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Abstract

The discovery of heavy hitters (most frequent
items) in user-generated data streams drives
improvements in the app and web ecosystems,
but can incur substantial privacy risks if not
done with care. To address these risks, we
propose a distributed and privacy-preserving
algorithm for discovering the heavy hitters in
a population of user-generated data streams.
We leverage the sampling and thresholding
properties of our distributed algorithm to
prove that it is inherently differentially pri-
vate, without requiring additional noise. We
also examine the trade-off between privacy
and utility, and show that our algorithm
provides excellent utility while also achiev-
ing strong privacy guarantees. A significant
advantage of this approach is that it elimi-
nates the need to centralize raw data while
also avoiding the significant loss in utility in-
curred by local differential privacy. We val-
idate our findings both theoretically, using
worst-case analyses, and practically, using a
Twitter dataset with 1.6M tweets and over
650k users. Finally, we carefully compare our
approach to Apple’s local differential privacy
method for discovering heavy hitters.

1 Introduction

Discovering the heavy hitters in a population of user-
generated data streams plays an instrumental role in
improving mobile and web applications. For example,
learning popular out-of-dictionary words can improve
the auto-complete feature in a smart keyboard, and
discovering frequently-taken actions can provide an
improved in-app user experience. Naively, a service
provider can learn the popular elements by first col-
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lecting user data and then applying state-of-the-art
centralized heavy hitters discovery algorithms (Cor-
mode et al., 2003; Cormode and Hadjieleftheriou, 2008;
Charikar et al., 2002). However, collecting and analyz-
ing data from users can introduce privacy risks.

To overcome some of these risks, the service provider
can use the central model of differential privacy (DP)
to provide internal or external analysts with a privacy-
preserving set of learned heavy hitters (Dwork et al.,
2006b,a; Dwork, 2008; Dwork et al., 2010; Bhaskar
et al., 2010; Dwork and Roth, 2014). However, this
approach requires that users trust the service provider
with their raw data. And even with a fully trusted
service provider, tighter privacy regulations, such as
Europe’s General Data Protection Regulation (GDPR),
the risk of hacks and other data breaches, and subpoena
powers may encourage service providers to collect less
data from their users.

The local model of DP (Warner, 1965; Evfimievski
et al., 2004; Kasiviswanathan et al., 2011) addresses the
above concerns by requiring users to perturb their data
locally before sharing it with a service provider. Google
(Erlingsson et al., 2014), Apple (Apple, 2017), and
others (Ding et al., 2017; Kenthapadi and Tran, 2018)
have deployed local DP algorithms. However, a large
body of fundamental work shows that in the context of
learning distributions and heavy hitters, local DP often
leads to a significant reduction in utility (Kairouz et al.,
2014; Wang et al., 2017; Bassily et al., 2017; Kairouz
et al., 2016; Ye and Barg, 2018; Duchi et al., 2013;
Cormode et al., 2018). As we show (e.g., Table 2), there
are regimes where local DP is infeasible for practical
use. Our goal is to provide practical algorithms that
provide more privacy than prior approaches in such
regimes, while maintaining sufficient utility (precision
and recall).1

Our work builds on recent advances in federated learn-
ing (FL) (McMahan and Ramage, 2017; Konečnỳ et al.,
2016; McMahan et al., 2017) to bridge the utility gap be-

1Whether or not a given approach provides sufficient
privacy for a particular application is largely a domain-
dependent policy question beyond the scope of this work;
our goal is to expand the set of approaches available.
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tween the local and central models of DP. Our proposed
algorithm retains the essential privacy ingredients of
FL: (a) no raw data collection (only ephemeral, focused
updates from a random subset of users are sent back
to the service provider), (b) decentralization across a
large population of users (most users will contribute
only 0 or 1 times), (c) interactivity in building an aggre-
gate understanding of the population. However, unlike
existing FL algorithms where the goal is to learn a
prediction model, our work introduces a new federated
approach that allows a service provider to discover the
heavy hitters.

Contributions We develop an interactive heavy hit-
ters discovery algorithm that achieves central DP while
minimizing the data collected from users. In contrast
to classical frequency estimation problems, our goal is
to discover the heavy hitters but not their frequencies2.
For example, in a smart mobile keyboard application,
our algorithm allows a service provider to discover out-
of-dictionary words and add them to the keyboard’s
dictionary, allowing these words to be automatically
spell-corrected and typed using gesture typing.

