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A Proof of Main Results
In this section we provide the proofs of main results in Section 4. Note that in Theorem 4.2, Corollary 4.3 and
Theorem 4.6, the only assumption on U∗ is that it is an optimal solution. All quantities in these results that
depend on U∗, including D(U0,U

∗), σr(U∗), ‖U∗‖2 and G(U∗), are all invariant to rotations in Rr. Therefore
throughout our proof, we can pick a specific U∗ in Ω(U0), which can be easily obtained by setting U∗ = ΠU0(Û∗),
with Û∗ being an arbitrary optimal solution to the optimization problem (See Lemma B.3).

A.1 Proof of Proposition 3.1

Here we present the formal version of Proposition 3.1.

Lemma A.1 (Formal version of Proposition 3.1). Suppose that U,V ∈ Ω(U0), D(U,U∗) ≤ Cconvex and
D(V,U∗) ≤ Cconvex, where Cconvex = µσ7

r(U∗)/[4200L‖U∗‖62 + 1000‖U∗‖42‖∇L(U∗U∗>)‖2], then

G(U) ≥ G(V) + 〈∇G(V),U−V〉+
µ̄

2
‖U−V‖2F ,

where µ̄ = µσ6
r(U∗)/(200‖U∗‖42).

The proof of Lemma A.1 is provided in Section B.1.

A.2 Proof of Theorem 4.2

We first present the following key lemma. This lemma shows that all iterates {Yk}, {Vk}, {Xk} stay in the
neighborhood of U∗. What’s more, following the estimation sequence analysis for AGD in Nesterov (2004), we
show that the Lyapunov function Φk enjoys the linear convergence with a certain amount of error.

Lemma A.2. With all parameters chosen the same as in Theorem 4.2, denote CR = cµσ7
r(U∗)/(L̂‖U∗‖62), where

L̂ = L+ ‖∇L(U∗(U∗)>)‖2/‖U∗‖22. Then for any k ≥ 0, the following four statements hold:

1. Yk ∈ Ω(U0), D(Yk,U
∗) ≤ 1.1CR.

2. Vk+1 ∈ Ω(U0), D(Vk+1,U
∗) ≤ CR.

3. Xk+1 ∈ Ω(U0), D(Xk+1,U
∗) ≤ CR.

4. Define Φk := G(Xk)− G(U∗) + γ
2 ‖U

∗ −Vk‖2F , then it holds that Φk+1 ≤ (1− α)Φk + αε/2.

Proof of Theorem 4.2. By statement 4 in Lemma A.2, we have Φk+1−ε/2 ≤ (1−α)(Φk−ε/2). Thus by induction,
we have

G(Xk)− G(U∗) ≤ (1− α)k
[
G(X0)− G(U∗) +

γ

2
‖U∗ −V0‖2F − ε/2

]
+ ε/2

≤ (1− α)k
[
G(U0)− G(U∗) +

γ

2
‖U∗ −U0‖2F

]
+ ε/2

Since α =
√
ηγ, the result of Theorem 4.2 holds.

A.3 Proof of Corollary 4.3

Proof of Corollary 4.3. Applying Theorem 4.2 and setting

K = log(2∆G/ε)/
√
ηγ = O

([
‖U∗‖2
σr(U∗)

]3
√
L̂

µ
log

∆G
ε

)
,

we have G(XK)− G(U∗) ≤ ε/2 + ε/2 = ε. This completes the proof.
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A.4 Proof of Theorem 4.6

We have the following lemma which gives the explicit formula for the projection of any matrix onto the positive
definite matrix set.

Lemma A.3 (Li and Lin (2017)). Suppose that Σ̂ ∈ Rr×r and Σ̃ = argminΣ�0 ‖Σ − Σ̂‖F , then Σ̃ has the
analytic formula Σ̃ = A0 max{D0, 0}B>0 , where [A0,D0,B0] is the SVD of (Σ̂ + Σ̂>)/2.

We also need the following lemma to control the norms of any matrix U which is near to U∗.

Lemma A.4. Suppose that D(U,U∗) ≤ 0.1σ2
r(U

∗)/‖U∗‖2 and D(V,U∗) ≤ 0.1σ2
r(U

∗)/‖U∗‖2, then we have
the following inequalities:

0.9‖U∗‖2 ≤ ‖U‖2 ≤ 1.1‖U∗‖2, (A.1)
0.9σr(U

∗) ≤ σr(U) ≤ 1.1σr(U
∗), (A.2)

0.7σ2
r(U∗) ≤ σr(U>V) ≤ 1.3σ2

r(U∗). (A.3)

Proof of Theorem 4.6. For simplicity, we use V′ to denote V′k+1. Let [A0,D0,B0] be the r-SVD of U0 ∈ Rd×r

such that U0 = A0D0B
>
0 , where A0 ∈ Rd×r,D0 ∈ Rr×r,B0 ∈ Rr×r. Let

Σ∗ = argmin
Σ�0

‖D−1
0 Σ−A>0 V′B0‖F

and V̄ = (I −A0A
>
0 )V′ + A0D

−1
0 Σ∗B>0 . We now claim that V̄ = argminX∈Ω(U0) ‖X −V′‖F . To verify this

claim, We first verify that V̄ ∈ Ω(U0). It holds because

U>0 V̄ = B0D0A
>
0 [(I−A0A

>
0 )V′ + A0D

−1
0 Σ∗B>0 ] = B0Σ

∗B>0 � 0.

Then we note the following inequalities: for any X satisfying X ∈ Ω(U0),

‖X−V′‖F = ‖XB0 −V′B0‖F
≥ ‖A>0 XB0 −A>0 V′B0‖2F
≥ inf

Σ�0
‖D−1

0 Σ−A>0 V′B0‖F

= ‖D−1
0 Σ∗ −A>0 V′B0‖F , (A.4)

where the first inequality holds since A0 is a column orthonomaral matrix, the second inequality holds since
D0A

>
0 XB0 � 0, which can be verified as

X ∈ Ω(U0)⇔ X>U0 � 0⇔ X>A0D0B
>
0 � 0⇔ D0A

>
0 XB0 � 0.

