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Abstract

We study the low-rank matrix estimation
problem, where the objective function L(M)
is defined over the space of positive semidefi-
nite matrices with rank less than or equal to
r. A fast approach to solve this problem is
matrix factorization, which reparameterizes
M as the product of two smaller matrix such
that M = UU> and then performs gradient
descent on U directly, a.k.a., factored gra-
dient descent. Since the resulting problem
is nonconvex, whether Nesterov’s accelera-
tion scheme can be adapted to it remains a
long-standing question. In this paper, we an-
swer this question affirmatively by proposing
a novel and practical accelerated factored gra-
dient descent method motivated by Nesterov’s
accelerated gradient descent. The proposed
method enjoys better iteration complexity and
computational complexity than the state-of-
the-art algorithms in a wide regime. The key
idea of our algorithm is to restrict all its iter-
ates onto a special convex set, which enables
the acceleration. Experimental results demon-
strate the faster convergence of our algorithm
and corroborate our theory.

1 Introduction
We consider the following low-rank matrix estimation
problem:

min
M∈Rd×d

L(M), subject to M � 0, rank(M) ≤ r,

(1.1)

where we denote by M � 0 if matrix M is positive
semidefinite (PSD), and L : Rd×d → R is a L-smooth
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and µ-strongly convex function over positive semi-
definite matrices with rank less than or equal to r for
some r > 0. For the sake of simplicity, we consider a
symmetric matrix and impose the positive semidefinite
constraint on M 1. Let M∗ be the global minimizer
to the problem (1.1). We are mostly interested in the
case where the rank of the matrix is much smaller
than the dimension (r � d) and the condition number
(L/µ) of objective function L(·) is large (L/µ � 1).
Such a low-rank matrix estimation problem in (1.1) is
very generic, which includes matrix completion (Sre-
bro et al., 2004; Candès and Tao, 2010) and matrix
sensing (Recht et al., 2010) as special cases, and has
wide applications such as collaborative filtering (Srebro
et al., 2004) and multi-label learning (Cabral et al.,
2011). Significant progress has been made to solve this
problem using nuclear norm based convex relaxation
(Srebro et al., 2004; Candès and Tao, 2010; Recht et al.,
2010; Negahban and Wainwright, 2011, 2012; Gui et al.,
2016), which involves a singular value decomposition
(SVD) at each iteration and suffers from high compu-
tational complexity (i.e., O(d3)) per iteration. Such a
computational cost is prohibitively expensive when the
dimension d is large, which hinders the application of
these methods for large scale problems.

In order to overcome the aforementioned computa-
tional burden, a line of research (Bhojanapalli et al.,
2015; Burer and Monteiro, 2003; Chen and Wainwright,
2015) uses Burer and Monteiro factorization/matrix
factorization to reparameterize the matrix space and
use gradient descent (GD) to solve the transformed
problem. More specifically, by rewriting M as UU>

where U is a d × r matrix, we obtain the following
optimization problem

min
U∈Rd×r

G(U) := L(UU>). (1.2)

Note that the positive semidefinite constraint and the
low-rank constraint on M are automatically satisfied

1Our algorithm and theory can be easily extended to op-
timization over rectangle matrices with low rank constraint.
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due to the reparameterization. The optimization prob-
lem in (1.2) can be solved by alternating minimizatoin
(Jain et al., 2013; Hardt, 2014; Hardt and Price, 2014)
or gradient descent (Zhao et al., 2015; Chen and Wain-
wright, 2015; Sun and Luo, 2015; Zheng and Lafferty,
2015, 2016; Tu et al., 2016; Bhojanapalli et al., 2015;
Park et al., 2016; Wang et al., 2017b; Zhang et al.,
2018) over U as follows

Ut+1 = Ut − η∇G(Ut), (1.3)

where η > 0 is the step size. The gradient descent
update in (1.3) is also called factored gradient de-
scent (FGD) (Bhojanapalli et al., 2015) or Procrustes
flow (Tu et al., 2016). In contrast to (1.1), (1.2) is
a nonconvex optimization problem although L(·) is
convex, which poses a big challenge to analyze the
convergence of (1.3). Fortunately, a recent series
of work (Zhao et al., 2015; Chen and Wainwright,
2015; Sun and Luo, 2015; Zheng and Lafferty, 2015,
2016; Tu et al., 2016; Bhojanapalli et al., 2015; Park
et al., 2016; Wang et al., 2017a) has shown that with
good initialization U0 that is close enough to the op-
timal solution U∗ where M∗ = U∗(U∗)>, (1.3) is
able to converge to the ε-optimal solution to (1.2) 2

with O(‖U∗‖22/σ2
r(U∗)L̂/µ log(1/ε)) iteration complex-

ity3, where σr(·) denotes the r-th singular value, and
L̂ = L+ ‖∇L(U∗(U∗)>)‖2/‖U∗‖22. Such locally linear
rate of convergence suggests that despite the nonconvex
nature in (1.2), gradient descent methods still locally
behaves like in the strongly convex setting.