We assume, without loss of generality,3 that items (e.g.,
words) in user-generated data streams have a sequential
structure (e.g., sequence of characters). Thus, we refer
to items as sequences and leverage their sequential
structure to build our algorithm. Our algorithm is
interactive and runs in multiple rounds. In each round,
a randomly selected set of users transmit a “vote” for
a one element extension to popular prefixes discovered
in previous rounds. The server then aggregates the
received votes using a trie data structure, prunes nodes
that have counts that fall below a chosen threshold θ,
and continues to the next round.

We prove that our algorithm is inherently differentially
private, and show how the parameters of the algorithm
can be chosen to obtain precise privacy guarantees (see
Theorem 1 and Corollary 1). When the number of users
n ≥ 104 and the sequences have a length of at most
10, our algorithm guarantees (2, 1

n2 )-differential privacy
while achieving good utility (see Figure 2). See Table
1 for the DP parameters we can provide for various
population sizes.

A key property of our algorithm is that it is sufficient for
the service provider to receive only the set of extensions
to the trie with votes that exceed a threshold θ, and
the set of possible extensions is finite and known at
the start of each round. A simple implementation of
our algorithm would have the service provider directly

2Observe that once the popular items are discovered,
learning their frequencies can be done using off-the-shelf
DP techniques.

3Regardless of the items’ data type, they can always be
represented by a sequence of bits.

receive each selected user’s anonymous vote, and then
immediately aggregate and threshold these votes in
memory, with no persistence of the unaggregated votes.

However, our algorithm was explicitly designed to al-
low it to be implemented using aggregation schemes
that further limit the information the service provider
receives. In particular, a cryptographic secure sum
protocol such as that of (Bonawitz et al., 2016) can
be used to count votes, so the service provider never
sees individual votes, only the aggregate sum over all
users in the round (and only if a sufficient number of
users participate). The service provider then is only
trusted to apply the threshold θ. An intriguing open
question is whether an efficient secure multi-party com-
putation can be developed which also performs the
thresholding. Another approach is to use the ESA ar-
chitecture of (Bittau et al., 2017) to ensure shuffling
and anonymization of the votes.

We have already discussed the privacy advantages of
our approach compared to centralized approaches with
DP that collect and store raw user data; undoubtedly
such approaches could offer even higher utility, but we
do not empirically assess this, as it is enough to show
our algorithm achieves sufficient utility to be practi-
cal in many settings. Rather, we focus our empirical
evaluation of utility on a comparison to local DP (in
particular (Apple, 2017)), demonstrating that our al-
gorithm obtains a strong central DP guarantee and
high utility in settings where local DP performs poorly
(see Table 2 for details). We use the Sentiment140
dataset, a Twitter dataset with 1.6M tweets and over
650k users Go et al. (2009). For Sentiment140, the top
200 words are recalled at a rate close to 1 with ε = 4
and δ < 5× 10−9.

Related work Federated learning (FL) (McMahan
et al., 2017; Konečnỳ et al., 2016; Bonawitz et al.,
2019) is a collaborative learning approach that enables
a service provider to learn a prediction model without
collecting user data (i.e., while keeping the training
data on user devices). The training phase of FL is
interactive and executes in multiple rounds. In each
round, a randomly chosen small set of online users
download the latest model and improve it locally using
their training data. Only the updates are then sent
back to the service provider where they are aggregated
and used to update the global model. Much of the
existing works are in the context of learning prediction
models. Our work differs in that it focuses on federated
algorithms for the discovery of heavy hitters.

