
Jiacheng Zhuo, Qi Lei, Alexandros Dimakis, and Constantine Caramanis

A Perturb Iterate Analysis of Frank Wolfe Type Methods

While our algorithms and the analysis can be applied to general θ, we focus on the case when θ = 1 for
notation simplicity. Note there could be multiple optimal X, and hence we use X∗ to denote one of the
optimal X out of the whole optimal set, unless otherwise specified. Let’s start with a general definition of
Frank-Wolfe Method framework. The update iteration of Frank-Wolfe Method framework is

Uk = arg min
‖U‖∗≤1

〈∇̃k−1,U〉,

Xk = (1− ηk)Xk−1 + ηkUk,
(12)

where ∇̃k−1 is the estimate of the gradient at point Xk−1, and ηk is the step size at iterate k. For example,
for SFW, ∇̃k−1 is 1

|S|
∑
i∈S ∇fi(Xk−1), for SVRF ∇̃k−1 is the variance reduced stochastic gradient (Hazan

and Luo, 2016), and so on.

Note that the function F is convex and L-smooth.

F (Xk) ≤ F (Xk−1) + 〈∇F (Xk−1),Xk −Xk−1〉+
L

2
‖Xk −Xk−1‖2 (by smoothness)

≤ F (Xk−1) + ηk〈∇F (Xk−1),Uk −Xk−1〉+
Lη2

k

2
‖Uk −Xk−1‖2 (by Eq. (12))

≤ F (Xk−1) + ηk〈∇F (Xk−1),Uk −Xk−1〉+
Lη2

kD
2

2
(by Definition of D)

Let’s look at the second term, which is the focus of our analysis.

〈∇F (Xk−1),Uk −Xk−1〉
=〈∇F (Xk−1)− ∇̃k−1,Uk −Xk−1〉+ 〈∇̃k−1,Uk −Xk−1〉
≤〈∇F (Xk−1)− ∇̃k−1,Uk −Xk−1〉+ 〈∇̃k−1,X

∗ −Xk−1〉 (by Eq. (12))

=〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉+ 〈∇F (Xk−1),X∗ −Xk−1〉
≤F (X∗)− F (Xk−1) + 〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉. (by the convexity of F)

Let hk = F (Xk)− F (X∗) and by putting everything together we get,

hk ≤ (1− ηk)hk−1 + ηk

[
〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉+

LηkD
2

2

]
. (13)

For the last term in the bracket, we call it residual. Note that LηkD
2

2 can be controlled by diminishing step size

ηk. The only remaining term to bound is 〈∇F (Xk−1)−∇̃k−1,Uk−X∗〉, which captures the inexactness
of the gradient estimation. If the gradient is exact, that is, 〈∇F (Xk−1) − ∇̃k−1,Uk −X∗〉 = 0, the
proof is then simple. One can plug in ηk = 2/(k + 1) and show by induction that h(k) ≤ 4LD2/(k + 2).
Indeed for our analysis we would like to have this term decrease with the rate of O(1/k), in order to retain
the O(1/k) convergence rate.

A.1 Convergence of SFW-asyn

For Asyn-SFW, consider the worst case when a worker sends an update uvT based on Xτ . That is,

∇̃k−1 =
1

mk−τ

∑
i∈Sa

∇fi(Xk−τ), (14)

for some sample set Sa. We first setup an upper bound for 〈∇F (Xk−1)−∇̃k−1,Uk−X∗〉. Then we combine
it with Eq. (13) to complete the proof for Theorem 1.

Lemma 1. Under the same assumptions of Theorem 1, let ∇̃k−1 be the gradient estimate defined in Eq. (14),
and Uk is defined in Eq. (12), then we can bound the inexactness of the gradient estimation for SFW-asyn:

E
[
〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉

]
≤ GD
√
mk−τ

+ Lτηk−τD
2

Communication-Efficient Asynchronous Stochastic Frank-Wolfe over Nuclear-norm Balls

Proof.

〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉
≤‖∇F (Xk−1)− ∇̃k−1‖F ‖Uk −X∗‖F
≤D‖∇F (Xk−1)− ∇̃k−1‖F

=

∥∥∥∥∥ 1

mk−τ

∑
i∈Sa

∇fi(Xk−τ)−∇F (Xk−τ) +∇F (Xk−τ)−∇F (Xk−1)

∥∥∥∥∥
F

·D

≤

∥∥∥∥∥ 1

mk−τ

∑
i∈Sa

∇fi(Xk−τ)−∇F (Xk−τ)

∥∥∥∥∥
F

·D + ‖∇F (Xk−τ)−∇F (Xk−1)‖F ·D

Hence the gradient inexactness is decomposed into two parts: the inexactness resulted from stochastic batch
gradient (the first term), and the staleness (the second term). We increase the batch size and hence obtain
a decrease rate of 1/k on the first part.

E

∥∥∥∥∥ 1

mk−τ

∑
i∈Sa

∇fi(Xk−τ)−∇F (Xk−τ)

∥∥∥∥∥
2

F

≤ G2

mk−τ
,

and therefore

E

∥∥∥∥∥ 1

mk−τ

∑
i∈Sa

∇fi(Xk−τ)−∇F (Xk−τ)

∥∥∥∥∥
F

≤ G
√
mk−τ

,

by Jensen’s inequality. For the stochastic inexactness, we have to control it by increasing batch size. Note
that for some applications when the variance of the stochastic gradient shrinks as the algorithm approach
the optimal point, the requirement of increasing batch size can be waived.

For the staleness:

‖∇F (Xk−1)−∇F (Xk−τ)‖F
≤L‖Xk−1 −Xk−τ‖F (by smoothness)

=L‖Xk−1 −Xk−2 + Xk−2 + ...−Xk−τ‖F

≤L
τ+1∑
a=1

‖Xk−a −Xk−a−1‖F (by triangular inequality)

≤L
τ+1∑
a=1

ηk−a‖Uk−a −Xk−a−1‖F (by Eq. (12))

≤Lτηk−τD.
Combining the above two terms we finish the proof.

Now back to the proof of Theorem 1.

Proof of Thm 1. We finish the proof by induction. The case of k = 1 is obviously true:

F (X1)− F ∗ ≤ 〈∇F (X∗),X1 −X∗〉+
L

2
‖X1 −X∗‖2 (by smoothness)

≤ 0 +
LD2

2
.

Jiacheng Zhuo, Qi Lei, Alexandros Dimakis, and Constantine Caramanis

Suppose E [hk] ≤ (4τ+3)2LD2

k+2 for k ≤ T − 1. Then

E [hT] ≤E
[
(1− ηT)hT−1 + ηT

(
〈∇F (XT−1)− ∇̃T−1,UT −X∗〉+

LηTD
2

2

)]
≤E [(1− ηT)hT−1] + ηT

(
GD
√
mT−τ

+ LτηT−τD
2 +

LηTD
2

2

)
(by Lemma 1)

=E
[
T − 1

T + 1
hT−1

]
+

2

T + 1

[
τLD2

T + 1− τ
+

2τLD2

T + 1− τ
+

LD2

T + 1

]
(plug in mT and ηT)

≤T − 1

T + 1

(3τ + 1)4LD2

T + 1
+

2

T + 1

[
τLD2

T + 1− τ
+

2τLD2

T + 1− τ
+

LD2

T + 1

]
(recursion condition)

=
4LD2

(T + 1)2

[
(3τ + 1) (T − 1) +

T + 1

T + 1− τ

(
τ +

τ

2

)
+

1

2

]
≤ 4LD2

(T + 1)2
[(3τ + 1) (T − 1) + 3τ + 1] (τ < T/2)

=
4LD2

(T + 1)2
[(3τ + 1)T]

≤ (3τ + 1)4LD2

(T + 2)
(since

T

(T + 1)2
<

1

T + 2
)

A.2 Convergence of SVRF-asyn

For SVRF-asyn, consider the worst case when a worker sends an update uvT based on Xτ . That is,

∇̃k−1 =
1

mk−τ

∑
i∈Sa

[∇fi(Xk−τ)−∇fi(W)] +∇F (W), (15)

for some sample set Sa.