It is well-known that for any L-smooth and µ-strongly
convex function, Nesterov’s accelerated gradient de-
scent (AGD) Nesterov (1983, 1988, 2004) can achieve
an accelerated rate and is the optimal first-order op-
timization algorithm. In specific, by introducing an
“estimate sequence” technique, Nesterov (2004) showed
that AGD can achieve an ε-optimal solution within
O(
√
L/µ log(1/ε)) iterations, which outperforms the

iteration complexity of GD by a factor of
√
L/µ. This

result matches the lower bound of the iteration com-
plexity for first-order methods (Nesterov, 2004), which
suggests that AGD is optimal in the first-order opti-
mization setting. Given the success of AGD for smooth
and strongly convex functions, a natural question is
whether we can adapt AGD to the nonconvex low-rank
matrix factorization problem (1.2) and achieve faster
convergence rate than that of FGD. Such a research
question is highly challenging due to the following two
main reasons:

2We say a point U is an ε-optimal solution to G(U), if
G(U)−minU G(U) ≤ ε.

3We define iteration complexity as the total number
of iterations an algorithm needs to execute to achieve an
ε-optimal solution to minU G(U).

• It is well known that strong convexity is required
for AGD to achieve an accelerated linear rate of
convergence (Nesterov, 1988). However, although
L(M) is strongly convex in M, strong convexity
does not hold for the transformed problem G(U)
with respect to U.

• The linear convergence can be proved for GD in (1.3)
since GD ensures monotonic decreasing4 on G(U),
which guarantees that all iterates generated by (1.3)
locate in a small neighborhood of optimal solution
U∗. For AGD, such monotonic decreasing property
does not even hold for strongly convex and smooth
function, thus direct application of AGD to (1.2)
cannot guarantee that all iterates stay inside a small
neighborhood of optimal solution.

In this paper, we overcome the above challenges, and
propose a new algorithm namely accelerated factored
gradient descent (AFGD). The key idea of our algo-
rithm is to restrict all its iterates on a special con-
vex set to achieve accelerated convergence. We prove
that AFGD enjoys a locally accelerated linear rate of
convergence to optimal solution to (1.2). Our main
contributions can be summarized as follows:

1. We propose a simple and practical algorithm AFGD,
which can be seen as the adaptation of Nesterov’s
AGD (Nesterov, 2004) to low-rank matrix factor-
ization problem (1.2). Our algorithm only requires
basic gradient computations, which is computation-
ally very efficient.

2. We analyze the local convergence of AFGD. Under
the condition that L is L-restricted smooth and µ-
restricted strongly convex (See Definitions 2.1 and
2.2), we prove that AFGD achieves an ε-optimal

solution after O(‖U∗‖32/σ3
r(U

∗)

√
L̂/µ log(1/ε)) it-

erations, which outperforms that of FGD (Bhojana-
palli et al., 2015) for a wide regime of the problem
parameters.

1.1 Comparison with Existing Results

In literature, the most related work to ours is Li and
Lin (2017), which also proposes an accelerated gradient
descent with alternating constraint (AGD-AC) for solv-
ing (1.2). However, they assume that two index sets
S1, S2 with no intersection are known such that the pro-
jection of the optimal solution to (1.2) onto S1 and S2

should be positive definite. However, as is noted by the
authors, finding such index sets is a difficult problem
in the theoretical computer science community, and
there does not exist a polynomial-time algorithm to do

4We say a sequence {Uk} satisfies monotonic decreasing
if G(Uk) ≥ G(Uk+1) for any k.
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Table 1: Comparisons of different algorithm to find an ε-optimal solution to G. Here U∗ is the global minimum
of G, L̂ = L+ ‖∇L(U∗(U∗)>)‖2/‖U∗‖22 where L is the restricted smoothness constant of L, µ is the restricted
convexity constant of L. Tg is the computational complexity to calculate ∇G(U), which is O(dr2) for matrix
completion (Zheng and Lafferty, 2016) and matrix sensing (Zheng and Lafferty, 2015; Tu et al., 2016), and can
be much worse for generic problems.

Algorithm Iteration Complexity Per-iteration Complexity

FGD
O

([
‖U∗‖2
σr(U∗)

]2
L̂
µ log 1

ε

)
Tg +O(dr)

(Bhojanapalli et al., 2015)

AGD-AC
O

([
‖U∗‖2
σr(U∗)

]2√
dr L̂µ log 1

ε

)
Tg +O(dr + r3)

(Li and Lin, 2017)

AFGD
O

([
‖U∗‖2
σr(U∗)

]3√
L̂
µ log 1

ε

)
Tg + Õ

(
dr2 + ‖U∗‖2

σr(U∗)r
3
)

(This work)

this with provable guarantee. Therefore, AGD-AC is
not practical, or even intractable. Our algorithm, in
contrast, is practical and computationally efficient.