Differential privacy (DP) is a rigorous privacy notion
that has been carefully studied over the last decade
(Dwork et al., 2006b,a; Dwork, 2008; Dwork and Roth,
2014) and widely adopted in industry (Ding et al., 2017;
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Apple, 2017; Kenthapadi and Tran, 2018; Erlingsson
et al., 2014). It provides the ability to make strong
formal privacy guarantees by bounding the worst-case
information loss. There is a rich body of work on
distribution learning, frequent sequence mining, and
heavy-hitter discovery both in the central and local
models of DP (Bhaskar et al., 2010; Bonomi and Xiong,
2013; Diakonikolas et al., 2015; Xu et al., 2016; Zhou
and Lin, 2018; Kairouz et al., 2016; Wang et al., 2017;
Bassily et al., 2017; Acharya et al., 2018; Ye and Barg,
2018; Avent et al., 2017; Bun et al., 2018; Cormode
et al., 2018), and some recent works combine FL with
central DP (Geyer et al., 2017; McMahan et al., 2018).
The central model of DP assumes that users trust the
service provider with their raw data while the local
one gets away with this assumption. Thus, the utility
loss is not as severe in the central model where the
service provider may have access to the entire dataset.
Our work bridges these existing models of privacy in
that it allows an honest-but-curious service provider to
learn the popular sequences in a centrally differentially
private way, while only having access to minimal data:
a randomly chosen user submits one character extension
to an already discovered popular prefix.

Methods that provide DP typically involve adding noise,
such as Gaussian noise, to the data before releasing
it. In this work, we show that DP can be obtained
without the addition of any noise by relying exclusively
on random sampling and trie pruning which achieves
k-anonymity. The connection between DP, random
sampling, and k-anonymity has previously appeared in
the literature (Chaudhuri and Mishra, 2006; Li et al.,
2012; Gehrke et al., 2012). However, our approach and
analysis are different in two fundamental ways. First,
existing methods show how sampling and enforcing
k-anonymity at the sequence level (in a centralized
setting) can achieve central DP. When applied to our
decentralized setting, such approaches have the dis-
advantage of revealing the entire sequences held by
sampled users. On the contrary, our approach explores
how interactivity, random sampling, and k-anonymity
can achieve central DP while also drastically minimiz-
ing the data a user shares with the service provider.
Second, our sampling method is different from exist-
ing methods that sample records from a centralized
database in an i.i.d fashion (referred to as Poisson sam-
pling). Under Poisson sampling, the number of chosen
users can vary drastically across rounds, making such
approach incompatible with existing federated learning
production systems such as (Bonawitz et al., 2019). In-
stead, we sample (uniformly at random) a fixed number
of users in each round. Combined with interactivity
over rounds, this different sampling strategy makes our
approach and proof techniques different from existing
ones.

Our trie-based heavy hitters (TrieHH) algorithm ex-
ploits the hierarchical structure of user-generated data
streams to interactively maintain a trie structure that
contains the frequent sequences. The idea of using
trie-like structures for finding frequent sequences in
data streams has been explored before in (Cormode
et al., 2003; Bassily et al., 2017). However, the work of
Cormode et al. (2003) predates differential privacy and
the TreeHist algorithm of Bassily et al. (2017) is non-
interactive, relies on sketching, achieves local DP using
the randomized response, and assumes the existence of
public randomness. Our approach is interactive in na-
ture, does not use sketching or offer local DP, and does
not require public randomness. The only similarity
between these two approaches is the use of a trie-like
data structure that maintains a list of popular prefixes,
a practice that is common for efficient discovery of
heavy hitters (even under no privacy constraints). In
fact, the differences between these two approaches lead
to a fundamentally different privacy-utility trade-off
and make private heavy-hitter discovery feasible even
for small-to-moderate populations.

In Section 5, we compare TrieHH with Apple’s
Sequence Fragment Puzzle (SFP) algorithm, a state-
of-the-art sketching based algorithm for discovering
heavy hitters with local DP (Apple, 2017). Similar to
TreeHist, SFP is also a count sketch based algorithm.
However, instead of pruning by a tree structure, SFP
estimates high frequency substring fragments and
then stitches them together to get full length heavy
hitters. We provide our source code implementa-
tion of SFP at https://github.com/tensorflow/

federated/tree/master/tensorflow_federated/

python/research/triehh, and a detailed description
of this algorithm in Section D of the accompanying
supplementary material.

2 Preliminaries

Model and notation We consider a population of n
usersD = {u1, u2, . . . , un}, where user i has a collection
of items {wi1, wi2, · · · , wiq}. We abuse notation and
use D to refer to both the set of all users and set of
all items. Without loss of generality, we assume that
the items have a sequential structure and refer to them
as sequences. More precisely, we express an item w
as a sequence w = c1c2 . . . c|w| of |w| elements. For
example, in our experiments (see Section 5), we focus
on discovering heavy-hitter words in a population of
tweets generated by Twitter users. Therefore, each
user has a collection of words, and each word can
be expressed as a sequence of ASCII characters. We
assume that the length of any sequence is at most L.