Before we get started, let’s get prepared with some standard lemma on variance reduced algorithms.

Lemma 2. (Lemma 1 restated in (Hazan and Luo, 2016)) For X,W such that ‖X‖∗ = ‖W ‖∗ = 1

E
[
‖∇fi(X)−∇fi(W) +∇F (W)−∇F (X)‖2

]
≤6L (2E[F (X)− F (W ∗)] + E[F (W)− F (W ∗)])

Lemma 3. Under the same assumptions as in Theorem 2, let ∇̃k−1 be the gradient estimate defined in Eq.
(15), Uk defined as in Eq. (12). If

E ‖∇F (Xk−1)− ∇̃k−1‖F <
15τLD

k + 1− τ
for k ≤ T . Then for k ≤ T

E[F (Xk)− F ∗] ≤ (15τ + 1) · 4LD2

k + 1

Proof. The proof is similar to the proof for Theorem 1. Let hk = F (Xk)− F ∗. We prove by induction.

Communication-Efficient Asynchronous Stochastic Frank-Wolfe over Nuclear-norm Balls

E [hT] ≤E
[
(1− ηT)hT−1 + ηT

(
〈∇F (XT−1)− ∇̃T−1,UT −X∗〉+

LηTD
2

2

)]
=E

[
T − 1

T + 1
hT−1

]
+

2

T + 1

[
LD2(15τ)

T + 1− τ
+

LD2

T + 1

]
(plug in mT and ηT)

≤T − 1

T + 1

(15τ + 1)4LD2

T + 1
+

2

T + 1

[
LD2(15τ)

T + 1− τ
+

LD2

T + 1

]
(plug in hT−1)

=
4LD2

(T + 1)2

[
(15τ + 1) (T − 1) +

1

2
+

T + 1

T + 1− τ
15

2
τ

]
≤ 4LD2

(T + 1)2

[
(15τ + 1) (T − 1) +

1

2
+ 15τ

]
(τ < T/2)

≤ 4LD2

(T + 1)2
[(15τ + 1)T]

≤ (15τ + 1)4LD2

(T + 2)
(since

T

(T + 1)2
<

1

T + 2
)

The remain task is to setup an upper bound for ‖∇F (Xk−1)− ∇̃k−1‖F .

Lemma 4. Under the same assumptions as in Theorem 2, let ∇̃k−1 be the gradient estimate defined in
Eq.(15), Uk defined as in Eq.(12), then we can bound the inexactness of the gradient estimation for SVRF-
asyn:

E ‖∇F (Xk−1)− ∇̃k−1‖F <
LD(15τ)

k + 1− τ

Proof. For notation simplicity, we denote ∇k−1 as the variance reduced gradient. That is,

∇k−1 =
1

mk−1

∑
i∈Sb

(∇fi(Xk−1)−∇fi(W)) +∇F (W)

We show this lemma by induction. The k = 1 case is obvious. Suppose for k < T − 1,

E ‖∇F (Xk−1)− ∇̃k−1‖F <
LD(15τ)

k + 1− τ
.

By above lemma we have

E[F (Xk)− F (W ∗)] ≤ (15τ + 1) · 4LD2

k + 1
.

Then

‖∇F (XT−1)− ∇̃T−1‖F ≤ ‖∇F (XT−1)−∇T−1‖F + ‖∇T−1 − ∇̃T−1‖F .
Bounding ‖∇F (XT−1)−∇T−1‖F :

E ‖∇F (XT−1)−∇T−1‖2F

≤ 6L

mT−1
(2E[F (XT−1)− F (W ∗)] + E[F (W)− F (W ∗)])

≤ 6L

mT−1

(
8LD2

T + 1
+
LD2

2t

)
· (15τ + 1)

≤ 6L

mT−1

(
8LD2

T + 1
+

8LD2

T + 1

)
· (15τ + 1)

=
L2D2

(T + 1)2
· (15τ2 + τ)