Now we substitute X = V̄ into (A.4) and verify that each inequality in (A.4) is indeed equality, which suggests
that V̄ = argminX∈Ω(U0) ‖X−V′‖F . We have

‖V̄ −V′‖2F = ‖V̄B0 −V′B0‖2F
= ‖A>0 V̄B0 −A>0 V′B0‖2F + trace

[
(V̄B0 −V′B0)> (I−A0A

>
0 )(V̄B0 −V′B0)︸ ︷︷ ︸

I1

]
= ‖A>0 V̄B0 −A>0 V′B0‖2F
= ‖D−1

0 Σ∗ −A>0 V′B0‖2F , (A.5)

where the third equality holds since

I1 = (I−A0A
>
0 )(V̄B0 −V′B0)

= (I−A0A
>
0 )((I−A0A

>
0 )V′B0 + A0D

−1
0 Σ∗B>0 B0 −V′B0)

= (I−A0A
>
0 )A0[D−1

0 Σ∗ −A>0 V′B0]

= 0,
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the fourth equality holds since

(A0)>V̄B0 = A>0

[
(I−A0A

>
0 )V′ + A0D

−1
0 Σ∗B>0

]
B0 = D−1

0 Σ∗.

Next we analyze the convergence rate of ‖Σ(1)
t − Σ∗‖F . First, by Lemma A.3, we know that Σ

(1)
t+1 is the

projection of Σ′t+1 to convex set {Σ : Σ � 0}, which implies that {Σ(1)
t ,Σ

(2)
t } forms two sequences which are

generated by proximal AGD with function ‖D−1
0 Σ − T‖2F /2. Meanwhile, we know that ‖D−1

0 Σ − T‖2F /2 is
‖D−1

0 ‖22 = σr(U0)−2-smooth and λmin(D−2
0 ) = ‖U0‖−2

2 -strongly convex. Thus by standard convergence result of
proximal AGD (Nesterov, 2004), we have

‖Σ(1)
t −Σ∗‖2F ≤ 2

(
1− σr(U0)

‖U0‖2

)t
‖U0‖22[‖D−1

0 Σ
(1)
0 −T‖2F − ‖D−1

0 Σ∗ −T‖2F ]

≤ 2

(
1− σr(U0)

‖U0‖2

)t
‖U0‖22‖D−1

0 Σ
(1)
0 −T‖2F

= 2

(
1− σr(U0)

‖U0‖2

)t
‖U0‖2‖T‖F

≤ 2

(
1− σr(U0)

‖U0‖2

)t
‖U0‖2‖V′‖F , (A.6)

where the second inequality holds since ‖D−1
0 Σ −T‖2F /2 is ‖U0‖−2

2 -strongly convex, the equality holds since
Σ

(1)
0 = 0, the last inequality holds since ‖T‖F = ‖A>0 V′B0‖F ≤ ‖V′‖F . Finally, by the definition of Vk+1, V̄

and (A.6), we have

‖Vk+1 − V̄‖F = ‖A0D
−1
0 Σ

(1)
T B>0 −A0D

−1
0 Σ∗B>0 ‖F

= ‖D−1
0 (Σ

(1)
T −Σ∗)‖F

≤ 2

(
1− σr(U0)

‖U0‖2

)T ‖U0‖2
σr(U0)

‖V′‖F

≤ 3

(
1− 2

σr(U
∗)

‖U∗‖2

)T ‖U∗‖2
σr(U∗)

(‖U∗‖F + c1/2σr(U
∗))

≤ 4

(
1− 2

σr(U
∗)

‖U∗‖2

)T
‖U∗‖F . (A.7)

where the second inequality holds due to Lemma A.4 and

‖U∗ −V′k+1‖F =
∥∥(1− α)Vk + αYk − α/γ∇G(Yk)−U∗

∥∥
F

≤ 5‖U∗‖22/σr(U∗)2 · [(1− α)D(Vk,U
∗) + αD(Yk,U

∗)] + α/γ‖∇G(Yk)‖F
≤ CR[5.5‖U∗‖22/σr(U∗)2 + α/γ · (10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2)]

≤ c1/2σr(U∗).

(A.7) directly implies that to ‖Vk+1 − V̄‖F ≤ εS can be attained within iteration

T = O

(
‖U∗‖2
σr(U∗)

log
‖U∗‖F
εS

)
. (A.8)

Finally, substituting εS = min{αε/[4c1/2γσr(U∗)], c1/2σr(U∗)/2} into (A.8), we have the conclusion.

B Proofs of Lemmas in Appendix A

B.1 Proof of Lemma A.1

To prove Lemma A.1, we need the following lemmas:
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Lemma B.1. Suppose that D(U,U∗) ≤ 0.1σ2
r(U

∗)/‖U∗‖2, D(V,U∗) ≤ 0.1σ2
r(U

∗)/‖U∗‖2 and D(U0,U
∗) ≤

0.1σ2
r(U∗)/‖U∗‖2, U,V ∈ Ω(U0), then

‖U−V‖F ≤
5‖U∗‖22
σr(U∗)2

D(U,V).

Lemma B.2. Suppose that D(U,U∗) ≤ σ3
r(U∗)/(500‖U∗‖22) and D(V,U∗) ≤ σ3

r(U∗)/(500‖U∗‖22), then

G(U)− G(V)

≥ 〈∇G(V),U−V〉 − 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F + 0.4µσ2
r(V)D2(U,V).

Proof of Lemma A.1. We have

G(U)− G(V)

≥ 〈∇G(V),U−V〉 − 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F + 0.4µσ2
r(V)D2(U,V)

≥ 〈∇G(V),U−V〉 − 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F

+ 0.4µσ2
r(V)

σ4
r(U∗)

25‖U∗‖42
‖U−V‖2F ,

where the first inequality holds due to Lemma B.2, the second inequality holds due to Lemma B.1. With the fact
σ2
r(V) ≥ 0.8σ2

r(U∗) from Lemma A.4, we can further give the bound

G(U)− G(V)− 〈∇G(V),U−V〉

≥ ‖U−V‖2F ·
(
µσ6

r(U∗)

100‖U∗‖42
− 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2

σr(U∗)
D(V,U∗)

)
≥ µσ6

r(U∗)

200‖U∗‖42
‖U−V‖2F ,

where the last inequality holds because

D(V,U∗) ≤ CR ≤
µσ7

r(U∗)

4200L‖U∗‖62 + 1000‖U∗‖42‖∇L(U∗U∗>)‖2
.

This completes the proof.

B.2 Proof of Lemma A.2

In this section we provide the proof of Lemma A.2. Let Xk,Vk,Yk,V
′
k, η, γ,U0 be defined as in Theorem 4.2.

Lemma B.3. For any V ∈ Rd×r, we have ΠU0
(V) ∈ Ω(U0). Moreover, for any X ∈ Ω(U0), D(X,U0) =

‖X−U0‖F .

Next lemma provides some useful bounds in the proof of Lemma A.2.