For any set D, we build a trie via a randomized algo-
rithmM to obtain an estimate of the heavy hitters. We

https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
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let pi(w) denote the prefix of w of length i. For a trie T
and a prefix p = c1, c2 . . . ci, we say that p ∈ T if there
exists a path (root, c1, c2, . . . , ci) in T . Also, let Ti de-
note the subtree of T that contains all nodes and edges
from the first i levels of T . Suppose (root, c1, c2, . . . , ci)
is a path of length i in Ti. Growing the trie from Ti to
Ti+1 by “adding prefix (root, c1, c2, . . . , ci, ci+1) to Ti”
means appending a child node ci+1 to ci.

Differential privacy A randomized algorithmM is
(ε, δ)-differentially private iff for all S ⊆ Range(M),
and for all adjacent datasets D and D′:

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ. (1)

We adopt user-level adjacency where D and D′ are
adjacent if D′ can be obtained by adding all the items
associated with a single user from D (McMahan et al.,
2018). This is stronger than the typically used notion
of adjacency where D and D′ differ by only one item
(Dwork and Roth, 2014).

3 Single Sequence per User

In this section, we consider a simple setting where each
user has single sequence. Much of the intuition behind
the algorithm and privacy guarantees we present in
this section carry over to the more realistic setting of
multiple sequences per user.

We describe the proposed approach via a simple exam-
ple (shown in Figure 1) where the goal is to discover
popular words. Suppose we have n = 20 users and each
user has a single word. Assume there are three popular
words: “star” (on 3 devices), “sun” (on 4 devices) and
“moon”(on 4 devices). The rest of the words appear
once each. We add a “$” to the end of each word as
an “end of sequence” (EOS) symbol. In each round,
the service provider selects m = 10 random users, asks
them to vote for a prefix of their word (as long as it is
an extension of the prefixes learned in previous rounds),
and stores the prefixes that receive votes greater than
or equal to θ = 2 in a trie. In the example in the figure,
two prefixes “s” and “m” of length 1 grow on the trie
after the first round. This means that among the 10
randomly selected users, at least two of them voted for
“s” and at least another two voted for “m”. Observe
that users who have “sun” and “star” share the first
character “s”, so “s” has a significant chance of being
added to the trie. In the second round, 10 users are
randomly selected and provided with the depth 1 trie
learned so far (containing “s” and ”m”). In this round,
a selected user votes for the length 2 prefix of their
word only if it starts with an “s” or “m”. The service
provider then aggregates the received votes and adds a
prefix to the trie if it receives at least θ = 2 votes. In
this particular example, prefixes “st”, “su”, and “mo”
are learned after the second round. This process is

repeated for prefixes of length 3 and 4 in the third and
the fourth rounds, respectively. After the fourth round,
the word “sun$” is completely learned, but the prefix
“sta” stopped growing. This is because at least two
of the three users holding “star” were selected in the
second and third round, but less than two were chosen
in the fourth one. The word “moon$” is completely
learned in the fifth round. Finally, the algorithm ter-
minates in the sixth round, and the completely learned
words are “sun$” and “moon$”.

Figure 1: Example run of Algorithm 1.

Algorithm 1 Trie-based Heavy Hitters M(D, θ, γ)

Input: A set D = {u1, u2, . . . , un} that have words
{w1, w2, . . . , wn}. A threshold θ. Batch size m =
γ
√
n.

Output: A trie T .
Set T = {root}; Told = None; i = 1;
while T ! = Told do

Choose m users from D randomly to get a set X̃
of sequences;
Told = T ;
T = V(X̃ , T, θ, i); i++;

end while
return T ;

To describe the algorithm formally, for a set of users
D, our algorithm M(D, θ, γ) runs in multiple rounds,
and returns a trie that contains the popular sequences
in D. In each round of the algorithm, a batch of size
m = γ

√
n (with γ ≥ 1) users are selected uniformly

at random from D. Note that there are interesting
trade-offs between the utility and privacy with different
choices of γ, which we will discuss later.

In the ith round, randomly selected users receive a
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Algorithm 2 Algorithm V(X̃ , Tin, θ, i) to grow a trie
by one level with a set of sequences.