≤ L2D2

(T + 1)2
· 16τ2

Jiacheng Zhuo, Qi Lei, Alexandros Dimakis, and Constantine Caramanis

Bounding ‖∇T−1 − ∇̃T−1‖F :

E ‖∇T−1 − ∇̃T−1‖F
=E ‖∇T−1 −∇F (XT−1) +∇F (XT−τ)− ∇̃T−1 +∇F (XT−1)−∇F (XT−τ)‖F
≤E ‖∇T−1 −∇F (XT−1)‖F + E ‖∇F (XT−τ)− ∇̃T−1‖F + E ‖∇F (XT−1)−∇F (XT−τ)‖F

≤ LD

(T + 1)
·
√

16τ2 +
LD

(T + 1− τ)
·
√

16τ2 +
2LDτ

(T + 1− τ)

≤ LD

(T + 1− τ)
· (10τ)

where the first inequality follows from the triangular inequality and the second inequality follows from
Jensen’s inequality, the bound of ‖∇F (XT−1)−∇T−1‖F , and the intermediate result in Lemma 1.

Therefore

E ‖∇F (XT−1)− ∇̃T−1‖F
≤E ‖∇F (XT−1)−∇T−1‖F + E ‖∇T−1 − ∇̃T−1‖F

≤ LD

(T + 1)
· 4τ +

LD

(T + 1− τ)
· 10τ

<
LD(15τ)

T + 1− τ
where the first inequality follows from the triangular inequality and the second inequality follows from
Jensen’s inequality.

By combining the above two Lemma, Theorem 2 is easily established.

A.3 Convergence with constant batch size

Proof of Theorem 3. We prove by induction. The case when k = 1 is obvious. Suppose the theorem is true
for i ≤ k − 1, then for i = k,

E [hk] ≤E
[
(1− ηk)hk−1 + ηk

(
〈∇F (Xk−1)− ∇̃k−1,Uk −X∗〉+

LηkD
2

2

)]
≤E

[
(1− ηk)hk−1 + ηk

(
GD√
m

+
LηkD

2

2

)]
≤ LD

2

k + 1

[
(k − 1)

E [hk−1]

LD2
+

2

c
+

2

k + 1

]
(plug in m and ηk)

≤ LD
2

k + 1

[
4(k − 1)

k + 1
+
k − 1

c
+

2

c
+

2

k + 1

]
=
LD2

k + 1

[
4k − 2

k + 1
+
k + 1

c

]
≤4LD2

k + 2
+

1

c
LD2 (since

k

(k + 1)2
<

1

k + 2
)

Proof of Theorem 4. We prove by induction. The case when k = 1 is obvious. Suppose the theorem is true

Communication-Efficient Asynchronous Stochastic Frank-Wolfe over Nuclear-norm Balls

for k ≤ T − 1, then for k = T ,

hT ≤(1− ηT)hT−1 + ηT

[
〈∇F (XT−1)− ∇̃T−1,UT −X∗〉+

LηTD
2

2

]
≤(1− ηT)hT−1 + ηT

[
GD√
m

+ LτηT−τD
2 +

LηTD
2

2

]
(similar to Lemma 1)

=
T − 1

T + 1
hT−1 +

2

T + 1

[
τLD2

c
+

2τLD2

T + 1− τ
+

LD2

T + 1

]
(plug in m =

c2G2

L2D2
and ηT)

≤T − 1

T + 1

(4τ + 1)2LD2

T + 1
+
T − 1

T + 1

τLD2

c
+

2

T + 1

[
τLD2

c
+

2τLD2

T + 1− τ
+

LD2

T + 1

]
=

4LD2

(T + 1)2

[(
2τ +

1

2

)
(T − 1) +

1

2
+

T + 1

T + 1− τ
τ

]
+
τLD2

c

≤ 4LD2

(T + 1)2

[(
2τ +

1

2

)
(T − 1) +

1

2
+ 2τ

]
+
τLD2

c
(τ < T/2)

=
4LD2

(T + 1)2

[(
2τ +

1

2

)
T

]
+
τLD2

c

≤ (4τ + 1)2LD2

(T + 2)
+
τLD2

c
(since

T

(T + 1)2
<

1

T + 2
)

Proof of Corollory 1. By Eq. (11), let

(4τ + 1) · 2LD2

k + 2
+
τ

c
LD2 ≤ ε

, solve for k, and one can obtain the iteration bounds. For each iteration, we need

O(c2/τ2)

stochastic gradient iteration. Multiply the iteration bound by

O(c2/τ2)

and we can see how much stochastic gradient evaluations that we need. The number of linear optimization
equals the number of total iterations.