We summarize the iteration complexity and per-
iteration complexity of FGD (Bhojanapalli et al., 2015),
AGD-AC (Li and Lin, 2017) and our algorithm AFGD
in Table 1 for better comparison. We can see that
in terms of the iteration complexity, AFGD is better
than FGD when L̂/µ > ‖U∗‖22/σ2

r(U
∗), and is better

than AGD-AC when dr > ‖U∗‖22/σ2
r(U

∗). Both con-
ditions are easily satisfied when the condition number
L̂/µ and dimension d are large enough. Regarding the
per-iteration complexity, since Tg is at least O(dr2)
and is always the dominating term in the complexity,
the per-iteration complexity of all these algorithms are
comparable. The total computational complexity of
our algorithm can be much better than the that of
FGD and AGD-AC.

1.2 Additional Related Work

Since the seminal work of Nesterov’s acceleration gradi-
ent descent (AGD) (Nesterov, 1983, 1988, 2004), several
lines of work have been developed to study AGD for
various nonconvex problems. For general nonconvex op-
timzation, Ghadimi and Lan (2016) proved that AGD
can converge to a stationary point with the same rate
as GD in the nonconvex setting. Paquette et al. (2018)
extended the acceleration technique called Catylast
(Lin et al., 2015) from convex setting to nonconvex
setting, and proved that accelerated algorithms based
on Catylast converge to a stationary point with the
same rate as GD. So for general nonconvex optimiza-
tion, accelerated rate cannot be proved for AGD or its
variants. For finding the second-order stationary point
(i.e., local minimum), Carmon et al. (2018); Jin et al.
(2018) showed that variants of AGD can escape saddle
points and find a second-order stationary point faster
than their counterparts based on GD. For finding the

global minimum of functions that are nonconvex in the
Euclidean space, but geodesically strongly convex on
Riemannian manifolds, Liu et al. (2017); Zhang and Sra
(2018) proposed variants of AGD, which can achieve ac-
celerated linear rate of convergence. Moreover, Agarwal
et al. (2017) proposed a second-order method based on
cubic regularization for non-convex optimization prob-
lems. Ge et al. (2015) proved that stochastic gradient
descent can escape from saddle points and converge to
local minima.

2 Notation and Preliminaries

We use [d] to denote the set {1, 2, . . . , d}. For any
d-dimensional vector x = [x1, ..., xd]

>, its `2 norm is
defined as ‖x‖2 = (

∑d
i=1 |xi|2)1/2. For any matrix

A = [Aij ], denote the spectral norm and Frobenius
norm of A by ‖A‖2 and ‖A‖F , respectively. Let σr(A)
be the r-th largest singular value of A for r ∈ [d]. We
denote by A � 0 if A is positive semidefinite (PSD).
Given any two sequences {an} and {bn}, we write
an = O(bn) if there exists a constant 0 < C < +∞
such that an ≤ C bn, and we use Õ(·) to hide the
logarithmic factors.

We begin with a few definitions that are used for later
theoretical analysis of our algorithms. The first two
definitions are regarding restricted strongly convex and
smooth functions (Negahban et al., 2009; Negahban
and Wainwright, 2011, 2012; Jain et al., 2017).

Definition 2.1. We say L is µ-restricted strongly con-
vex if for any X,Y ∈ Rd×d such that X,Y � 0 and
rank(X) ≤ r, rank(Y) ≤ r, we have

L(X) ≥ L(Y) + 〈∇L(Y),X−Y〉+
µ

2
‖X−Y‖2F .

Definition 2.2. We say L is L-restricted smooth if for
any X,Y ∈ Rd×d such that X,Y � 0 and rank(X) ≤ r,
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rank(Y) ≤ r, we have

L(X) ≤ L(Y) + 〈∇L(Y),X−Y〉+
L

2
‖X−Y‖2F .

Note that in our paper, we only require L(M) to be
restricted strongly convex and smooth. The induced
function G(U) from L(M) by matrix factorization M =
UU> is not restricted strongly convex or smooth.

Following Tu et al. (2016), we define the Procrustes
distance to measure the distance between two matrices
up to rotation, and function ΠV(U) representing the
matrix which is closest to V in the equivalence class of
U up to rotation.

Definition 2.3 (Procrustes distance). For any U,V ∈
Rd×r, define

D(U,V) := ‖UR−V‖F , ΠV(U) := UR,

where R = argminP∈Rr×r,P>P=I ‖UP−V‖F .

