
tations and consider them to have the same runtime
complexity. Second, instead of solving cubic subprob-
lem mt exactly, SRVRCfree adopts approximate sub-
problem solver Cubic-Subsolver and Cubic-Finalsolver,
both of which only need to access gradient and Hessian-
vector product function, and again only take O(d) time.
Thus, SRVRCfree is computational more efficient than
SRVRC when d� 1.

5.2 Convergence Analysis

We now provide the convergence guarantee of
SRVRCfree, which ensures that SRVRCfree will output
an (ε,

√
ρε)-approximate local minimum.

Theorem 5.1. Under Assumptions 3.1, 3.2, 3.3, sup-
pose ε < L/(4ρ). Set the cubic penalty parameter
Mt = 4ρ for any t and the total iteration number
T ≥ 25∆F ρ

1/2ε−3/2. Set the Hessian-vector product

sample size B
(h)
t as

B
(h)
t ≥ n ∧ 1200L2 log2(3Td/ξ)

ρε
. (5.1)

For t such that mod(t, S(g)) 6= 0, set the gradient

sample size B
(g)
t as

B
(g)
t ≥ n ∧ 2640L2S(g)‖ht−1‖22 log2(3T/ξ)

ε2
. (5.2)

For t such that mod(t, S(g)) = 0, set the gradient

sample size B
(g)
t as

B
(g)
t ≥ n ∧ 2640M2 log2(3T/ξ)

ε2
. (5.3)

Then with probability at least 1−ξ, SRVRCfree outputs
xout satisfying µ(xout) ≤ 1300ε3/2, i.e., an (ε,

√
ρε)-

approximate local minimum.

The following corollary calculates the total amount of
stochastic gradient and Hessian-vector product compu-
tations of SRVRCfree to find an (ε,

√
ρε)-approximate

local minimum.

Corollary 5.2. Under the same conditions as Theo-
rem 5.1, if set S(g) =

√
ρε/L ·

√
n ∧M2/ε2 and set

T, {B(g)
t }, {B

(h)
t } as their lower bounds in (5.1)-(5.3),

then with probability at least 1 − ξ, SRVRCfree will
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output an (ε,
√
ρε)-approximate local minimum within

Õ

[(
n ∧ M

2

ε2

)
+

∆F

ε3/2

(
√
ρn ∧ L

√
n√
ε
∧ LM
ε3/2

)
+

(
L∆F

ε2
+

L
√
ρε

)
·
(
n ∧ L

2

ρε

)]
(5.4)

stochastic gradient and Hessian-vector product compu-
tations.

Remark 5.3. For SRVRCfree, if we assume
ρ, L,M,∆F are constants, then (5.4) is Õ(nε−2 ∧ ε−3).
For stochastic algorithms, the regime n → ∞ is of
most interest. In this regime, (5.4) becomes Õ(ε−3).
Compared with other local minimum finding algo-
rithms based on stochastic gradient and Hessian-vector
product, SRVRCfree outperforms the results achieved
by Tripuraneni et al. (2018) and Allen-Zhu (2018)
by a factor of ε−1/2. SRVRCfree also matches the
best-known result achieved by a recent first-order
algorithm proposed in (Fang et al., 2018). Note that
the algorithm proposed by Fang et al. (2018) needs
to alternate the first-order finite-sum optimization
algorithm SPIDER and negative curvature descent. In
sharp contrast, SRVRCfree is a pure cubic regulariza-
tion type algorithm and does not need to calculate the
negative curvature direction.

Remark 5.4. It is worth noting that both Theorem 5.1
and Corollary 5.2 still hold when Assumption 3.3 does
not hold, and SRVRCfree’s runtime complexity remains
the same. The only difference is: without Assump-

tion 3.3, we need to use full gradient (i.e., B
(g)
t = n)

instead of subsampled gradient at each iteration t.

5.3 Discussions on runtime complexity

We would like to further compare the runtime com-
plexity between SRVRC and SRVRCfree. In specific,
SRVRC needs O(d) time to construct semi-stochastic
gradient and O(d2) time to construct semi-stochastic
Hessian. SRVRC also needs O(dw) time to solve cubic
subproblem mt for each iteration. Thus, with the fact
that the total number of iterations is T = O(ε−3/2) by
Corollary 4.3, SRVRC needs

Õ

(
d
[ n

ε3/2
∧ 1

ε3

]
+ d2

[
n ∧ 1

ε
+

√
n

ε3/2
∧ 1

ε2

]
+

dw

ε3/2

)
runtime to find an (ε,

√
ε)-approximate local minimum

if we regard M,L, ρ,∆F as constants. As we men-
tioned before, for many machine learning problems,
both stochastic gradient and Hessian-vector product
computations only need O(d) time, therefore the run-

time of SRVRCfree is Õ(dnε−2 ∧ dε−3). We conclude
that SRVRCfree outperforms SRVRC when d is large,
which is in accordance with the fact that Hessian-free
methods are superior for high dimension machine learn-
ing tasks. On the other hand, a careful calculation can

show that the runtime of SRVRC can be less than that
of SRVRCfree when d is moderately small. This is also
reflected in our experiments in Section A.

6 Conclusions and Future Work

In this work we present two faster SVRC algorithms
namely SRVRC and SRVRCfree to find approximate
local minima for nonconvex finite-sum optimization
problems. SRVRC outperforms existing SVRC algo-
rithms in terms of gradient and Hessian complexities,
while SRVRCfree further outperforms the best-known
runtime complexity for existing CR based algorithms.
Whether our algorithms have achieved the optimal com-
plexity under the current assumptions is still an open
problem, and we leave it as a future work.
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