Jiacheng Zhuo, Qi Lei, Alexandros Dimakis, and Constantine Caramanis

Algorithm 4 Naive Asynchronous Stochastic Variance Reduced Frank-Wolfe Method (SVRF-asyn) (Only
for analysis, not implementation)

1: // The Master Node
2: Input: Max delay tolerance τ ; Max iteration count T ; max inner-iteration counts Nk; Step size ηt and batch

size mt

3: Initialization: Randomly initialize with ‖X0‖∗ = 1 and broadcast X0.
4: for iteration k = 0, 1, · · · , T do
5: X0 = W k, tm = 1
6: while tm ≤ Nk do
7: Wait until received {Uw, tw} from a worker w.
8: if tm − tw > τ , abandon Uw and continue.
9: tm = tm + 1

10: Xtm ← ηtmUw + (1− ηtm)Xtm−1

11: end while
12: W k+1 = XNk

13: Broadcast W k+1 and the update-W -signal
14: end for
15: // For each worker w = 1, 2, · · · ,W
16: while No Stop Signal do
17: if Update-W -signal then
18: Update the local copy of W and Compute ∇F (W)
19: end if
20: Receive from the Master Xtm .
21: // tm is the inner iteration count at the master node.
22: tw = tm, Xw = Xm.
23: // Update the local copy of X and iteration count.
24: Randomly sample an index set S where |S| = mtw

25: ∇w = 1
mtw

∑
i∈S (∇fi(Xtw)−∇fi(W)) +∇F (W) // the variance reduced minibatch gradient

26: Uw ← argmin‖U‖∗≤θ〈∇w,U〉
27: send {Uw, tw} to the Master node.
28: end while

B Asynchronous Stochastic Variance Reduced Frank Wolfe

In this section we describe how to run SVRF asynchronously, and in a communication efficient way. Similar
to Section 3, we begin with a naive asynchronous SVRF, as in Algorithm 4. The core idea is to run the inner
iteration of SVRF asynchronously.

And then we describe how to make the naive asynchronous SVRF communication efficient. We reduce the
per-iteration communication cost of inner iterations to O(n), as what we achieved in SFW-asyn.

C Distributed Computational Cluster Setup

In this section we describe how to perform the experiments in Section 5 on Amazon AWS.

We use MIT StarCluster software as the heavy-lifting tool for AWS cluster management. We launch 15 AWS
M1.SMALL instances as the worker nodes, and 1 AWS M1.LARGE, and connect these machines with a virtual
private network.

We use MPI4PY (Dalćın et al., 2008) as the fundamental APIs to implement distributed algorithms. MPI4PY
is built on-top-of the Message Passing Standard, and is capable of implementing asynchronus distributed
algorithms

Communication-Efficient Asynchronous Stochastic Frank-Wolfe over Nuclear-norm Balls

Algorithm 5 Asynchronous Stochastic Variance Reduced Frank-Wolfe Method (SVRF-asyn)

1: // The Master Node
2: Input: Max delay tolerance τ ; Max iteration count T ; max inner-iteration counts Nk; Step size ηt and batch

size mt

3: Initialization: Randomly initialize X0 = u0v
T
0 s.t. ‖X0‖∗ = 1 and broadcast {u0,v0} to all the workers; The

iteration count at the master node tm = 0.
4: for iteration k = 0, 1, · · · , T do
5: X0 = W k, tm = 1 // Maintain a local copy for output
6: while tm ≤ Nk do
7: Wait until received from a worker {uw,vw, tw}.
8: if tm − tw > τ then
9: Send (utm ,vtm), ...(utw+1,vtw+1) to node w.