In Definition 2.3, the optimal rotation matrix R =
PQ>, where [P,D,Q] is the singular value decom-
position (SVD) of U>V (Tu et al., 2016). It is
easy to check that D(·, ·) is rotation invariant, i.e.,
D(UP,V) = D(U,VP) = D(U,V) for any P ∈ Rr×r
with P>P = I. D(·, ·) also satisfies triangle inequal-
ity such that for any U,V,W ∈ Rd×r, we have
D(U,V) ≤ D(U,W) + D(W,V). The intuition be-
hind Definition 2.3 is that, by the definition of G in
(1.2), clearly G(U) = G(UP) for any orthornormal
matrix P. Therefore for two matrices U,V ∈ Rd×r,
it is natural to consider their corresponding “equiva-
lent classes” {UP : P>P = I}, {VP : P>P = I}, and
D(U,V) essentially is the minimum Frobenius distance
between matrices in these two equivalent classes. More-
over, ΠV(U) defines a mapping that maps all matrices
in {UP : P>P = I} to a specific one according to
some reference matrix V. In our algorithm, we utilize
ΠU0

(·), where U0 is the initialization, to make sure
that all iterates are well-aligned representatives in their
equivalent classes.

In terms of computational complexity, we note that
computing the matrix R in Definition 2.3 consists of
the calculation of U>V and SVD of U>V, which are
of O(dr2) and O(r3) complexities respectively. Thus
the computational complexity to compute ΠV(U) is
O(dr2).

3 The Proposed Algorithm
Before we present our algorithm, we first review AGD
update scheme proposed in Nesterov (2004). For an
objective function G, starting from initial points X0 =
V0 , AGD maintains three sequences of iterates {Xk},

{Yk} and {Vk} with the following update rule:

Yk =
α

α+ 1
Vk +

1

α+ 1
Xk,

Vk+1 = (1− α)Vk + αYk −
α

γ
∇G(Yk),

Xk+1 = Yk − η∇G(Yk),

(3.1)

where η > 0 is the step size and α > 0, γ > 0 are
momentum parameters satisfying α2 = ηγ. It has been
shown in Nesterov (2004) that if G is µ̃-strongly convex
and L̃-smooth, with the choice γ = µ̃ and η = 1/L̃,
the AGD update rule in (3.1) achieves the accelerated
linear rate of convergence, i.e., G(Xk)−G(X∗) ≤ O((1−√
µ̃/L̃)k), where X∗ is the minimizer of G(·). However,

the strong convexity does not hold for our problem
(1.2), and such update rule cannot ensure acceleration.

To overcome this technical barrier, we consider the
following set defined in terms of the initial point U0.
For any U0 ∈ Rd×r, we define Ω(U0) as

Ω(U0) := {U ∈ Rd×r : U>U0 � 0}. (3.2)

In other word, Ω(U0) is the set of all such matrices U
that U>U0 is positive semidefinite. Ω(U0) is highly
related to D(·, ·) and ΠU0

(·) in Definition 2.3. In fact,
it holds that for any V ∈ Rd×r, ΠU0

(V) ∈ Ω(U0) (See
Lemma B.3 in the appendix). Our key observation is
that restricted strong convexity holds for G(U) on the
set Ω(U0), as is shown in the following proposition:

Proposition 3.1 (Informal). Let U∗ be the optimal
solution to (1.2). Then there exist constants Cconvex
and µ̄ > 0 that only depend on G and U∗, such that for
any U0 which satisfies that D(U0,U

∗) ≤ Cconvex, and
any U,V ∈ Ω(U0) satisfying D(U,U∗), D(V,U∗) ≤
Cconvex, it holds that

G(U) ≥ G(V) + 〈∇G(V),U−V〉+
µ̄

2
‖U−V‖2F .

Proposition 3.1 suggests that if all iterates {Xk}, {Vk},
{Yk} generated by (3.1) belong to the set Ω(U0), the
restricted strong convexity holds for G(U) along the
trajectory of the iterates, which is pivotal to prove
the accelerated convergence rate. Nevertheless, such
property does not hold naturally from the AGD up-
date rules in (3.1), since the gradient descent update
in (3.1) can make the new iterate run out of Ω(U0).
We address this issue by proposing a new algorithm
namely accelerated factored gradient descent (AFGD),
as displayed in Algorithm 1.

Like AGD in (3.1), AFGD maintains three sequences of
iterates {Xk}, {Yk}, {Vk}. The key feature of AFGD
is to keep all three sequences in the set Ω(U0) defined
in (3.2). To achieve this, the update scheme of AFGD



Dongruo Zhou, Yuan Cao, Quanquan Gu

Algorithm 1 Accelerated Factored Gradient Descent
(AFGD)
Require: Function G, step size η, moment parameter

γ, accuracy εS , initial point U0, iteration number
K, subsolver iteration number T .