Lemma B.4. Under the same assumptions as Theorem 4.2, taking constant c ≤ 84000−1, the following inequalities
hold:

γ ≤ µ̄,

η ≤ 1

12L‖U∗‖22 + 2‖∇L(U∗(U∗)>)‖2
,

C2
R ≥ max

{
C2

ini,
3

µσ2
r(U∗)

(
4L̂‖U∗‖22C2

ini + ε
)
,

2

γ
[(‖∇L(U∗U∗>‖2 + 4L‖U∗‖22)C2

ini + ε]

}
,

CR ≤ min{Cconvex/2, σ
2
r(U∗)/(10‖U∗‖2)}.
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Next lemma gives a bound for strong convexity at U∗ that is tighter than the corresponding result of Lemma A.1.
Lemma B.5. Suppose U satisfy that D(U,U∗) ≤ σ3

r(U∗)/(500‖U∗‖22), then

G(U) ≥ G(U∗) + 0.4µσ2
r(U∗)D2(U,U∗).

Next lemma shows that for any V which is located in the neighborhood of U∗, if we perform one step gradient
descent from V, the function value will decrease sufficiently and the update is still located in the neighborhood of
U∗ with a slightly bigger radius.
Lemma B.6 (Gradient descent decrease). Suppose that D(V,U∗) ≤ 0.1σ2

r(U∗)/‖U∗‖2. Let V′ = V− η∇G(V)
where 0 < η ≤ (12L‖U∗‖22 + 2‖∇L(U∗[U∗]>)‖2)−1, then

G(V′) ≤ G(V)− η

2
‖∇G(V)‖2F ,

and D(V′,U∗) ≤ 2D(V,U∗).

Next lemma shows that for any U which is located in the neighborhood of U∗, the function value gap G(U)−G(U∗)
can be bounded by the distance between U and U∗.

Lemma B.7. Suppose that D(U,U∗) ≤ 0.1σ2
r(U∗)/‖U∗‖2, then

G(U)− G(U∗) ≤ (‖∇L(U∗U∗>)‖2 + 3L‖U∗‖22)D2(U,U∗).

Next lemma gives a bound for ‖∇G(U)‖F .
Lemma B.8. Suppose that D(U,U∗) ≤ 0.1σ2

r(U∗)/‖U∗‖2, then

‖∇G(U)‖F ≤ D(U,U∗)(10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2).

Next lemma provides a upper bound for γ‖U∗ −V′k+1‖2F , which will be used in our proof.
Lemma B.9. Under the same assumptions as Theorem 4.2, it holds that

γ

2
‖U∗ −V′k+1‖2F ≤

γ(1− α)

2
‖U∗ −Vk‖2F + α

(
〈∇G(Yk),U∗ −Yk〉+

γ

2
‖U∗ −Yk‖2F

)
+
α2

2γ
‖∇G(Yk)‖2F − α(1− α)〈∇G(Yk),Vk −Yk〉.

Proof of Lemma A.2. We have D(X0,U
∗) ≤ Cini ≤ CR and D(V0,U

∗) ≤ Cini ≤ CR and X0,V0 ∈ Ω(U0) since
X0 = V0 = U0. We prove Lemma A.2 by induction. Suppose that statement 1 to 4 hold for k− 1. Next we show
that statements 1 to 4 in Lemma A.2 still hold for k.

• We first show that statement 1 holds for k. Let ξ = α/(α+ 1), then by the construction rule of Yk in Algorithm
1, we have Yk = ξVk + (1− ξ)Xk, which indicates that Yk ∈ Ω(U0). Meanwhile, we have

D(Yk,U
∗) ≤ ‖U∗ −Yk‖F

= ‖U∗ −U0 + U0 −Yk‖F
≤ ‖U∗ −U0‖F + ‖U0 −Yk‖F
≤ Cini + ξ‖U0 −Vk‖F + (1− ξ)‖U0 −Xk‖F , (B.1)

where the last inequality holds because of Lemma B.3 and ‖U∗ −U0‖F = D(U0,U
∗) ≤ Cini. Since Vk,Xk ∈

Ω(U0), then we have

‖U0 −Vk‖F = D(U0,Vk) ≤ D(U0,U
∗) +D(U∗,Vk) ≤ Cini + CR, (B.2)

‖U0 −Xk‖F = D(U0,Xk) ≤ D(U0,U
∗) +D(U∗,Xk) ≤ Cini + CR. (B.3)

Substituting (B.2) and (B.3) into (B.1), we have

D(Yk,U
∗) ≤ Cini + ξ(Cini + CR) + (1− ξ)(Cini + CR) ≤ 1.1CR, (B.4)

where the second inequality holds due to Lemma B.4.
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• Next we show statement 4 holds for k + 1. We are going to bound G(Xk+1) and ‖U∗ −Vk+1‖F separately. To
bound G(Xk+1), note that by (B.4) and Lemma B.4 we have D(Yk,U

∗) ≤ 1.1CR ≤ 0.1σ2
r(U∗)/‖U∗‖2. Then

by Lemma B.6, we have

G(Xk+1) = G
(

Yk − η∇G(Yk)

)
≤ G(Yk)− η

2
‖∇G(Yk)‖2F = G(Yk)− α2

2γ
‖∇G(Yk)‖2F , (B.5)

Next, we have

G(Yk) = (1− α)G(Yk) + αG(Yk) ≤ (1− α)(G(Xk) + 〈∇G(Yk),Yk −Xk〉) + αG(Yk), (B.6)

where the second inequality holds due to Lemma A.1 with the condition that D(Yk,U
∗) ≤ 1.1CR ≤

Cconvex,Yk ∈ Ω(U0) by (B.4) and D(Xk,U
∗) ≤ CR ≤ Cconvex,Xk ∈ Ω(U0) by induction assumption.

Substituting (B.6) into (B.5), we have

G(Xk+1) ≤ (1− α)(G(Xk) + 〈∇G(Yk),Yk −Xk〉) + αG(Yk)− α2

2γ
‖∇G(Yk)‖2F . (B.7)

Next we are going to bound ‖U∗ −V′k+1‖F . Due to Lemma B.9, we have

γ

2
‖U∗ −V′k+1‖2F ≤

γ(1− α)

2
‖U∗ −Vk‖2F + α

(
〈∇G(Yk),U∗ −Yk〉+

γ

2
‖U∗ −Yk‖2F

)
+
α2

2γ
‖∇G(Yk)‖2F − α(1− α)〈∇G(Yk),Vk −Yk〉. (B.8)

Adding (B.7) and (B.8) up, we have

G(Xk+1) +
γ

2
‖U∗ −V′k+1‖2F

≤ (1− α)

[
G(Xk) +

γ

2
‖U∗ −Vk‖2F

]
+ α

(
G(Yk) + 〈∇G(Yk),U∗ −Yk〉+

γ

2
‖U∗ −Yk‖2F

)
+ (1− α)

〈
∇G(Yk),Yk −Xk + α(Yk −Vk)

〉
= (1− α)