Input: A set of sequences X̃ = {w′1, w′2, . . . , w′m}.
An input trie Tin with i levels. A threshold θ.
Output: An output trie.
Initialize Candidates[w′j ] = 0 for all w′j ∈ X̃ ;

for each sequence w′j in X̃ that |w′j | ≥ i and
pi−1(w′j) ∈ Tin do

Candidates[pi(w
′
j)]++;

end for
return Tin + {p | Candidates[p] ≥ θ};

trie containing the popular prefixes that have been
learned so far. If a user’s sequence has a length i− 1
prefix that is in the trie, they declare the length i
prefix of the sequence they have. Otherwise, they do
nothing. Prefixes that are declared by at least θ ≈ log n
selected users grow on the ith level of the trie. Note
that we grow at most one level of the trie in each
round of the algorithm. Thus, if c1, . . . , ci−1 /∈ Ti−1,
then c1, . . . , ci−1, ci cannot be in Ti. The final output
of M is the trie returned by the algorithm when it
stops growing. Algorithm 1 describes our distributed
algorithm and Algorithm 2 shows a single round of the
algorithm to grow one level of the trie.

Given the final trie, we extract the heavy-hitter se-
quences learned by Algorithm 1 by simply outputting
the discovered prefixes from the root to leaves that
end with $ (the EOS symbol). Note that the non-EOS
leaves also represent frequent prefixes in the popula-
tion, which might still be valuable depending on the
application.

Privacy guarantees Algorithm 1 has several pri-
vacy advantages: (a) randomly chosen users vote on
a single character extension to an already discovered
popular prefix, (b) the votes are ephemeral (i.e., never
stored), and (c) a total of Lγ

√
n randomly chosen

users participate in the algorithm. More importantly,
sequences discovered by Algorithm 1 are k-anonymous
with k = θ, and as shown in the theorem below, the
output of Algorithm 1 is inherently (ε, δ)-differentially
private – without the need for additional randomization
or noise addition.

Theorem 1. When 4 ≤ θ ≤
√
n and 1 ≤ γ ≤

√
n

θ+1 ,

Algorithm 1 is (L ln(1 + 1√
n
γθ −1

), θ−2
(θ−3)θ! )-differentially

private.

Proof Sketch. Suppose D is obtained by adding w to a
neighboring D′ and assume |w| = l. We first decompose
any S ⊆ Range(M) into S0 ∪ S1 ∪ . . .Sl, where S0 =
{T ∈ S|pi(w) /∈ T, for i = 1, 2, . . . , l} and Si = {T ∈
S|p1(w), . . . , pi(w) ∈ T and pi+1, . . . , pl /∈ T} for i =

1, 2, . . . , l. Assume there are k users in D′ that have
prefix pi(w). Then we show that when k is large, the
ratio between P (M(D) ∈ Si) and P (M(D′) ∈ Si) is
small so it could be bounded by eε. When k is small,
P (M(D) ∈ Si) is small enough so it could be bounded
by δ. Intuitively, when k is large, it means prefix pi(w)
is already popular in D′, so the fact that D has one
more user with this prefix does not affect the probability
of it showing in the result too much. When k is small,
the chance of prefix pi(w) showing up in the result is
very small, even with an extra user with it in D.

The above result holds for a wide array of algorithm
parameters (L, γ, and θ). The following corollary
shows how precise privacy guarantees can be obtained
by tuning the algorithm’s parameters.

Corollary 1. To achieve (ε, δ)-differential privacy, set
γ = (e

ε
L − 1)

√
n/(θe

ε
L ) and θ = max{10, deW (Cδ)+1 −

1
2e, de

ε
L − 1e}, where W is the Lambert W function

(Corless et al., 1996) and Cδ = e−1 ln( 8
7
√
2π
δ−1). Fur-

ther, when n ≥ 104, choosing θ = dlog10 n+ 6e ensures
that Algorithm 1 is (ε, 1

300n )-differentially private 4.

Table 1 shows how we can choose γ and θ to achieve
(ε, 1/(300n)) and (ε, 1/n2) for various values of n. Since
under Algorithm 1 the privacy loss can be large with
probability δ (unlike mechanisms that rely on explicit
noise addition), we focus (almost exclusively) on δ <
1/n2 in Section 5 where we conduct experiments on
real data and compare to local differential privacy.

n

L = 10

δ ≤ 1
300n δ ≤ 1

n2

θ γ θ γ

104 10 1.81 12 1.51

105 11 5.21 14 4.09

106 12 15.10 15 12.08

107 13 44.09 17 33.71

Table 1: Lower bound of θ and upper bound of γ to
achieve ε = 2 in two cases: δ ≤ 1

300n and δ ≤ 1
n2 .