1: Initialize: X0 = V0 = U0

2: Compute [A0,D0,B0] as the r-SVD of U0.
3: Compute α satisfying that α2 = ηγ.
4: for k = 0, 1, . . . ,K − 1 do
5: Compute Yk,Vk+1 and Xk+1 as follows:

Yk =
α

α+ 1
Vk +

1

α+ 1
Xk, (3.3)

V′k+1 = (1− α)Vk + αYk −
α

γ
∇G(Yk) (3.4)

Vk+1 = ACCPROJ(V′k+1,A0,D0,B0, T )
(3.5)

Xk+1 = ΠU0

(
Yk − η∇G(Yk)

)
(3.6)

6: end for
Ensure: XK

is very similar to (3.1) except for the update of Vk+1

and Xk+1. More specifically, AFGD starts from initial
point U0. At the k-th iteration, AFGD first updates
Yk according to (3.3) in Algorithm 1, which is the
same as AGD in (3.1), and can be regarded as a convex
combination of Vk and Xk. It can be easily verified
that if both Vk and Xk belong to Ω(U0), then Yk

also belongs to Ω(U0) due to its convexity. Next,
AFGD computes V′k+1 according to (3.4), which is the
same update rule of Vk+1 for AGD in (3.1). Unlike
Yk, V′k+1 can not be guaranteed to belong to Ω(U0)
although Vk,Yk ∈ Ω(U0). In order to address this
problem, we aim to set Vk+1 to be the projection of
V′k+1 onto set Ω(U0), which is defined as follows

Vk+1 = argmin
V∈Ω(U0)

‖V −V′k+1‖F . (3.7)

However, (3.7) itself is a non-trivial optimization prob-
lem, which does not has a closed-form solution. There-
fore we use accelerated projection (ACCPROJ) in Al-
gorithm 2 as a subproblem solver to approximately
calculate Vk+1. We defer the details of ACCPROJ to
the next paragraph. Finally, AFGD performs one-step
gradient descent from Yk, followed by setting Xk+1 to
be the rotation of this update that is closest to U0, as
shown in (3.6). This guarantees that Xk+1 ∈ Ω(U0),
as is discussed in Section 2.

We now discuss the subproblem solver ACCPROJ
as displayed in Algorithm 2. Generally speaking,
ACCPROJ aims to solve the projection problem (3.7)
up to certain precision. ACCPROJ solves this problem
by making the following two key observations.

Algorithm 2 ACCPROJ(V′k+1,A0,D0,B0, T )

Require: V′k+1,A0,D0,B0, iteration number T .
1: Let T = A>0 V′k+1B0, Σ

(1)
0 = Σ

(2)
0 = 0,

ηS = σ2
r(D0), βS = (‖D0‖2 − σr(D0))/(‖D0‖2 +

σr(D0)).
2: for t = 0, 1, . . . , T − 1 do
3: Compute Σ

(1)
t+1,Σ

(2)
t+1 as follows:

Σ′t+1 = Σ
(2)
t − ηSD−1

0 [D−1
0 Σ

(2)
t −T], (3.8)

Compute [D,A] as the eigendecomposition of

(Σ′t+1 + Σ′>t+1)/2,

Σ
(1)
t+1 = A max{D, 0}A>, (3.9)

Σ
(2)
t+1 = Σ

(1)
t+1 + βS(Σ

(1)
t+1 −Σ

(1)
t ). (3.10)

4: end for
Ensure: Vk+1 = (I−A0A

>
0 )V′k+1 + A0D

−1
0 Σ

(1)
T B>0

First, suppose V̄ = argminV∈Ω(U0) ‖V −V′k+1‖F , it
can be shown that (see Appendix A.4) V̄ has the ana-
lytic formula,

V̄ = (I−A0A
>
0 )V′k+1 + A0D

−1
0 Σ∗B>0 , (3.11)

Σ∗ = argmin
Σ∈Rr×r,Σ�0

1/2
∥∥D−1

0 Σ−T
∥∥2

F
, (3.12)

where [A0,D0,B0] is the r-SVD of U0
5, A0 ∈

Rd×r,D0 ∈ Rr×r,B0 ∈ Rr×r and T = (A0)>V′k+1B0.
Thus, to find V̄, it is equivalent to find Σ∗. Note that
the dimension of Σ is only r × r, which suggests that
it is more efficient to solve (3.12) than solving (3.7).

Second, since the objective function in (3.12) is strongly
convex in Σ, we can use standard proximal AGD (Nes-
terov, 2004) to find an ε-optimal solution within T
steps. In detail, ACCPROJ maintains two sequences
of iterates {Σ(1)

t } and {Σ
(2)
t }, both of which start from

0. At each iteration t, ACCPROJ performs one gra-
dient descent step from Σ

(2)
t and denote the update

as Σ′t+1, as shown in (3.8). ACCPROJ then updates
Σ

(1)
t+1 as the projection of Σ′t+1 onto the set of positive

semidefinite matrices. The projection can be computed
in a closed-form according to (3.9). Finally, ACCPROJ
updates Σ

(2)
t+1 as the linear combination of Σ

(1)
t+1 and

Σ
(1)
t as shown in (3.10).

