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Abstract

Large-scale machine learning training suf-
fers from two prior challenges, specifi-
cally for nuclear-norm constrained prob-
lems with distributed systems: the syn-
chronization slowdown due to the strag-
gling workers, and high communication
costs. In this work, we propose an asyn-
chronous Stochastic Frank Wolfe (SFW-
asyn) method, which, for the first time,
solves the two problems simultaneously,
while successfully maintaining the same
convergence rate as the vanilla SFW. We
implement our algorithm in python (with
MPI) to run on Amazon EC2, and demon-
strate that SFW-asyn yields speed-ups al-
most linear to the number of machines
compared to the vanilla SFW.

1 Introduction

We consider the problem of minimizing a convex and
smooth matrix function subject to a nuclear norm
constraint:

min
‖X‖∗≤θ

F (X) =
1

N

N∑
i

fi(X), (1)

where F maps from RD1×D2 to R, and ‖X‖∗ denotes
the nuclear norm of X, i.e., the sum of its singular
values. We view the objective F as a summation
of N sub-problems f1, f2, · · · fN . This formulation
covers various important machine learning applica-
tions, including matrix completion, matrix sensing,
multi-class and multi-label classification, affine rank
minimization, phase retrieval problems, and many
more (see e.g. Candes et al. (2015); Allen-Zhu et al.
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(2017); Lei et al. (2019) and references therein). We
are especially interested in the large sample setting,
i.e., when the total number of subproblems (data
examples) N and model size D1, D2 are large.

The Frank-Wolfe methods are frequently used for
solving problem 1. As first proposed by Frank and
Wolfe (1956), one can compute and update the pa-
rameters along the gradient descent direction while
remaining within the constraint set. This is thus
called the Frank-Wolfe (FW) algorithm or condi-
tional gradient descent. The nuclear norm con-
straint requires the computation of the leading left
and right singular vectors of the gradient matrix,
with a complexity of O(D1D2). A natural alterna-
tive among first-order algorithms is the Projected
Gradient Descent (PGD). The projection step, how-
ever, requires a full SVD per iteration, with much
higher complexity: O(D1D2 · min(D1, D2)). This
makes PGD computationally expensive for large-
scale datasets.

Classical FW runs on a single machine and passes
the whole dataset in each iteration. As datasets in-
crease and Moore’s Law is slowing down (Simonite,
2016), the move towards stochastic variants of FW
has become imperative (Hazan and Luo, 2016).
In the meantime, it is also crucial to study dis-
tributed FW implementations, where gradient com-
putation and aggregation is parallelized across mul-
tiple worker nodes (Zheng et al., 2018; Bellet et al.,
2015). Although distributed computation boosts the
amount of data that can be processed per iteration,
it may introduce prohibitive communication over-
head, particularly in the big data setting with high-
dimensional parameters. Specifically, there are two
challenges: (1) the stragglers dominate each itera-
tion due to synchronization (Liu et al., 2015; Hsieh
et al., 2015; Reddi et al., 2015; Recht et al., 2011;
Tandon et al., 2017); (2) there is a large communi-
cation cost per iteration (O(D1D2)) due to gradient
and parameter sharing. For problem (2), (stochas-
tic) FW is natural and appealing: the low-rank up-
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dates can be represented as a few vectors and they
require fewer bits to transmit than the partial gradi-
ents. However, naively aggregating the low-rank up-
dates from the workers does not yield an algorithm
that converges, as the Singular Vector Averaging al-
gorithm in the work of Zheng et al. (2018). While
natural and promising, there are several significant
technical obstacles towards designing an efficient and
provably convergent distributed FW algorithm. To
the best of our knowledge, no prior work has suc-
cessfully addressed this.

We thus raise and answer the following two questions
in this work:

(1) Can FW type algorithms provably run in an
asynchronous manner, so that the iteration time is
not dominated by the slowest worker?

(2) Can we improve the communication cost of run-
ning FW in the distributed setting?

In this work, we are able to answer both of these
questions affirmatively, by proposing and analyzing
an asynchronous version of Stochastic Frank-Wolfe
algorithm, which we call SFW-asyn.

Our contributions.