[
G(Xk) +

γ

2
‖U∗ −Vk‖2F

]
+ α

(
G(Yk) + 〈∇G(Yk),U∗ −Yk〉+

γ

2
‖U∗ −Yk‖2F

)
≤ (1− α)

[
G(Xk) +

γ

2
‖U∗ −Vk‖2F

]
+ αG(U∗), (B.9)

where the equality holds due to the definition of Yk, the second inequality holds due to Lemma A.1 with the
condition that D(Yk,U

∗) ≤ 1.1CR ≤ Cconvex,Yk ∈ Ω(U0) by (B.1) and γ ≤ µ̄. Rearranging (B.9), we have

G(Xk+1)− G(U∗) +
γ

2
‖U∗ −V′k+1‖2F ≤ (1− α)

[
G(Xk)− G(U∗) +

γ

2
‖U∗ −Vk‖2F

]
. (B.10)

We now claim that ‖X−Vk+1‖F ≤ ‖X−V′k+1‖F + εS for any X ∈ Ω(U0). Denote V̄ to be the projection of
V′k+1 to convex set Ω(U0), then we have

‖X−Vk+1‖F ≤ ‖X− V̄‖F + ‖Vk+1 − V̄‖F ≤ ‖X−V′k+1‖F + ‖Vk+1 − V̄‖F ≤ ‖X−V′k+1‖F + εS ,

where the second inequality holds due to the fact that X ∈ Ω(U0), the last inequality holds since ACCPROJ
outputs an εS-approximate projection for each k. Specifically, taking X = U∗, we have

γ

2
‖U∗ −Vk+1‖2F ≤

γ

2
‖U∗ −V′k+1‖2F +

γ

2
ε2S + γ‖U∗ −V′k+1‖F εS

≤ γ

2
‖U∗ −V′k+1‖2F + 2c1/2γσr(U

∗)εS

≤ γ

2
‖U∗ −V′k+1‖2F + αε/2, (B.11)
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where the second inequality holds since εS ≤ c1/2σr(U∗) and

‖U∗ −V′k+1‖F =
∥∥(1− α)Vk + αYk − α/γ∇G(Yk)−U∗

∥∥
F

≤ 5‖U∗‖22/σr(U∗)2 · [(1− α)D(Vk,U
∗) + αD(Yk,U

∗)] + α/γ‖∇G(Yk)‖F
≤ CR[5.5‖U∗‖22/σr(U∗)2 + α/γ · (10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2)]

≤ c1/2σr(U∗), (B.12)

where the second inequality follows by Lemma B.1, Lemma B.8 and the facts D(Vk,U
∗), D(Yk,U

∗) ≤ 1.1CR,
the last inequality holds due to Lemma B.4.

Substituting (B.11) into (B.10), we have

G(Xk+1)− G(U∗) +
γ

2
‖U∗ −Vk+1‖2F

≤ (1− α)

[
G(Xk)− G(U∗) +

γ

2
‖U∗ −Vk‖2F

]
+ αε/2, (B.13)

which is Φk+1 ≤ (1− α)Φk + αε/2.

• Next we show statement 3 holds for k + 1. By the construction rule of Xk+1 in Algorithm 1 and Lemma B.3,
clearly we have Xk+1 ∈ Ω(U0). To show D(Xk+1,U

∗) ≤ CR, first by (B.13), we have

G(Xk+1)− G(U∗) +
γ

2
‖U∗ −Vk+1‖2F ≤ G(X0)− G(U∗) +

γ

2
‖U∗ −V0‖2F + ε

= G(U0)− G(U∗) +
γ

2
‖U∗ −U0‖2F + ε

≤ (‖∇L(U∗U∗>)‖2 + 4L‖U∗‖22)‖U∗ −U0‖2F + ε

≤ (‖∇L(U∗U∗>)‖2 + 4L‖U∗‖22)C2
ini + ε, (B.14)

where the second inequality holds due to Lemma B.7 with ‖U∗ − U0‖F ≤ Cini ≤ 0.1σ2
r(U

∗)/‖U∗‖2 and
γ ≤ L‖U∗‖22. For simplicity, we denote X′k+1 = Yk − η∇G(Yk). Then we also have

D(Xk+1,U
∗) = D(X′k+1,U

∗) ≤ 2D(Yk,U
∗) ≤ 2.2CR ≤ σ3

r(U∗)/(500‖U∗‖22), (B.15)

where the first inequality holds by Lemma B.6. Then we have

D2(Xk+1,U
∗) ≤ 3

µσ2
r(U∗)

(G(Xk+1)− G(U∗))

≤ 3

µσ2
r(U∗)

[(‖∇L(U∗U∗>)‖2 + 4L‖U∗‖22)C2
ini + ε]

≤ C2
R,

where the first inequality holds due to Lemma B.5 with condition (B.15), the second inequality holds due to
(B.14) and the last inequality holds due to Lemma B.4.

• Finally we show that statement 2 holds for k + 1. Vk+1 ∈ Ω(U0) because of the construction rule of Vk+1 in
Algorithm 1. To prove D(Vk+1,U

∗) ≤ CR, we have

D2(Vk+1,U
∗) ≤ ‖U∗ −Vk+1‖2F ≤

2

γ
[(‖∇L(U∗U∗>)‖2 + 4L‖U∗‖22)C2

ini + ε] ≤ C2
R,

where the second inequality holds due to (B.14) and the last inequality holds due to Lemma B.4. Thus, we
have D(Xk+1,U

∗) ≤ CR and D(Vk+1,U
∗) ≤ CR.

With induction, we conclude that the results of Lemma A.2 hold.
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C Proofs of Lemmas in Section B

C.1 Proof of Lemma B.1

We have the following lemma:

Lemma C.1 (Li (1995)). Let A ∈ Rr×r be of full rank and [Q,H] be its unique polar decomposition, A + ∆A
be of full rank and (Q + ∆Q)(H + ∆H) be its unique polar decomposition, then ‖∆Q‖F ≤ 2

σr(A)‖∆A‖F .

Proof of Lemma B.1. Since D(U,U∗) ≤ 0.1σr(U
∗>U∗)/‖U∗‖2, D(V,U∗) ≤ 0.1σr(U

∗>U∗)/‖U∗‖2 and
D(U0,U

∗) ≤ 0.1σr(U
∗>U∗)/‖U∗‖2, then by Lemma A.4, we have

σr(U
>U0) ≥ 0.7σ2

r(U∗), σr(V
>U0) ≥ 0.7σ2

r(U∗), σr(U
>V) ≥ 0.7σ2

r(U∗),

which implies that U>V, U>U0 and V>U0 are of full rank. Note that ΠU0(U) = ΠU0(ΠV(U)). Next we are
going to prove that

‖ΠU0(ΠV(U))−ΠU0(V)‖F ≤ D(U,V).