10: continue.
11: end if
12: tm = tm + 1 and store {uw,vw} as utm and vtm
13: Send (utm ,vtm), ...(utw+1,vtw+1) to node w.
14: Xtm ← ηtmutmvTtm + (1− ηtm)Xtm−1

15: // Not run in real time
16: // Maintain a local copy for output
17: end while
18: W k+1 = XNk // Maintain a local copy for output
19: Send update-W -signal to all workers.
20: Send (uN ,vN), ... to all workers.
21: end for
22: // For each worker w = 1, 2, · · · ,W
23: while No Stop Signal do
24: if Update-W -signal then
25: Obtain (uN ,vN), ... from the master
26: Update the local copy of X to XN as in Eqn 6
27: W ←XN and Compute ∇F (W)
28: else
29: Obtain (utm ,vtm), ...(utw+1,vtw+1) from the master node.
30: Update the local copy of Xtw to Xtm according to Eqn 6
31: end if
32: Randomly sample an index set S where |S| = mtw

33: ∇w = 1
mtw

∑
i∈S (∇fi(Xtw)−∇fi(W)) +∇F (W)

34: uwv
T
w ← argmin‖U‖∗≤θ〈∇w,U〉

35: send {uw,vw, tw} to the Master node.
36: end while

D More simulation results

In order to better understand how much speedup asynchrony offers, and the conditions that the speedup
occur, we test SFW-asyn against SFW-dist for matrix sensing and PNN under a distributed computational
modeled by queuing theory.

Queuing model is frequently used to model the staleness of each workers in distributed computational setting
Mitliagkas et al. (2016). We consider each D1D2 operation takes one unit of time in expectation. Therefore,
each stochastic gradient evaluation of matrix sensing and PNN takes one unit of time in expectation; we
solve the 1-SVD up to a practical precision Allen-Zhu et al. (2017), and we consider 1-SVD takes ten units of
time in expectation. In our simulation we find that setting the expected time of 1-SVD as ten or twenty or
five has marginal impact on the results. We further assume that the computation time follows a geometric
distribution:

Assumption 3. Denote random variable t as the computation time required for each worker to finish a
computation task that takes C units of time in expectation. Then for x = C, 2C, ...nC, P(t = x) = p(1 −
p)x/C−1 for a distribution parameter p.

The intuition behind the staleness parameter p is that, when p is set to 1, there is no randomness - each
worker finish the work in the exactly same amount of time. When the staleness parameter is small, say, 0.1,
then the computational time of each worker differs a lot - some may finish their jobs faster, while some are

Jiacheng Zhuo, Qi Lei, Alexandros Dimakis, and Constantine Caramanis

slower.

We want to emphasize that

(1) this assumption is not required for our convergence results (Theorem 1 and 2) to hold.

(2) the cost of communication is not taken into consideration, and hence we are implicitly favoring sfw-dist.

We show the convergence VS simulated time in Fig 6, and the speedup over single worker in in Fig 7. As
in Fig 7, the speedup of SFW-asyn is almost linear, while SFW-dist compromises as the number of workers
get larger.

The improvement over SFW-dist is less significant, as we increase the staleness parameter from p = 0.1 to
p = 0.8. Obviously, SFW-dist performs better on large staleness parameter. When the staleness parameter
is closer to one, the machines performs more uniformly (i.e., they finish the mini-batch computation in the
similar amout of time), and therefore the slow-dowm of SFW-dist due to slowest worker is less significant.
However, the performance of SFW-asyn also compromises slightly, as we go from p = 0.1 to p = 0.8. That
is, SFW-asyn slightly prefer random delay, rather than consistent delay. This means that our analysis based
on worst case scenario is loose, and can be improved.

Figure 6: Convergence of the relative loss of Matrix Sensing problem VS the time simulated by queuing
model. Simulation are repeated 5 times, and 1 standard deviation is shown in the colored shadow.

Figure 7: Comparing the time needed to achieve the same relative error (0.002) against single worker.