We propose a Stochastic Frank-Wolfe algorithm
(SFW-asyn) that runs asynchronously and is
communication-efficient. We establish that SFW-
asyn (Algorithm 3) enjoys a O(1/k) convergence
rate, which is in line with the standard SFW. Apart
from the asynchronous nature, SFW-asyn reduces
the communication cost from O(D1D2) as in most
prior work, to O(D1 +D2).

Our theoretical analysis framework is general for
other Frank-Wolfe type method. We specifically pro-
vide the extension for Stochastic Variance Reduced
Frank-Wolfe (SVRF) (Hazan and Luo, 2016).

Finally, we use Amazon EC2 instances to pro-
vide extensive performance evaluation of our algo-
rithm, and comparisons to vanilla SFW and dis-
tributed SFW on two tasks, matrix sensing and
learning polynomial neural networks. Our results
show that SFW-asyn outperforms all the bench-
marks and achieves speed-ups almost linear in the
number of distributed machines.

Related work.

We mainly overview two different lines of work that
are respectively related to the distributed Frank-
Wolfe algorithms, and the asynchronous manner in
distributed learning.

-Distributed Frank-Wolfe Algorithms. For general
network topology, Bellet et al. (2015) proposes a
distributed Frank-Wolfe algorithm for `1 and sim-

plex constraints, but not for the nuclearn-norm con-
straint.

On a master-slave computational model, Zheng et al.
(2018) proposes to distribute the exact gradient
computation among workers and aggregate the gra-
dient by performing O(t) distributed power itera-
tions at iteration t. This involves even more fre-
quent synchronizations than the vanilla distributed
Frank-Wolfe method and will be hindered heav-
ily by staleness. Specifically, to run T iterations,
the distributed FW algorithm proposed by Zheng
et al. (2018) requires a total communication cost
of O(T 2(D1 + D2), while SFW-asyn only requires
O(T (D1 + D2)). Furthermore, as we consider the
case when data samples are very large, stochastic
optimization is more efficient than exact gradient
computation, and the whole sample set might not
fit into memory. Therefore the method proposed by
Zheng et al. (2018) and other full-batch FW meth-
ods are beyond the interests of our paper.

Quantization techniques have also been used to re-
duce the communication cost for SFW, like Zhang
et al. (2019), who proposed a novel gradient encod-
ing scheme (s-partition) to reduce iteration commu-
nication cost. However their results are for `1 con-
strained problem, and are thus not directly compa-
rable to our results.

-Asynchronous Optimization. There is a rich pre-
vious effort in the research on asynchronous opti-
mization, such as asynchronous Stochastic Gradient
Descend (SGD) (Recht et al., 2011), asynchronous
Coordinate Descend (CD) (Liu et al., 2015; Hsieh
et al., 2015), and asynchronous Stochastic Variance
Reduced Gradient (SVRG) (Reddi et al., 2015). Ma-
nia et al. (2015) proposes a general analysis frame-
work, which however, is not applicable for SFW.
Wang et al. (2014) proposes Asynchronous Block
Coordinate FW and achieves sub-linear rate. They
assume the parameters are separable by coordinates,
and hence different from our problem setting.

2 Preliminary

2.1 Frank-Wolfe method

We start by reviewing the classical (Stochas-
tic) Frank-Wolfe (FW/SFW) algorithms. Con-
sider a general constrained optimization problem

minX∈Ω

{
F (X) := 1

N

∑N
i fi(X)

}
. FW proceeds in

each iteration by computing:

Uk = arg min
U∈Ω

〈∇F (Xk−1),U〉, (2)

Xk = (1− ηk)Xk−1 + ηkUk. (3)
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and SFW replaces the full batch gradient by a mini-
batch gradient

Uk = arg min
U∈Ω

〈
1

|Sk|
∑
i∈Sk

∇fi(X),U

〉
, (4)

Xk = (1− ηk)Xk−1 + ηkUk. (5)

where Sk is a randomly selected index set. We will
refer to Eqns (2) and (4) as linear optimization steps.

The complexity of the Frank-Wolfe type methods
depends on that of the linear optimization steps.
Fortunately, for a wide class of constraints Ω, the
linear optimization, with the projection-free nature,
is of relatively low computational complexity. For
instance when Ω is ‖X‖∗ ≤ 1, the linear optimiza-
tion step is to compute the leading left singular vec-
tor u and the right singular vector v of the negative
gradient (or mini-batch gradient), and return uvT .