4 Main Theory
In this section, we present the main theoretical results.

4.1 Iteration complexity of AFGD

In order to calculate the iteration complexity of Algo-
rithm 1, we begin with the following inexact condition

5D0 consists of top-r singular values of U0 and A0,B0

are corresponding unitary matrices.
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for subproblem solver ACCPROJ in Algorithm 2.

Definition 4.1. Suppose V̄ = argminV∈Ω(U0) ‖V −
V′k+1‖F , we say the subproblem solver ACCPROJ
outputs an εS-approximate projection of V′k+1 onto
Ω(U0), if the output of ACCPROJ Vk+1 satisfies
Vk+1 ∈ Ω(U0) and ‖Vk+1 − V̄‖F ≤ εS for any k.

With Definition 4.1, we are ready to show our main
theorem.

Theorem 4.2. Suppose that L is µ-restricted strongly
convex and L-restricted smooth. let U∗ ∈
argminU∈Rd×r G(U) be an optimal solution and c > 0
be a sufficiently small constant. Set the parame-
ters in Algorithm 1 as γ = cµσ6

r(U0)/‖U0‖42, η =
c/(L‖U0‖22 + ‖∇L(U0U

>
0 )‖2). Suppose D(U0,U

∗) ≤
Cini = c2σ10

r (U∗)µ3/2/(‖U∗‖92L̂3/2), then for any
ε ≤ L̂‖U∗‖22C2

ini and any k, if ACCPROJ out-
puts an εS-approximate projection with εS =
min{αε/[4c1/2γσr(U∗)], c1/2σr(U∗)/2}, the output of
AFGD in Algorithm 1 satisfies

G(Xk)− G(U∗)

≤ (1−√ηγ)k
[
G(U0)− G(U∗) +

γ

2
D2(U0,U

∗)

]
+
ε

2
.

Theorem 4.2 suggests the accelerated linear rate of
convergence for AFGD up to precision ε. The following
corollary further spells out the iteration complexity of
AFGD to get an ε-optimal solution to (1.2).

Corollary 4.3. Under the same conditions as in The-
orem 4.2, AFGD in Algorithm 1 outputs a ε-optimal
solution XK to (1.2) after

K = O

([
‖U∗‖2
σr(U∗)

]3

·

√
L̂

µ
· log

∆G
ε

)
iterations, where ∆G = G(U0) − G(U∗) +
γD2(U0,U

∗)/2.

Remark 4.4. In AFGD, the momentum parameter γ
is set to γ = α2/η. This is essentially the same as that
in AGD (3.1), where the momentum parameters γ and

α are set to γ = µ̃, α =

√
µ̃/L̃, and the step size η is set

to η = 1/L̃. Here µ̃ and L̃ are the strongly convex and
smooth parameters of the objective function (Nesterov,
2004).

Remark 4.5. Note that ∆G only depends on U0 and
U∗, and can be seen as a constant. We can compare the
iteration complexity of AFGD with other baseline algo-
rithms in Table 1. AFGD outperforms FGD Bhojana-
palli et al. (2015) when L̂/µ > [‖U∗‖2/σr(U∗)]2, which
is satisfied when the condition number of original prob-
lem (1.1) L/µ is large. AFGD also outperforms AGD-
AC Li and Lin (2017) in the case dr > ‖U∗‖2/σr(U∗),

which always holds when d is large. Also note that
AGD-AC is not a practical algorithm, because it relies
on an assumption that it can sample two subsets with
certain properties, which is hard to be satisfied.

Theorem 4.2 requires the initial point U0 to be within
a small neighborhood of the optimal solution U∗ with
radius Cini. To find such initial point, we can use the
initialization method proposed in Bhojanapalli et al.
(2015); Wang et al. (2017a). For special low-rank matrix
factorization problems such as matrix completion and
matrix sensing, even simpler initialization methods
(Jain et al., 2013; Tu et al., 2016; Zheng and Lafferty,
2016; Zhao et al., 2015) exist and can be adopted to
generate the desired initial point very efficiently.

4.2 Per-iteration complexity of AFGD

We now calculate the per-iteration complexity of Al-
gorithm 1. At each iteration of Algorithm 1, we need
to compute gradient ∇G(Yk) in (3.4) and (3.6), whose
computational complexity is denoted by Tg. We also
need to compute ΠU0

(·) at (3.6), whose computational
complexity is O(dr2). The remaining thing is to char-
acterize the computational complexity of (3.5), which
boils down to the total computational complexity of
ACCPROJ in Algorithm 2.