Utility guarantees By the sampling nature of Al-
gorithm 1, sequences that appear more frequently are
more likely to be learned. The batch size m and thresh-
old θ could be tuned to trade off utility for privacy.
For a user set of size n, smaller m and larger θ achieve
better privacy at the expense of lower utility, and vice
versa.

To quantify utility under Algorithm 1, we examine
the worst-case discovery rate of a sequence (probabil-

4In general, to get a δ ≤ 1
na

, by standard approximation
of the Lambert function, we can choose θ ≈ a(lnn/ln lnn).
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ity of discovering it) as a function of its frequency in
the dataset. In particular, we consider the worst-case
discovery rate which captures the probability of discov-
ering a sequence assuming that it shares no prefixes
with other sequences in the dataset. In the presence
of such common prefixes, the discovery rate will only
get better (see Section 5 for a comparison between
worst-case discovery rates and ones that are achievable
on real data).

Proposition 1. Suppose a sequence appears W times
in a dataset of n users where the longest sequence has
length L. Then the worst-case discovery rate under
Algorithm 1 is given by 1(

n
m

) min{W,m}∑
i=θ

(
W

i

)(
n−W
m− i

)L

. (2)

Using Corollary 1 and Proposition 1, we can investi-
gate how large the population should be if we want
to discover sequences with high probability for a fixed
ε. Figure 2 shows the relationship between sequence
frequency and population size n if we want the worst-
case discovery rate to be at least 0.9 for different ε’s.
Naturally, in order to be discovered with high probabil-
ity, lower frequency sequences require larger population
size, and vice versa. We also need larger populations
for stronger privacy guarantees (smaller ε).

Figure 2: Minimum n required to ensure (via Proposi-
tion 1) a worst-case discovery rate greater than 0.9 for
L = 10 and δ = 1/n2.

Remarks A few remarks are in order. First, in a
production implementation of Algorithm 1, not all
users may be online in every round of the protocol.
In such a situation, the service provider will sample
uniformly at random from available users. Therefore,
assuming a strong adversary which knows the number
and identities of online users in every round, the privacy
guarantees will be determined by the number of online
users. Second, Theorem 1 shows that the range of γ

is: [1,
√
n/(θ + 1)]. Thus, γ = 1 is enough to achieve

single digit epsilon, and if users are available, it could
be increased up to

√
n/(θ + 1) to achieve better utility.

More importantly, this paper tackles the regime where
n ∼ 105 − 107 – see Table 1 for the choices of γ to
get maximum utility in this setting. Even the upper
bound on γ is not on the order of

√
n (but rather 2

to 3 orders smaller than
√
n). For instance, γ ≈ 33

when ε = 2, δ = 1/n2 and n = 107. Third, we study
the communication cost of Algorithm 1 in Section E.1
of the accompanying supplementary material, but it is
not the central quantity that this work focuses on.

4 Multiple Sequences per User

In this section, we consider the more general setting
where each user could have more than one sequence
on their device. Suppose the population is a set of n
users D = {u1, u2, . . . , un}, and each user ui has a set
of sequences {wi1, wi2, . . . , wiq}.

Let ci(wj) denote the number of appearances of wj on
ui’s device. We define the local frequency of wj on
ui’s device as fi(wj) = ci(wj)/

∑
j ci(wj). Note that

the sum of all the sequences’ local frequencies on ui’s
device is 1, i.e.

∑
j fi(wj) = 1. If a sequence wj has 0

appearance on ui’s device, then fi(wj) = 0. Similarly,
for a certain prefix pj , let ci(pj) denote the number of
appearances of pj on ui’s device. Then the frequency
of pj on ui’s device is fi(pj) = ci(pj)/

∑
j ci(pj).

We are now ready to generalize Algorithm 1 to accom-
modate multiple sequences per user. In each round
of the algorithm, we select a batch of m users from
D uniformly at random. A chosen user ui randomly
selects a sequence wj ∈ ui with probability fi(wj), i.e.,
according to its local frequency. Thus, as in Algorithm
1, we still select m sequences from m users in every
round. The voting step by these m sequences proceeded
in the same way described in Algorithm 2. Algorithm
3 (in Section A of the supplementary material) shows
the full algorithm.