2.2 Computational Model

Figure 1: Illustration on different distributed frame-
works. ‘P’ stands for Parameter-server, and ‘W’ denotes
workers. We focus on the master-slave paradigm (left),
where all the workers are directly connected to the mas-
ter node. Our algorithms and analysis can be easily mod-
ified for a shared-memory model (right), where all the
machines have high speed access to one storage device,
instead of being connected by network.

In this work we focus on the master-slave compu-
tational model, which is commonly used for dis-
tributed applications (Li et al., 2014a). In the
master-slave model, we have W worker (slave) nodes
and one Master node (parameter server). Each
worker has access to all the data and therefore is
able to compute fi(X) and ∇fi(X) when X is
given. The Master node has direct connection to
each worker node and serves as the central coordi-
nator by maintaining the model parameters.

Although synchronous framework is commonly used
for iterative algorithms as they require minimal
modification of the original algorithms, the running
time of each iteration is confined by the slowest
worker (Li et al., 2014b; Dean et al., 2012). This
is why asynchronous distributed algorithms are de-
sirable: each machine just works on their assigned
computations, and communicates by sending signals
or data asynchronously (Recht et al., 2011; Liu et al.,
2015; Hsieh et al., 2015). The benefits of asyn-
chronous algorithms are obvious: the computational
power for each machine is fully utilized, since no
waiting for the straggling workers is necessary. Un-

fortunately, the asynchronous version of an iterative
algorithm may suffer from the effect of staleness.

Definition 1. In the asynchronous computational
model, workers may return stale gradients that were
evaluated at an older version of the model X; we
call that there is a staleness of τ if Xt+1 is updated
according to Xt−τ .

Figure 2: Delay (staleness) for a worker w is the number
of updates by other workers between two updates of w.

As shown in Figure 2, staleness happens when a
worker tries to update the parameter server with
out-dated information. In other words, when each
worker deals with its own computation, other work-
ers may have updated the model of the parameter
server already. Staleness on a worker w during t exe-
cution cycle is a series of t random variables, and we
call this staleness process for the worker w. We re-
quire mutual independence on the staleness process,
and the independence between the staleness process
among workers and the sampling process of a worker.

Assumption 1. The staleness process of worker wi
and the staleness process of worker wj are indepen-
dent, for all i 6= j.

Assumption 2. The staleness process of worker w
is independent with the sampling process (for the
stochastic gradient computation) on the worker w.

These two assumptions are standard in the analysis
of asynchronous algorithms (Mitliagkas et al., 2016).

Although we focus on the master-slave computa-
tional model, our algorithm and analysis can be eas-
ily modified for the shared-memory computational
model (Recht et al., 2011), where all the workers
have high speed access to one shared storage device.
A typical example is a server with multiple CPUs,
and these CPUs have access to a same piece of mem-
ory. In the shared-memory model, communication
is no longer an issue. Our proposal mostly benefits
from the lock-free nature under this setting.

2.3 Notation

We use bold upper case letter for matrices, e.g.
X, and bold lower case letter for vectors, e.g. x.
We define the matrix inner product as 〈X,Y 〉 =
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Algorithm 1 Distributed Stochastic Frank-Wolfe
(SFW-dist) (A baseline method)

1: Input: Max iteration count T ; Step size ηt and
batch size mt for iteration t.

2: Initialization: Random X0 s.t. ‖X0‖∗ = 1.
3: for iteration k = 1, 2, · · · , T do
4: Broadcast Xk−1 to all workers.
5: for each worker w = 1, 2, · · · ,W do
6: Randomly sample an index set Sw where |Sw| =

mk/W
7: Compute and send

∑
i∈Sw

∇fi(Xk−1) to the
master

8: end for
9: ∇k =

∑W
w=1

∑
i∈Sw

∇fi(Xk−1)

10: Uk ← argmin‖U‖∗≤θ〈∇k,U〉
11: Xk ← ηkUk + (1− ηk)Xk−1

12: end for

trace(XTY ). A function F is convex on set Ω if

F (Y ) ≥ F (X) + 〈∇F (X),Y −X〉,∀X,Y ∈ Ω.