First we have

ΠU0(V) = VP1,ΠU0(ΠV(U)) = ΠV(U)P2,

where P1 is the orthogonal matrix of the unique polar decomposition of V>U0, P2 is the orthogonal matrix of
the unique polar decomposition of (ΠV(U))>U0

6. Then by Lemma C.1, we have

‖P2 −P1‖F ≤
2

σr(V>U0)
‖(ΠV(U)−V)>U0‖F ≤

2‖U0‖2
σr(V>U0)

D(U,V). (C.1)

Thus, we have

‖ΠU0(ΠV(U))−ΠU0(V)‖F = ‖ΠV(U)P2 −VP1‖F
= ‖ΠV(U)P2 −VP2 + VP2 −VP1‖F
≤ D(U,V) + ‖V‖2‖P2 −P1‖F

≤ D(U,V)

(
1 +

2‖V‖2‖U0‖2
σr(V>U0)

)
.

Since ‖ΠU∗(V) − U∗‖F ≤ 0.1σr(U
∗>U∗)/‖U∗‖2 and ‖ΠU0

(U∗) − U0‖F ≤ 0.1σr(U
∗>U∗)/‖U∗‖2, then by

Lemma A.4, we have

‖U0‖2 ≤ 1.1‖U∗‖2, ‖V‖2 ≤ 1.1‖U∗‖2, σr(V>U0) ≥ 0.7σr(U
∗)2.

Thus, we have

‖ΠU0
(ΠV(U))−ΠU0

(V)‖F ≤
(

1 +
4‖U∗‖22
σr(U∗)2

)
D(U,V) ≤ 5‖U∗‖22

σr(U∗)2
D(U,V).

Since U,V ∈ Ω(U0), then by Lemma B.3 we have ΠU0
(ΠV(U)) = U and ΠU0

(V) = V. Thus we have

‖U−V‖F ≤
5‖U∗‖22
σr(U∗)2

D(U,V).

6In fact, for any matrix X ∈ Rr×r, suppose [Q,H] to be the polar decomposition of X where Q is the unitary matrix
and H is the positive-semidifinite matrix, and [A,D,B] to be the SVD of X. We can verify that Q = AB>.
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C.2 Proof of Lemma B.2

To prove Lemma B.2, we need the following lemmas:

Lemma C.2 (Tu et al. (2016)). For any two matrices U,V ∈ Rd×r, it holds that ‖UU> − VV>‖2F ≥
0.8σ2

r(V)D2(U,V).

Lemma C.3. Suppose that D(U,U∗) ≤ σ3
r(U∗)/(500‖U∗‖22) and D(V,U∗) ≤ σ3

r(U∗)/(500‖U∗‖22), then

|〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉|

≤ 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F .

Proof of Lemma B.2. We have

G(U)− G(V) = L(UU>)− L(VV>) ≥ 〈∇L(VV>),UU> −VV>〉+
µ

2
‖UU> −VV>‖2F , (C.2)

where the inequality holds due to the µ-convexity of L. The term 〈∇L(VV>),UU> −VV>〉 has the following
equivalent formula:

〈∇L(VV>),UU> −VV>〉
= 〈∇L(VV>), [V + (U−V)][V + (U−V)]> −VV>〉
= 〈∇L(VV>), (U−V)V> + V(U−V)> + (U−V)(U−V)>〉
= 〈[∇L(VV>) +∇L(VV>)>]V,U−V〉+ 〈∇L(VV>), (U−V)(U−V)>〉

= 〈[∇L(VV>) +∇L(VV>)>]V,U−V〉+
1

2
〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉

= 〈∇G(V),U−V〉+
1

2
〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉. (C.3)

Substituting (C.3) into (C.2), we have

G(U)− G(V) ≥ 〈∇G(V),U−V〉+
1

2
〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉

+
µ

2
‖UU> −VV>‖2F . (C.4)

Now, by Lemma C.2, we have

µ

2
‖UU> −VV>‖2F ≥ 0.4µσ2

r(V)D2(U,V). (C.5)

Since we have D(U,U∗) ≤ σ3
r(U∗)/(500‖U∗‖22) and D(V,U∗) ≤ σ3

r(U∗)/(500‖U∗‖22), then by Lemma C.3, we
have

〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉

≥ −21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F , (C.6)

Substituting (C.5) and (C.6) into (C.4), we have

G(U)− G(V) ≥ 〈∇G(V),U−V〉 − 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F

+ 0.4µσ2
r(V)D2(U,V), (C.7)

which completes the proof.
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C.3 Proof of Lemma B.3

Proof of Lemma B.3. By the definition of ΠU0
(V), we consider

R = argmin
P∈Rr×r,P>P=I

‖VP−U0‖F = argmin
P∈Rr×r,P>P=I

‖VP−U0‖F = argmax
P∈Rr×r,P>P=I

trace(P>V>U0).

Suppose that V>U0 has singular value decomposition V>U0 = AΣB>. Then we have

R = argmax
P∈Rr×r,P>P=I

trace(P>AΣB>) = argmax
P∈Rr×r,P>P=I

trace(B>P>AΣ) = AB>.

Therefore

[ΠU0
(V)]>U0 = BA>V>U0 = BA>AΣB> = BΣB> � 0.

This completes the proof that ΠU0(V) ∈ Ω(U0). For any X ∈ Ω(U0), it follows that X = ΠU0(X), and therefore
D(X,U0) = ‖ΠU0

(X)−U0‖F = ‖X−U0‖F .

C.4 Proof of Lemma B.4

Proof of Lemma B.4. First, we have

γ = c
µσ6

r(U0)

‖U0‖42
≤ µσ6

r(U∗)

200‖U∗‖42
= µ̄,

where the inequality holds due to Lemma A.4. Then we have the following inequalities:∥∥∇L(U0U
>
0 )−∇L(U∗(U∗)>)

∥∥
2

≤
∥∥∇L(U0U

>
0 )−∇L(U∗(U∗)>)

∥∥
F

≤ L
∥∥U0U

>
0 −U∗(U∗)>

∥∥
F

≤ L(‖U0 −U∗‖2F + ‖U0 −U∗‖F ‖U∗‖2)

≤ 2L‖U∗‖22, (C.8)

where the first inequality holds due to the fact ‖ · ‖2 ≤ ‖ · ‖F , the second inequality holds due to the restricted
smoothness assumption on L, the third inequality holds due to triangle inequality, the fourth inequality holds due
to the fact that ‖U0 −U∗‖F = Cini ≤ ‖U∗‖2. Thus, we have