Interestingly, the differential privacy guarantees we
obtained in the single sequence setting also hold in the
multiple sequence setting. This is formally stated in
Corollary 2. To get this conclusion, we first provide
the following more general (but intuitive) result.

Theorem 2. Assume mechanism M achieves (ε, δ)
record-level5 DP on a dataset of size n. Consider a
setting where we have n users and an arbitrary number
of records per user. Then the mechanism that first
selects 1 record per user (deterministically or randomly)

5The difference between record-level and user-level DP is
in the way neighboring datasets are defined. Under record-
level DP, only a single record is varied when comparing D
to D′.
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then applies M to the sampled dataset of size n achieves
(ε, δ) user-level DP.

Corollary 2. When 4 ≤ θ ≤
√
n and 1 ≤ γ ≤

√
n

θ+1 , Al-
gorithm 3 (in Section A of the supplementary material)
is (L ln(1 + 1√

n
γθ −1

), θ−2
(θ−3)θ! )-differentially private.

5 Experiments

We now showcase the performance of the trie-based
heavy hitters (TrieHH) algorithm on real data and
compare it to Apple’s Sequence Fragment Puzzle
(SFP) algorithm, a state-of-the-art sketching based
algorithm for discovering heavy hitters with local
DP (Apple, 2017). We provide our source code
implementation of both SFP and TrieHH at https://
github.com/tensorflow/federated/tree/master/

tensorflow_federated/python/research/triehh,
and include a detailed description of SFP in Section D
of the supplementary material. For a fair comparison
between SFP and TrieHH, we “amplify” the local
εlocal used by SFP to a central (ε, δ) used in TrieHH
according to Theorem 5.3 of Balle et al. (2019). We
also focus exclusively on the discovery stage of SFP
and do not account for the count estimation stage.
Since the trade-off between precision and recall could
be tuned by a parameter T 6 under SFP, we compare
TrieHH and SFP using precision, recall, and F1 score.
We use Sentiment140, a rich Twitter dataset (Go
et al., 2009), and conduct three sets of experiments
(see below for details). We run our experiments many
times and report averaged utility metrics with 0.95
confidence intervals.

Figure 3: Frequency vs. discovery rate with the theoret-
ical lower bound in the single word setting. (δ = 1/n2)

Single word per user: heavy hitters case To
simulate this setting that each user has a single word

6The parameters are proxies and do not necessarily
represent the actual performance of Apple’s system.

Figure 4: F1 Score of the top K words in the single
word setting. T = 20 for SFP.

using Sentiment140, we create a dataset by choosing
the word with highest local frequency for each user
and apply TrieHH on this dataset. Figure 3 shows
the relationship between the word frequencies and the
discovery rate using TrieHH. We limit L to 10, set
δ = 1/n2, and choose θ and γ according to Corollary
1 to achieve various values of ε. The dashed lines
represent the theoretical worst-case bounds on the dis-
covery probability (presented in Section 3). Observe
that there is a gap between the experimental results
and the theoretical worst-case ones. This is because
the theoretical bounds assume that sequences share
no prefixes with others in the dataset, while in Senti-
ment140, many English words do share some prefixes.
We also study the F1 score of the K highest frequency
words in the population. Figure 4 shows the F1 score
of the top K words vs. K with comparison to SFP. For
SFP, ε = 1→ εlocal = 4.29 and ε = 4→ εlocal = 4.96.
Observe that at ε = 4, the top 100 words have an F1

score close to 1 under TrieHH, in comparison to an and
F1 score close to 0.2 under SFP.