Similarly, F is L-smooth on set Ω when

‖∇F (X)−∇F (Y )‖ ≤ L‖X − Y ‖,∀X,Y ∈ Ω.

We use F ∗ to denote min‖X‖∗≤θ F (X), namely the
minimal value that F can achieve under the con-
straints. Note there could be multiple optimal X,
and hence we use X∗ to denote one of them, un-
less otherwise specified. Specifically for Problem
1, define D as the diameter of the constraint set:
D = max‖X‖∗≤θ,‖Y ‖∗≤θ ‖X − Y ‖F , and define G
as the variance of the stochastic gradient: G2 ≤
E ‖∇fi(X)−∇F (X)‖2F , for all ‖X‖∗ ≤ θ.

3 Methodology

Figure 3: Illustration of simplified asynchronous com-
putation scheme. ‘W’ denotes workers, and ‘X’ denotes
the iteration variable. All the subscript of ‘X’ refer to
the iteration number at the master node. In SFW-asyn,
the update ‘1’ updates the model to Xk−1 with gradi-
ent computed according to Xk−3, and hence the delay
is 1. The delay is 1 and 0 for the update ‘2’ and ‘3’
respectively.

A natural way to deploy Stochastic Frank-Wolfe
(SFW) on a master-slave distributed paradigm is
explained as follows in four steps. For each itera-
tion, we first have each worker w = 1...W to com-
pute 1/W portion of the mini-batch gradients. The

Algorithm 2 Naive Asynchronous Stochastic
Frank-Wolfe Method (Only for analysis)

1: // The Master Node
2: Input: Max delay tolerance τ ; Max iteration count
T ; Step size ηt and batch size mt for iteration t.

3: Initialization: Random X0 s.t. ‖X0‖∗ = 1; broad-
cast X0 to all the workers; the iteration count at the
master node tm = 0.

4: while tm < T do
5: Wait until {Uw, tw} is received from a worker w.
6: // Uw is computed by worker w according to Xtw

7: If tm − tw > τ , abandon Uw and continue.
8: tm = tm + 1
9: Xtm ← ηtmUw + (1− ηtm)Xtm−1

10: // Update X in the master node with U tw .
11: Broadcast Xtm to all the workers
12: end while
13: // For each worker w = 1, 2, · · · ,W
14: while No Stop Signal do
15: Receive from the Master Xtm .
16: // tm is the iteration count at the master node.
17: tw = tm, Xw = Xm.
18: // Update the local copy of X and iteration count.
19: Randomly sample an index set S where |S| = mtw

20: Uw ← argmin‖U‖∗≤θ〈
∑
i∈S ∇fi(Xw),U〉

21: Send {Uw, tw} to the Master node.
22: end while

master node next collects the mini-batch gradients
from all the workers. It then computes the update
for X, as in Eqn.(4), Eqn.(5). Finally the master
node broadcasts the updated X to all the workers.
We call this approach SFW-dist and describe it in
Algorithm 1. SFW-dist and its full batch variant
serve as competitive baselines for previous state-of-
the-arts (Zheng et al., 2018).

However, SFW-dist has two obvious drawbacks:
high communication cost and synchronization
slow down. Specifically, the master has to collect
a gradient estimation from each worker for each it-
eration, while the size of the gradient is O(D1 ·D2).
When D1 and D2 are large, this communication cost
is unaffordable (Zheng et al., 2018). On the other
hand, the master has to wait to receive the gradient
matrix from all workers in order to compute each
update, and therefore the time cost per iteration is
dominated by the slowest worker.

We thus propose Asynchronous Stochastic Frank-
Wolfe method (SFW-asyn), which simultaneously
resolves the above two challenges.

For the ease of understanding, we gradually build up
to our methodology and first introduce a naive ver-
sion of asynchronous SFW in Algorithm 2. It only
bares the benefit of asynchronous nature but no effi-
cient communication yet. Algorithm 2 is for illustra-
tion and analysis only, and not for implementation.
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Algorithm 3 Asynchronous Stochastic Frank-Wolfe
Method (SFW-asyn)

1: // The Master Node
2: Input: Max delay tolerance τ ; Max iteration count
T ; Step size ηt; Batch size mt for iteration t;

3: Initialization: Randomly initialize X0 = u0v
T
0 s.t.