η =
c

L‖U0‖22 + ‖∇L(U0U>0 )‖2
≤ 1

12L‖U∗‖22 + 2‖∇L(U∗(U∗)>)‖2
,

where the inequality holds due to Lemma A.4 and (C.8). Next, we have

CR = c
µσ7

r(U∗)

L‖U∗‖62 + ‖U∗‖42‖∇L(U∗U∗>)‖2

≤ µσ7
r(U∗)

84000L‖U∗‖62 + 20000‖U∗‖42‖∇L(U∗U∗>)‖2
= Cconvex/2,

and

CR ≤ c
µσ7

r(U∗)

L‖U∗‖62
≤ σ2

r(U∗)

10‖U∗‖2
,

since c ≤ 84000−1. Finally, we have

Cini = c2
µ3/2σ10

r (U∗)

L̂3/2‖U∗‖92
≤ cµσ

7
r(U∗)

L̂‖U∗‖62
= CR,
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since µ ≤ L and σr(U∗) ≤ ‖U∗‖2. We also have

C2
R = c−2 L̂‖U∗‖22C2

ini
µσ2

r(U∗)
· ‖U

∗‖42
σ4
r(U∗)

≥ c−2 L̂‖U∗‖22C2
ini

µσ2
r(U∗)

≥ 3

µσ2
r(U∗)

(
4L̂‖U∗‖22C2

ini + ε
)

≥ 3

µσ2
r(U∗)

[(‖∇L(U∗U∗>)‖2 + 4L‖U∗‖22)C2
ini + ε],

where the first inequality holds since ‖U∗‖2 ≥ σr(U∗), the second inequality holds due to c ≤ 84000−1 and the
assumption of ε. We also have

C2
R = c−1L̂‖U∗‖22C2

ini
‖U∗‖42

cµσ6
r(U∗)

≥ c−1

γ
L̂‖U∗‖22C2

ini

≥ 2

γ

(
4L̂‖U∗‖22C2

ini + ε
)

≥ 2

γ
[(‖∇L(U∗U∗>‖2 + 4L‖U∗‖22)C2

ini + ε],

where the first inequality holds due to c ≤ 84000−1 and Lemma A.4, the second inequality holds due to the
assumption of ε, the third inequality holds due to the definition of L̂. That completes our proof.

C.5 Proof of Lemma B.5

Proof of Lemma B.5. By Lemma B.2, we have

G(U)− G(V) ≥ 〈∇G(V),U−V〉 − 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

D(V,U∗)‖U−V‖2F

+ 0.4µσ2
r(V)D2(U,V). (C.9)

Note that ∇G(U∗) = 0 and D(U∗,U∗) = 0. Taking V = U∗ in (C.9), we have

G(U)− G(U∗) ≥ 0.4µσ2
r(U∗)D(U,U∗)2,

This finishes the proof.

C.6 Proof of Lemma B.6

Lemma C.4 (Li and Lin (2017)). For any U and V, we have

G(U) ≤ G(V) + 〈∇G(V),U−V〉+
2‖∇L(VV>)‖2 + L(‖V‖2 + ‖U‖2)2

2
‖U−V‖2F . (C.10)

Proof of Lemma B.6. Let U = V − η∇G(V), then by Lemma C.4, we have

G(V − η∇G(V))

≤ G(V)− η‖∇G(V)‖2F +
2‖∇L(VV>)‖2 + L(‖V‖2 + ‖V − η∇G(V)‖2)2

2
η2‖∇G(V)‖2F

≤ G(V)− η‖∇G(V)‖2F +
2‖∇L(VV>)‖2 + L(2‖V‖2 + η‖∇G(V)‖2)2

2
η2‖∇G(V)‖2F . (C.11)
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Next we bound ‖∇L(VV>)‖2, ‖V‖2 and η‖∇G(V)‖2 separately. By Lemma A.4, we have ‖V‖2 ≤ 1.1‖U∗‖2. By
Lemma B.8, we have

η‖∇G(V)‖2 ≤ ηD(V,U∗)(10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2) ≤ D(V,U∗) ≤ 0.1‖U∗‖2, (C.12)

where the second inequality holds since η(10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2) < 1. To bound ‖∇L(VV>)‖2, we have

‖∇L(VV>)‖2 ≤ ‖∇L(VV>)−∇L(ΠV(U∗)[ΠV(U∗)]>)‖2 + ‖∇L(U∗U∗>)‖2
≤ L‖VV> −ΠV(U∗)[ΠV(U∗)]>‖F + ‖∇L(U∗U∗>)‖2
≤ L‖V(V −ΠV(U∗))>‖F + L‖(V −ΠV(U∗))[ΠV(U∗)]>‖F + ‖∇L(U∗U∗>)‖2
≤ L(‖V‖2 + ‖U∗‖2)D(V,U∗) + ‖∇L(U∗U∗>)‖2
≤ 0.21L‖U∗‖22 + ‖∇L(U∗U∗>)‖2, (C.13)

where the second inequality holds due to the L-smoothness of L, the fourth inequality holds due to D(V,U∗) =
‖V − ΠV(U∗)‖F , the last inequality holds due to (C.12) and D(V,U∗) ≤ 0.1σ2

r(U
∗)/‖U∗‖2 ≤ 0.1‖U∗‖2.

Substituting (C.12) and (C.13) into (C.11), we have

G(V − η∇G(V))

≤ G(V)− η‖∇G(V)‖2F

+
1

2
η2‖∇G(V)‖2F · (0.42L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2 + L(2.2‖U∗‖2 + 0.1‖U∗‖2)2)

≤ G(V)− ‖∇G(V)‖2F [η − η2(6L‖U∗‖22 + ‖∇L(U∗U∗>)‖2)]

= G(V)− η‖∇G(V)‖2F /2, (C.14)

where the last equality holds because of the definition of η. Finally, by (C.12), we have

D(V′,U∗) ≤ D(V,U∗) + ‖η∇G(V)‖F ≤ D(V,U∗) + ‖η∇G(V)‖2 ≤ 2D(V,U∗),

where the second inequality holds due to ‖η∇G(V)‖2 ≤ D(V,U∗) from (C.12). This completes the proof.