The following theorem characterizes the iteration com-
plexity of Algorithm 2 to output an εS-approximate
projection, where εS is defined in Theorem 4.2.
Theorem 4.6. Under the same conditions as in The-
orem 4.2, ACCPROJ in Algorithm 2 outputs an εS-
approximate projection after

T = O

(
‖U∗‖2
σr(U∗)

· log
‖U∗‖Fσ4

r(U∗)

√
µL̂

ε‖U∗‖2

)
iterations.

We now compute the per-iteration complexity for
ACCPROJ. ACCPROJ needs to compute T at Line
1 of Algorithm 2, whose computational complexity is
O(dr2). At each iteration, ACCPROJ needs to com-
pute (3.8), whose computational complexity is O(r3).
ACCPROJ also needs to do SVD of a r × r matrix in
(3.9), whose computational complexity is O(r3). Fi-
nally, at the end of Algorithm 2, ACCPROJ needs to
compute Vk+1 once, whose computational complexity
is O(dr2). Thus, the total computational complexity
of ACCPROJ is

O(dr2 + Tr3)

= O

(
dr2 +

r3‖U∗‖2
σr(U∗)

· log
‖U∗‖Fσ4

r(U∗)

√
µL̂

ε‖U∗‖2

)
.

Thus by putting together the above computational
complexity results, we conclude that the per-iteration
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computational complexity of Algorithm 1 is Õ(dr2 +
r3‖U∗‖2/σr(U∗)).
Remark 4.7. We compare the per-iteration complex-
ity of AFGD with that of FGD (Bhojanapalli et al.,
2015) and AGD-AC (Li and Lin, 2017) in Table 1.
Note that the computational complexity of calculat-
ing the gradient of (1.2) (denoted by Tg) is at least
O(dr2) (Zheng and Lafferty, 2015, 2016), thus the dom-
inant term in the per-iteration complexity of all three
methods in Table 1 are Tg. Therefore, the per-iteration
complexities of all three methods are in the same order.

4.3 Extension to Asymmetric Lower-Rank
Matrix factorization

The low-rank matrix estimation problem (1.1) focuses
on the condition that M is symmetric and positive
semidefinite. However, our method can be easily ap-
plied to the following asymmetric matrix estimation
problem:

min
M∈Rd1×d2

L(M), subject to rank(M) ≤ r, (4.1)

where L(·) is L-smooth and µ-strongly convex over
the set of matrices with rank less than or equal to
r > 0. Following Park et al. (2016); Wang et al. (2017a);
Li and Lin (2017), we factorize M = U1U

>
2 where

U1 ∈ Rd1×r, U2 ∈ Rd2×r and consider the asymmetric
counterpart of (1.2):

min
U1∈Rd1×r,U2∈Rd2×r

L(U1U
>
2 ) +

µ

8
‖U>1 U1 −U>2 U2‖2F ,

(4.2)

where the regularizer (µ/8) · ‖U>1 U1−U>2 U2‖2F forces
the optimal solution to be balanced since otherwise
(ξU1, ξ

−1U2, ξ 6= 0 gives exactly the same objective
function value as (U1,U2). Meanwhile, it has been
proved in Zhu et al. (2018) that the global optimal
solution obtained by solving (4.2) is the same as the
global optimal solution to (4.1). To apply AFGD in
Algorithm 1 onto (4.2), we first define Z and M̃ as
follows:

Z =

(
U1

U2

)
, M̃ = ZZ> =

(
U1U

>
1 ,U1U

>
2

U2U
>
1 ,U2U

>
2

)
.

Note that M̃ can be represented as follows:

M̃ =

(
M̃1,1, M̃1,2

M̃2,1, M̃2,2

)
,

where M̃i,j = UiU
>
j . We now define L̃(·) as follows

L̃(M̃) = L(M̃1,2)

+
µ

8

[
‖M̃1,1‖2F + ‖M̃2,2‖2F − 2‖M̃1,2‖2F

]
,

It is easy to check that

L̃(M̃) = L(U1U
>
2 ) +

µ

8
‖U>1 U1 −U>2 U2‖2F ,

and L̃(·) is a restricted (L + µ/2)-smooth and (µ/4)-
strongly convex function over positive semi-definite
matrices with rank less than or equal to r. We fur-
ther define G̃(Z) = L̃(ZZ>). Thus we have converted
problem (4.2) into the form of (1.2), and our AFGD al-
gorithm as well as its theoretical guarantee are directly
applicable.