‖X0‖∗ = 1 and broadcast {u0,v0} to all the work-
ers; The iteration count at the master node tm = 0.

4: while tm < T do
5: Wait until {uw,vw, tw} is received from a worker

w. // uw,vw are computed according to Xtw .
6: if tm − tw > τ then
7: Send (utm ,vtm), ...(utw+1,vtw+1) to node w.
8: continue.
9: end if

10: tm = tm + 1 and store {uw,vw} as utm and vtm
11: Send (utm ,vtm), ...(utw+1,vtw+1) to node w.
12: Xtm ← ηtmutmv

T
tm + (1 − ηtm)Xtm−1 // Not in

real time; maintain a copy of Xk for output only.
13: end while
14: // For each worker w = 1, 2, · · · ,W
15: while No Stop Signal do
16: Obtain (utm ,vtm), ...(utw+1,vtw+1) from the

master.
17: Update the local copy of Xtw to Xtm (Eqn.(6));
18: Update the local iteration count tw = tm.
19: Randomly sample an index set S where |S| = mtw

20: uwv
T
w ← argmin‖U‖∗≤θ〈

∑
i∈S ∇fi(Xtw ),U〉

21: send {uw,vw, tw} to the Master node.
22: end while

Then we will explain how to reduce the iteration
complexity to O(D1 +D2) by making use of the low
rank update nature of SFW. The whole algorithm,
SFW-asyn, is described in Algorithm 3.

As described in Algorithm 2, each worker computes
a mini-batch gradient according to the latest X it
has access to, and sends the updates to the master.
We denote by tw as the iteration count of X that the
worker w is using to compute the updates. When the
update from the worker w reaches the master node,
the X in the master node reaches tm already, due to
updates from the other workers. If the delay, defined
as tm− tw, exceeds the maximum delay tolerance τ ,
the master node will abondon this update. Other-
wise, the master node updates the X accordingly
and broadcasts the new X to all the workers. Algo-
rithm 2 does not have to wait for one particular slow
worker in order to proceed, and therefore is resilient
to the staleness of workers.

While Algorithm 2 addresses the straggler problem,
the communication cost is still O(D1D2). The in-
tuition of reducing the communication cost is that,
all the updates matrix U are rank one matrices, and
can be perfectly represented by the outer products
of two vectors. A natural idea is thus to transfer
and store the vectors for potential updates, instead

of the whole gradient matrices. We ask the work-
ers to transfer, instead of U , two vectors u,v with
uvT = U , to the master. The master transfers back
{utw ,vtw}, ..., {utm+1,vtm+1} , instead of Xtm , to
the worker w, and let the worker w to update its
own copy of Xtw to Xtm by recursively computing

Xk = (1− ηk)Xk−1 + ηkukv
T
k . (6)

From this practice, we reduce the communication
cost to O(D1 +D2).

Although we introduce a few extra operations that
require (D1D2) computation as in the lines 3 of Al-
gorithm 3, we lifted the need to aggregate gradients
from workers as in SFW-dist, which also requires
O(D1D2) computation. Since the linear optimiza-
tion (in this case, 1-SVD) requires O(D1D2) compu-
tation anyways, these operations do no change the
asymptotic computation time.

Following the similar spirit, we propose the asyn-
chronous Stochastic Variance Reduced Frank-Wolfe
method (SVRF-asyn). We defer the full version
(both asynchronous and communication efficient) to
the Appendix in Algorithm 4 (not communication
efficient, and only for analysis instead of implemen-
tation) and Algorithm 5.

Communication Cost of SFW-asyn For each it-
eration, one worker is communicating with the mas-
ter. The worker sends a {utw ,vtw , tw} to the mas-
ter, and the master sends back an update sequence
{utm ,vtm}, ..., {utw+1,vtw+1}, to the worker. Con-
sider the following amortized analysis. From itera-
tion 1 to iteration T , a worker w received at most T
pairs of {u,v} from the parameter server so that to
keep its local copy of X up-to-date. For all the W
workers, the total amount of message they send to
the parameter server is T pairs of {u,v}. Therefore,
from iteration 1 to iteration T , for all the W work-
ers, messages sent from the parameter server to the
workers are at most with the size of (TW (D1 +D2)),
and the messages sent from workers to the parame-
ter server are at most with the size of (T (D1 +D2)).
For each iteration, on average, the communication
cost is O(W (D1 + D2)). Since in the master-slave
computational model, each worker has a direct con-
nection channel with the parameter server, the com-
munication cost along each channel is O(D1 + D2)
per iteration.