C.7 Proof of Lemma B.7

Proof of Lemma B.7. Let U′ = ΠU∗(U) and V = U∗, then by Lemma C.4, we have

G(U)− G(U∗) ≤ 2‖∇L(U∗U∗>)‖2 + L(‖U∗‖2 + ‖U′‖2)2

2
‖U′ −U∗‖2F

≤ (‖∇L(U∗U∗>) + 3L‖U∗‖22)D2(U,U∗),

where the second inequality follows by Lemmas B.3 and A.4. This completes the proof.
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C.8 Proof of Lemma B.8

Proof of Lemma B.8. We have

‖∇G(V)‖F
= ‖∇G(V)−∇G(ΠV(U∗))‖F
= ‖(∇L(VV>) +∇L(VV>)>)V

− (∇L(ΠV(U∗)ΠV(U∗)>) +∇L(ΠV(U∗)ΠV(U∗)>)>)ΠV(U∗)‖F
≤ ‖[∇L(VV>) +∇L(VV>)> −∇L(ΠV(U∗)ΠV(U∗)>)−∇L(ΠV(U∗)ΠV(U∗)>)>]V‖F

+ ‖(∇L(ΠV(U∗)ΠV(U∗)>) +∇L(ΠV(U∗)ΠV(U∗)>)>)(V −ΠV(U∗))‖F
≤ 4L‖VV> −ΠV(U∗)ΠV(U∗)>‖F ‖V‖2 + 2‖∇L(ΠV(U∗)ΠV(U∗)>)‖2‖V −ΠV(U∗)‖F
≤ 4L‖V(V −U∗)>‖F ‖V‖2 + 4L‖(V −U∗)U∗>‖F ‖V‖2

+ 2‖∇L(ΠV(U∗)ΠV(U∗)>)‖2‖V −ΠV(U∗)‖F
≤ 4L(‖U∗‖2 + ‖V‖2)‖V‖2‖V −ΠV(U∗)‖F + 2‖∇L(ΠV(U∗)ΠV(U∗)>)‖2‖V −ΠV(U∗)‖F
≤ D(V,U∗)(10L‖U∗‖22 + 2‖∇L(ΠV(U∗)ΠV(U∗)>)‖2)

= D(V,U∗)(10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2),

where the first equality holds due to ∇G(ΠV(U∗)) = 0, the second inequality holds due to the L-smoothness of
L, the last inequality holds due to Lemma A.4 with the condition that D(V,U∗) ≤ 0.1σ2

r(U∗)/‖U∗‖2.

C.9 Proof of Lemma B.9

Proof of Lemma B.9. We have

γ

2
‖U∗ −V′k+1‖2F

=
γ

2

∥∥∥∥U∗ − (1− α)Vk − αYk +
α

γ
∇G(Yk)

∥∥∥∥2

F

=
γ

2

∥∥∥∥(U∗ −Vk) + α(Vk −Yk) +
α

γ
∇G(Yk)

∥∥∥∥2

F

=
γ

2
‖U∗ −Vk‖2F +

α2γ

2
‖Vk −Yk‖2F +

α2

2γ
‖∇G(Yk)‖2F + αγ〈U∗ −Vk,Vk −Yk〉

+ α〈U∗ −Vk,∇G(Yk)〉+ α2〈Vk −Yk,∇G(Yk)〉

=
γ

2
‖U∗ −Vk‖2F +

α2γ

2
‖Vk −Yk‖2F +

α2

2γ
‖∇G(Yk)‖2F + αγ〈U∗ −Vk,Vk −Yk〉

+ α〈U∗ −Yk,∇G(Yk)〉 − α(1− α)〈Vk −Yk,∇G(Yk)〉. (C.15)

where the first equality follows by the definition of V′k+1 in (3.4), the third equality is by expanding the square,
and the last equality is obtained by rearranging terms. Furthermore, we have

γ

2
‖U∗ −Vk‖2F +

α2γ

2
‖Vk −Yk‖2F + αγ〈U∗ −Vk,Vk −Yk〉

=
γ(1− α) + αγ

2
‖U∗ −Vk‖2F +

α2γ

2
‖Vk −Yk‖2F + αγ〈U∗ −Vk,Vk −Yk〉

=
γ(1− α)

2
‖U∗ −Vk‖2F −

α(1− α)γ

2
‖Vk −Yk‖2F

+
αγ

2

[
‖U∗ −Vk‖2F + ‖Vk −Yk‖2F + 2〈U∗ −Vk,Vk −Yk〉

]
=
γ(1− α)

2
‖U∗ −Vk‖2F −

α(1− α)γ

2
‖Vk −Yk‖2F +

αγ

2
‖U∗ −Yk‖2F . (C.16)
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Substituting (C.16) into (C.15) and rearranging it, we have

γ

2
‖U∗ −V′k+1‖2F ≤

γ(1− α)

2
‖U∗ −Vk‖2F + α

(
〈∇G(Yk),U∗ −Yk〉+

γ

2
‖U∗ −Yk‖2F

)
+
α2

2γ
‖∇G(Yk)‖2F − α(1− α)〈∇G(Yk),Vk −Yk〉.

The conclusion holds.

C.10 Proof of Lemma A.4

Proof of Lemma A.4. Since that D(U,U∗) ≤ 0.1σ2
r(U∗)/‖U∗‖2 ≤ 0.1σr(U

∗), then we have (A.1) and (A.2) by
the fact that ‖A‖2 −‖B‖F ≤ ‖A + B‖2 ≤ ‖A‖2 + ‖B‖F and σr(A)−‖B‖F ≤ σr(A + B) ≤ σr(A) + ‖B‖F with
A = U∗ and B = ΠU∗(U)−U∗. To prove (A.3), note that

‖ΠU∗(U)>ΠU∗(V)−U∗>U∗‖F = ‖ΠU∗(U)>ΠU∗(V)−ΠU∗(U)>U∗ + ΠU∗(U)>U∗ −U∗>U∗‖F
≤ ‖ΠU∗(U)‖2‖ΠU∗(V)−U∗‖F + ‖U∗‖2‖ΠU∗(U)−U∗‖F
= ‖ΠU∗(U)‖2D(V,U∗) + ‖U∗‖2D(U,U∗)

≤ 2.1‖U∗‖2(0.1σr(U
∗>U∗)/‖U∗‖2)

≤ 0.3σr(U
∗>U∗),

where the equality holds due to D(V,U∗) = ‖ΠU∗(V) −U∗‖F and D(U,U∗) = ‖ΠU∗(U) −U∗‖F . Thus, we
have 0.7σr(U

∗>U∗) ≤ σr(ΠU∗(U)>ΠU∗(V)) ≤ 1.3σr(U
∗>U∗), which implies (A.3).

D Proofs of Lemmas in Section C

D.1 Proof of Lemma C.3

We need the following lemma:
Lemma D.1 (Li and Lin (2017)). Suppose that Z ∈ Rd×r is of full rank, ‖U−Z‖F ≤ 0.01σr(Z) and ‖V−Z‖F ≤
0.01σr(Z), then

|〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉| ≤ 2.08
‖∇G(V)‖2
σr(Z)

‖U−V‖2F , (D.1)

Proof of Lemma C.3. We have D(U,U∗) ≤ σ3
r(U

∗)/(500‖U∗‖22) ≤ 0.1σ2
r(U

∗)/‖U∗‖2 and D(V,U∗) ≤
σ3
r(U∗)/(500‖U∗‖22) ≤ 0.1σ2

r(U∗)/‖U∗‖2 with U,V,U∗ ∈ Ω(U0). Then by Lemma B.1, we have

‖U−U∗‖F ≤
5‖U∗‖22
σr(U∗)2

D(U,U∗) ≤ 0.01σr(U
∗),

‖V −U∗‖F ≤
5‖U∗‖22
σr(U∗)2

D(V,U∗) ≤ 0.01σr(U
∗).