5 Experiments
In this section, we evaluate our proposed algorithm
by applying it to matrix regression (i.e., matrix sens-
ing) and matrix completion on synthetic data. Due to
space limit, we defer the experiment results for matrix
regression to Appendix E. We compare AFGD with
two baseline algorithms: FGD (Bhojanapalli et al.,
2015) and vanilla Nesterov’s AGD (Nesterov, 2004), as
discussed in (3.1). Note that there is no theoretical
guarantee of AGD for solving (1.2). We did not com-
pare with AGD-AC (Li and Lin, 2017), because it is
not a practical algorithm, as we explained before. We
notice that Li and Lin (2017) implemented a heuris-
tic version of AGD-AC in their experiments, which
does not have theoretical guarantee but has almost
the same empirical performance as AGD. We did not
include this heuristic version of AGD-AC for compari-
son here, because it provides little additional insight
beyond the comparison with vanilla AGD. For FGD,
AGD, AFGD, the step size is selected by grid search
over {10−k, 5 · 10−k}, k = 0, 1, 2, 3, 4, and γ is selected
from {10−k, 5 · 10−k}, k = 0, 1, 2, 3, 4. For ACCPROJ,
we set the iteration number to T = 10.

5.1 Matrix Completion

In this section we present the experimental results for
matrix completion. In matrix completion we want to
estimate an underlying low rank positive semidefinite
matrix M∗ ∈ Rd×d from partial observations. In detail,
we partially observe entries of M∗ over a subset Ω ∈
[d]× [d]. We assume a uniform sampling model such
that each entry of M∗ is observed with probability p,
i.e., (i, j) ∈ Ω with probability p. We consider the
noiseless case where the observed entries Yi,j = M∗

i,j ,
then the matrix completion problem is formulated as

min
M�0, rank(M)≤r

1

2

∑
(i,j)∈Ω(Mi,j −Yi,j)

2.

We reparameterize M as M = UU>, and consider the
following low-rank matrix factorization problem:

min
U∈Rd×r

1

2

∑
(i,j)∈Ω[(UU>)i,j −Yi,j ]

2.



Accelerated Factored Gradient Descent for Low-Rank Matrix Factorization

0 5 10 15 20 25 30

Number of iterations

10-12

10-10

10-8

10-6

10-4

10-2

100

F
ro

be
ni

us
 n

or
m

 e
rr

or

(a) d = 5000, r = 5
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(b) d = 5000, r = 10
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(c) d = 10000, r = 20
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(d) d = 10000, r = 50
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(e) d = 5000, r = 5
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(f) d = 5000, r = 10
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(g) d = 10000, r = 20
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(h) d = 10000, r = 50

Figure 1: Comparison of FGD, AGD and AFGD for matrix completion. Plots of squared error ‖UU> −M∗‖2F
versus number of iterations ((a)-(d)) and CPU time ((e)-(h)).

We consider the following four settings: d = 5000, r = 5;
d = 5000, r = 10; d = 10000, r = 20; d = 10000, r =
50. First, we generate the unknown matrix M∗ =
U∗(U∗)>, with U∗ being randomly generated from
standard Gaussian distribution. We use uniform obser-
vation model to obtain data matrix Y with observation
probability 0.2. All algorithms use the same initial-
ization method proposed in Bhojanapalli et al. (2015)
(See Appendix F for more details). All results are av-
eraged over 20 trials. To illustrate the convergence
rate, we report the squared error ‖UU>−M∗‖2F in log
scale. We compare different algorithms with respect
to both number of iterations and CPU time and plot
them in Figure 1. The results for d = 5000, r = 5
are presented in Figures 1(a) and 1(e), the results for
d = 5000, r = 10 are shown in Figures 1(b) and 1(f),
the results for d = 10000, r = 20 are shown in Figures
1(c) and 1(g), the results for d = 10000, r = 50 are
shown in Figures 1(d) and 1(h).

We can see that AFGD converges faster than FGD with
respect to both number of iterations and CPU time,
which corroborates our theory. We also observe that
vanilla AGD performs almost the same as AFGD in
all settings, while in theory its accelerated convergence
rate for low-rank matrix factorization is not proved.
Our proposed AFGD enjoys an accelerated convergence
rate both in theory and practice, and its projection step
(solved by Algorithm 2) does not introduce significant
computational overhead. This again strengthens the
superiority of our algorithm for matrix factorization.

6 Conclusions and Future Work

In this work, we proposed a novel accelerated factored
gradient descent method for low-rank matrix factor-
ization. We proved that our algorithm achieves better
iteration complexity and computational complexity lo-
cally compared with other existing baseline algorithms.
Our algorithm and theory can be easily extended to
rectangle matrices. Yet there are still some open ques-
tions. Can our algorithm also achieve an accelerated
convergence rate with only random initialization? It
has been shown in Chen et al. (2018) that gradient
descent with random initialization can achieve a glob-
ally linear convergence rate for phase retrieval problem.
We will explore whether a globally accelerated conver-
gence rate can be proved for AFGD for solving low-rank
matrix factorization.
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