4 Theoretical Analysis

The analysis shown in this Section are developed un-
der Assumption 1 and 2. We first present the con-
vergence results for SFW-asyn, and the discuss the
convergence behavior in a more practical scenario
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where the batch size is fixed (or capped).

Theorem 1. (The O(1/k) convergence rate of
SFW-asyn). Consider problem 1, where F (X) is
convex and L-smooth over the nuclear-norm ball.
Denote hk = F (Xk) − F ∗, where Xk is the output
of the kth iteration of SFW-asyn. If for all i < k,

mi = G2(i+1)2

τ2L2D2 , ηi = 2
i+1 , τ < T/2,

E [hk] ≤ (3τ + 1) · 4LD2

k + 2
(7)

We defer the proof to the appendix. The O(1/k)
convergence rate of SFW-asyn matches the conver-
gence rate of the original SFW (Hazan and Luo,
2016). While there is aO(τ) slowdown in the conver-
gence rate comparatively, we only require a O(i2/τ2)
batch size for each iteration i, instead of O(i2) as in
the original SFW.

The requirement of increasing batch size for SFW is
that, there is no self-tuning gradient variance, and
decreasing step size is not enough to control the error
introduced by stochastic gradient.

The intuition of why SFW-asyn requires a small
batch size for each iteration is that, while the er-
ror of asynchronous update already dominates the
error for each iteration (by a factor of τ), it will not
change the order-wise behavior by having the gra-
dient variance to be in the same scale as the error
introduced by asynchronous update.

Our analysis, detailed in the appendix, is based on
perturbed iterate analysis. This analysis is general-
izable: with minor modification, we can show that
SVRF-asyn converges, as in the below theorem.

Theorem 2. (The convergence rate of SVRF-
asyn). Consider problem 1, where F (X) is convex
and L-smooth over the nuclear-norm ball. Denote
hk = F (W k) − F ∗, where W k is the output of the

SVRF-asyn at its k outer iteration. If mk = 96(k+1)
τ ,

ηk = 2
k+1 , Nt = 2t+3 − 2, the maximum delay is τ ,

then

E [hk] ≤ (3τ + 12) · 4LD2

2k+1
(8)

We defer the proof to the appendix. This conver-
gence rate is the same as in original SVRF (Hazan
and Luo, 2016).

4.1 Constant Batch Size

As discuss in the previous sub-section, the neces-
sity of increasing batch size is not brought up by
our asynchronous modification, but in the original
Stochastic Frank-Wolfe method (Hazan and Luo,
2016). However as the size of the mini-batch in-

creases, it may get close to the size of the entire
dataset, which often violates the interests of prac-
tical implementation. Below we briefly discuss two
side-steps: (1) When the problem has the shrink-
ing gradient variance, the requirement of increasing
batch size can be lifted (2) when only an approx-
imately good result is needed (which is often the
case when FW method is used), a fixed batch size
will lead to a convergence to the optimal neighbour-
hood, with the same iteration convergence rate, for
both the original SFW and our proposed SFW-asyn.

We show first that as long as the variance of the
stochastic gradient is diminishing as the algorithm
proceeds, the requirement of increasing batch size
can be lifted.

Definition 2. (shrinking gradient variance.)
A function F (X) = 1

nfi(X) has shrinking gradient
variance if the following holds:

E
[
‖∇fi(Xk)−∇F (Xk)‖2F

]
≤ G2

(k + 2)2
(9)

as E [‖Xk −X∗‖F ] ≤ c
k+2 for some constant c and

G, and for an optimal solution X∗.

For example, it is easy to verify that the noiseless
matrix completion problem and the noiseless matrix
sensing problem have the property of shrinking gra-
dient variance.