Thus, by Lemma D.1 with Z = U∗, we have

|〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉| ≤ 2.08
‖∇G(V)‖2
σr(U∗)

‖U−V‖2F . (D.2)

By Lemma B.8, we have

‖∇G(V)‖2 ≤ ‖V −ΠV(U∗)‖F (10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2). (D.3)

Substituting (D.3) into (D.2), we have

|〈∇L(VV>) +∇L(VV>)>, (U−V)(U−V)>〉|

≤ 2.08 · 10L‖U∗‖22 + 2‖∇L(U∗U∗>)‖2
σr(U∗)

·D(V,U∗)‖U−V‖2F

≤ 21L‖U∗‖22 + 5‖∇L(U∗U∗>)‖2
σr(U∗)

·D(V,U∗)‖U−V‖2F , (D.4)

which completes the proof.
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Figure 2: Comparison of FGD, AGD and AFGD for matrix regression. Plots of squared error ‖UU> −M∗‖2F
versus number of iterations ((a) and (c)) and CPU time ((b) and (d)).

E Additional Experiments

E.1 Matrix Regression

In matrix regression, we aim to estimate a low-rank positive semidefinite matrix M∗ ∈ Rd×d from a set of
measurements y = A(M∗) ∈ Rn, where A is a linear operator defined as A(M) = (〈A1,M〉, . . . , 〈An,M〉)>.
Then matrix regression is formulated as:

min
M�0, rank(M)≤r

1

2
‖A(M)− y‖22.

By using the idea of matrix factorization, we rewrite M as M = UU> and solve the following low-rank matrix
factorization problem:

min
U∈Rd×r

1

2
‖A(UU>)− y‖22.

We consider the following two settings: d = 100, r = 3 and d = 200, r = 10. We set the number of measurements
n = 10dr. We first generate U∗ ∈ Rd×r from standard Gaussian distribution, then we generate the unknown
matrix M∗ = U∗(U∗)>. Next, we generate noiseless measurements based on the observation model yi = 〈Ai,M

∗〉,
where each entry of Ai follows i.i.d. standard Gaussian distribution. All algorithms use the same initialization
method proposed in Bhojanapalli et al. (2015) (See Appendix F) for more details. All results are averaged over 20
trials. To illustrate the linear convergence rate, we report the squared error ‖UU> −M∗‖2F in logarithmic scale.
We compare different algorithms in terms of the squared error with respect to number of iterations and CPU
time, and plot them in Figure 2. The results for d = 100, r = 3 are presented in Figures 2(a) and 2(b), while the
results for d = 200, r = 10 are shown in Figures 2(c) and 2(d).

It can be seen that AFGD converges faster than FGD in both number of iterations and CPU time, which validates
our theory. We also observe that vanilla AGD performs almost the same as AFGD in both settings. This suggests
while theoretically not justified, vanilla AGD might still have an accelerated convergence rate for solving (1.2).
This leaves an open question that whether and how we can prove the accelerated convergence rate of vanilla
AGD for low-rank matrix factorization. In sharp contrast, our proposed AFGD enjoys an accelerated convergence
rate both in theory and practice, and its projection step (solved by Algorithm 2) does not introduce significant
computational overhead.

We plot the function value gap G(Xk) − G∗ in logarithmic scale v.s. iteration number in Figure 3 for AFGD
and FGD. We also highlight the slopes for different lines in the plot. For Figure 3(a), by calculation we have
L/µ = 2.793. The ratio between the slopes of AFGD line and FGD line is 0.6/0.34 ≈ 1.73 ≈

√
2.793, which

validates that the acceleration is indeed by a factor of
√
L/µ. Similar calculation for Figure 3(b) also validates

the
√
L/µ acceleration. This verifies our theoretical result, since under our experimental setup we expect

∇L(U∗(U∗)>) = 0 and therefore L̂ = L.

E.2 Matrix Completion

We have additional experiments for matrix completion where d = 5000, r = 5. We report the squared error
‖UU> −M∗‖2F in logarithmic scale and plot them in Figure 4. Figures 4(a) and 4(b) show the convergence
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Figure 3: Plots of logarithmic function value gap v.s. iteration number for matrix regression with slope calculation.

results when T = 100. We can see that AGD and AFGD still outperform FGD. We also compare with Adam
(Kingma and Ba, 2014) and L-BFGS (Byrd et al., 1994) in Figures 4(c) and 4(d). For Adam, we set its parameters
β1 = 0.9, β2 = 0.999, η = 0.001, as suggested by Kingma and Ba (2014). For L-BFGS, we use the recent 10
iterates and gradients to construct an approximate Hessian. It can be seen that L-BFGS performs similar to
FGD, while Adam performs the worst. Figures 4(e) - 4(h) show the convergence results for AFGD with different
choices of η and γ. It can be seen that the performance of AFGD is sensitive on the choice of η and γ, which is
the same as Nesterov’s AGD for standard convex optimization.
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Figure 4: Plots of squared error ‖UU> −M∗‖2F v.s. iteration number and CPU time for matrix completion.

F Initialization Method
For the self-containedness, we present the initialization method used in our experiments in Algorithm 3, which is
originally proposed in Bhojanapalli et al. (2015). Here L is the loss function defined in (1.1), L is the smoothness
parameter and P+(·) denotes the projection of a given matrix onto the PSD cone.
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Algorithm 3 Initialization
Require: Function L, smoothness parameter L.
1: M0 = 0
2: M+ = L−1P+(−∇L(M0))
Ensure: M+


	Proof of Main Results
	Proof of Proposition 3.1
	Proof of Theorem 4.2
	Proof of Corollary 4.3
	Proof of Theorem 4.6

	Proofs of Lemmas in Appendix A
	Proof of Lemma A.1
	Proof of Lemma A.2

	Proofs of Lemmas in Section B
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Lemma B.3
	Proof of Lemma B.4
	Proof of Lemma B.5
	Proof of Lemma B.6
	Proof of Lemma B.7
	Proof of Lemma B.8
	Proof of Lemma B.9
	Proof of Lemma A.4

	Proofs of Lemmas in Section C
	Proof of Lemma C.3

	Additional Experiments
	Matrix Regression
	Matrix Completion

	Initialization Method