Single word per user: out-of-vocab (OOV) case
To simulate this setting using Sentiment140, OOV
words are obtained by first scanning through the
dataset and keeping only words that are made up of
English letters and a few other symbols (such as ”@”
and ”#”) and then ensuring that these words do not
belong to a highly tuned dictionary of over 260k words.
After this pre-processing step, the frequencies of the
OOV words are calculated and a dataset of size 6M
is sampled according to those frequencies. Figure 5
shows the F1 score of the top K words for both TrieHH
and SFP. Observe that the curves for both TrieHH
and SFP are not monotonically decreasing for small K.
This is because there are many long words in the top
10 to 20 of the OOV Twitter dataset (corresponding to
usernames of trending Twitter users), and both algo-

https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
https://github.com/tensorflow/federated/tree/master/tensorflow_federated/python/research/triehh
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rithms perform worse for longer words. For larger K,
the lengths of top words get smaller and more consis-
tent. Table 2 shows recall at K = 50 and precision for
both algorithms with different choices T for SFP. For
SFP, ε = 1→ εlocal = 5.31 and ε = 4→ εlocal = 5.99
due to amplification. By increasing T for SFP, there is
a gain of recall but the precision also drops dramati-
cally. Some examples of interesting OOV words we have
discovered include: ”*hugs*”, ”*sigh*”, ”:’(”, ”@tomm-
cfly”, ”@dddlovato”, ”#ff”, ”#fb”, ”b/c”, ”ya’ll”. The
complete list of heavy-hitter OOV words and discov-
ered ones are given in Section E.2 of the supplementary
material.

Figure 5: F1 Score of the top K words in the single
word setting of OOV case (δ = 1/n2). T = 20 for SFP.

ε = 1 ε = 4

Recall Prec Recall Prec

TrieHH 0.65 1 0.76 1

SFP (20) 0.17 0.853 0.19 0.867

SFP (80) 0.25 0.494 0.325 0.456

Table 2: Comparison of recall at K = 50 and precision
between TrieHH and SFP in the OOV setting for δ = 1

n2

and T = 20, 80 under SFP.

Multiple words per user: heavy hitters case
We use Sentiment140 as is for this experiment and
calculate the population frequency of wj by F (wj) =
1
n

∑
i fi(wj). Similar to the single word setting, Figure

6 shows the relationship between the word frequency
and the discovery rate using Algorithm 3. Note that
in the multiple words setting, it is difficult to get a
non-trivial lower bound on the discovery rate of Algo-
rithm 3 because such bound heavily depends on the
distribution of words. Figure 6 shows the discovery
rate and Figure 7 shows the recall of the top K words.
Observe that the top 200 words are recalled at a rate
close to 1 with ε = 4 and δ < 5× 10−9

Figure 6: Sequence frequency vs. the discovery rate in
the multiple words setting.

Figure 7: Recall of the top K words for different fixed
ε in the multiple words setting.

6 Conclusion and Open Questions

We have introduced a novel federated algorithm for
learning the frequent sequences, proved that it is inher-
ently differentially private, investigated the trade-off
between privacy and utility, and showed that it can
provide excellent utility while achieving strong privacy
guarantees. A significant advantage of this approach is
that it eliminates the need to centralize raw data while
also avoiding the harsh utility penalty of differential
privacy in the local model. Many questions remain to
be addressed, including (a) examining whether or not
interactivity is necessary, (b) exploring secure multi-
party computation and cryptographic primitives such
as shuffling, threshold oblivious pseudorandom func-
tions, and fully homomorphic encryption to provide
stronger privacy guarantees, and (c) investigating the
role of local plausible deniability (by allowing users
to vote on wrong prefixes with small probability) and
analyzing the privacy amplification gains obtained in
the central model.



Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, Wei Li

References

Jayadev Acharya, Ziteng Sun, and Huanyu Zhang.
Communication efficient, sample optimal, linear time
locally private discrete distribution estimation. arXiv
preprint arXiv:1802.04705, 2018.

Apple. Learning with privacy at scale. Apple Machine
Learning Journal, 2017.

Brendan Avent, Aleksandra Korolova, David Zeber,
Torgeir Hovden, and Benjamin Livshits. Blender:
enabling local search with a hybrid differential pri-
vacy model. In Proc. of the 26th USENIX Security
Symposium, pages 747–764, 2017.

Borja Balle, James Bell, Adria Gascon, and Kobbi
Nissim. The privacy blanket of the shuffle model.
arXiv preprint arXiv:1903.02837, 2019.

Raef Bassily, Uri Stemmer, Abhradeep Guha Thakurta,
et al. Practical locally private heavy hitters. In
Advances in Neural Information Processing Systems,
pages 2288–2296, 2017.

Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and
Abhradeep Thakurta. Discovering frequent patterns
in sensitive data. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 503–512. ACM, 2010.
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