It is easy to check that, under the shrinking gra-
dient variance condition, one can change the batch

size requirement from mi = G2(i+1)2

L2D2 to m = G2(c)2

L2D2

for SFW and from mi = G2(i+1)2

τ2L2D2 to m = G2(c)2

τ2L2D2

for SFW-asyn, and maintain the same convergence
rate as in Theorem 3 in Hazan and Luo (2016) and
Theorem 1 in the previous subsection.

While the shrinking gradient variance property is
not presented, having a constant batch size will have
SFW and SFW-asyn converges to a local neighbour-
hood of the optimal value:

Theorem 3. (SFW converges to a neighbour
of the optimal with constant batch size). Con-
sider problem 1, where F (X) is convex and L-
smooth over the nuclear-norm ball. Denote hk =
F (Xk) − F ∗, where Xk is the output of the kth it-

eration of SFW. If for all i < k, mi = G2c2

L2D2 for a
constant c, ηi = 2

i+1 , then

E [hk] ≤ 4LD2

k + 2
+

1

c
LD2 (10)

The first term, 4LD2

k+2 is inline with the convergence
rate of the original SFW (Hazan and Luo, 2016).
Having a fixed batch size will incur a residual error
1
cLD

2 controlled by the batch size c. Similar con-
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vergence result holds for SFW-asyn:

Theorem 4. (SFW-asyn converges to a neigh-
bour of the optimal with constant batch size).
Consider problem 1, where F (X) is convex and L-
smooth over the nuclear-norm ball. Denote hk =
F (Xk) − F ∗, where Xk is the output of the kth it-

eration of SFW-asyn. If for all i < k, mi = G2c2

τ2L2D2

for a constant c, ηi = 2
i+1 , τ < T/2,

E [hk] ≤ (4τ + 1) · 2LD2

k + 2
+
τ

c
LD2 (11)

Note that the batch size in Theorem 4 is τ2 times
smaller than the batch size in Theorem 3. The proofs
of the above two theorems are in the appendix.

Corollary 1. (Complexity to reach ε accuracy
with fixed batch size) For Algorithm 3 to achieve

F (X)−F ∗ ≤ ε, we need O
(

τ
ε−τ/c

)
iterations in the

master node. It means, among all the machines, in

total, we need O
(

c2

τε−τ2/c

)
stochastic gradient evalu-

ations, and O
(

τ
ε−τ/c

)
times linear optimization (1-

SVD).

We defer the proof to the Appendix.

# Sto. Grad. # Lin. Opt.

SFW-asyn O
(

c2

τε−τ2/c

)
O
(

τ
ε−τ/c

)
SFW O

(
c2

ε−1/c

)
O
(

1
ε−1/c

)
Table 1: Complexity comparison between SFW-
asyn and SFW (Hazan and Luo, 2016) with fixed
batch size (defined by the constant c, see Theorem
3 and 4). # Linear Opt. is the abbreviation
of the number of linear optimization and #
Sto. Grad. is the abbreviation of the number of
stochastic gradient evaluation.

How good are these complexity results? To inter-
pret Table 1 in a simple way, one could consider
the case using a very large batch size c, and there-
fore SFW-asyn roughly reduces the stochastic gradi-
ent evaluations to 1

τ portion of SFW, and requires τ
times of linear optimizations. This is a good trade-
off between the two processes considering we tackle
the problems with very large-scale data-set where
the stochastic gradient evaluation will dominate the
computation for each iteration. In this sense, by
simply viewing the number of operations required in
each model update, SFW-asyn is already on par with
or better than vanilla SFW, not including the speed-
ups due to distributed computations with multiple
workers.

5 Empirical Results

In this section we empirically show the convergence
performance of SFW-asyn, as supported by our the-
orems. We also show the speedup of SFW-asyn over
SFW-dist on AWS EC2.

5.1 Setup

First let’s review two machine learning applications:
Matrix sensing. Matrix sensing problem is to es-
timate a low rank matrix X∗, with observations
of sensing matrices Ai and sensing response yi =
〈Ai,X

∗〉, for i = 1...N . It is an important problem
that appears in various fields such as quantun com-
puting, image processing, system design, and so on
(see Park et al. (2016) and the references there in).
Its connection to neural network is also an active re-
search topic (Li et al., 2017).
Polynomial Neural Network (PNN). PNN is
the neural network with polynomial activation func-
tion. PNN has been shown to have universal repre-
sentation power just as neural networks with sigmoid
and ReLU activation function (Livni et al., 2014).

We test the performance of SFW-asyn on minimiz-
ing the empirical risk of the matrix sensing problem
with synthesized data: (1) generate the ground truth
matrix X∗ = UV T /‖UV T ‖∗ where U ,V ∈ R30×3

are generated by uniformly sampling from 0 to 1 for
each entry; (2) generate N = 90000 sensing matrices
Ai by sampling each entry from a standard normal
distribution (3) compute response yi =< Ai,X

∗ >
+ε where ε is sampled from a Gaussian distribution
with mean 0 and standard deviation 0.1. The em-
pirical risk minimization for this task is

min
‖X‖∗≤1

F (X) =
1

N

N∑
i

(〈Ai,X〉 − yi)2.

We also test SFW-asyn on minimizing the training
loss of a Two layers PNN with quadratic activation
function and smooth hinge loss to classify MNIST
dataset of handwritten digits. In MNIST we have
60000 training data (ai, yi), where ai are vectorized
28 ∗ 28 pixels images, and yi are the labels. We set
yi = −1 if the label is 0, 1, 2, 3, 4 or yi = 1 otherwise.
We divide the data ai by 255 and therefore they are
within zero and one. Hence the training objective of
this neural network is

min
‖X‖∗≤θ

F (X) =
1

N

N∑
i

s-hinge(yi,a
T
i Xai),

where the smooth hinge loss function s-hinge(y, t)
equals 0.5 − ty if ty ≤ 0, equals (0.5 · (1 − ty))2 if
0 ≤ ty ≤ 1, and equals 0 otherwise. While one can
tune θ for good classification performance, we only
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Figure 4: Convergence of the relative loss vs runtime on AWS EC2 cluster. The first row shows the results for Matrix
Sensing problem on synthesized data, and the second row shows that results for PNN on MNIST classification. The
averages of 10 runs are shown, and the range of one standard deviation is shown as a shadow overlay.

show the results for θ = 1 as we are only interested
in minimizing the objective value.

The hyper-parameters are mostly chosen as indi-
cated by our analysis in Section 4. We set the max-
imum batch-size to be 10000 for the matrix sensing,
and 3000 for the PNN, such that the gradient com-
putation time dominates the 1-SVD computation.

The distributed computation environment is set-up
on AWS EC2. We leave the details in the Appendix.

5.2 Result analysis

We show the convergence results against the wall
clock time on AWS EC2 in Figure 4, and show the
speedup against single worker in Figure 5.

Both SFW-dist and SFW-asyn obtain a better
speedup result for the Matrix Sensing problem than
PNN. SFW-dist has up to five times speedup for
the Matrix Sensing problem, but only has marginal
speedup on PNN problem, because the variable ma-
trix size is much larger in the PNN problem than
the Matrix Sensing problem. The variable matrix
size in the Matrix Sensing problem is 30× 30 = 900,
while in PNN it is 784× 784 ≈ 640k. And hence the
speedup is quickly counteracted by the communica-
tion overhead. Although the communication cost of
SFW-asyn is not as sensitive as SFW-dist to the
increase of the matrix size, a larger variable ma-
trix does increase the computation cost of the lin-
ear optimization. As in our Corollary 1, SFW-asyn
might comparatively perform more linear optimiza-
tion, and hence SFW-asyn compromises in terms of
the overall speedup ratio.

Nevertheless, the performance of SFW-asyn consis-

Figure 5: Comparing the time needed to achieve the
same relative error (0.02 for PNN and 0.001 for Matrix
Sensing) against single worker.

tently outperforms SFW-dist.

6 Conclusion

In this work we propose Asynchronous Stochas-
tic Frank-Wolfe method, which simultaneously ad-
dress the synchronization slow-down problem, and
reduce the communication cost from O(D1D2) to
O(D1 +D2). We establish the convergence guaran-
tee for SFW-asyn that matches vanilla SFW, and
show by simulations that SFW-asyn achieves signif-
icant speedup over the baseline approach.
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