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Abstract

In many real-world planning applications, e.g.
dynamic design of experiments, autonomous
driving and robot manipulation, it is neces-
sary to evaluate candidate movement paths
with respect to a safety cost function. Here,
the continuous candidate paths need to be dis-
cretized first and, subsequently, evaluated on
the discretization points. The resulting qual-
ity of planned paths, thus, highly depends on
the definition of the safety cost functions, and
the resolution of the discretization. In this
paper, we propose an approach for evaluating
continuous candidate paths by employing an
adaptive discretization scheme, with a prob-
abilistic cost function learned from observa-
tions. The obtained path is then guaranteed
to be e-safe, i.e. the remaining risk of still
finding an unsafe point on the trajectory is
smaller than e. The proposed approach is in-
vestigated theoretically, as well as empirically
validated on several robotic path planning
scenarios.

1 Introduction

Safe planning of continuous paths within high-
dimensional spaces is crucial for many real-world
applications, e.g.  robot manipulation and safe
design of experiments (DoE) [Dolgov et al., 2008]
Zimmer et al., 2018]. The underlying problem is to
find a continuous path connecting a starting point with
a target point, while fulfilling given safety requirements,
such as obstacle avoidance. Usually, these requirements
are incorporated into a cost function used for evalua-
tion of candidate paths. In robot task planning, for
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example, the safety cost function exploits the knowl-
edge about the environment with known obstacles and
their configurations [Jaillet et al., 2008]. In safe DoE,
on the other hand, the cost function incorporates the
safety condition necessary for dynamic exploration in
a high-dimensional state-space [Zimmer et al., 2018].
Given a safety cost function, a candidate path is usu-
ally discretized first and, subsequently, evaluated on
these discretization points for finding the most safe
path [Zimmer et al., 2018| [Jaillet et al., 2008|. As the
discretization represents an approximation of the con-
tinuous path, the discretization resolution is a trade-off
between the evaluation accuracy and computational ef-
fort. Identifying an appropriate discretization step-size
is a tedious task in practice, as it highly depends on
the landscape of the respective safety cost function.

In this paper, we approach the problem of safety eval-
uation by learning a probabilistic safety cost function,
while taking into account uncertainties in the envi-
ronment and observations. Here, the cost function
represents the probability of safety values, e.g. col-
lision with obstacles during the robot planning task,
or entering an unsafe region of the state-space during
the dynamic exploration for design of experiments. As
the evaluation effort highly depends on the number
of discretization points, we develop an algorithm for
automatically inferring the number and locations of
necessary discretization points to be evaluated. The
required number and locations of discretizations will
depend on the considered safety cost function, as well
as the continuous candidate paths. Intuitively, more
discretization points are necessary, if the cost function
is “complicated” for a given path. Thus, given a desired
safety-level, a learned probabilistic safety cost function
and a candidate path, the proposed algorithm will infer
the required number and locations of the discretiza-
tion points, such that the evaluation of the safety has
the desired precision for the given continuous path.
Technically, we employ Gaussian Processes (GPs) to
learn the safety cost function given observations. The
adaptive discretization of a given path with respect
to the learned probabilistic cost function is performed
incrementally by solving an optimization problem. The
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evaluation of the discretized path is then guaranteed
to be e-safe, i.e. the remaining risk of still finding an
unsafe point on the trajectory is smaller than e.

In Section [2| we provide a brief overview on related
work. In Section [3] essential background on Gaus-
sian Processes and learning probabilistic safety cost
functions is introduced. Section [ describes the pro-
posed algorithm. In Section [5] we provide some results
on the theoretical investigation of the proposed algo-
rithm. For application in robotic path planning as
an exemplary use case, we combine our adaptive dis-
cretization method with the well-known probabilistic
roadmap (PRM) [Kavraki et al., 1996]. Thus, Section
[6] provides a description of our approach when com-
bined with the PRM for robotic path planning. The
resulting safe planning approach is evaluated on several
path planning tasks in Section[7} A conclusion is given
in Section [§] The Appendix provides further details on
proofs and experiments.

2 Related Work

Our approach shares some similarities with the work on
the estimation of excursion sets [Azzimonti et al., 2016,
Azzimonti et al., 2019]. However, the considered prob-
lem is different. Estimation of excursion sets focuses on
the probability of the set of safe points, while we are in-
terested in the probability to be safe at all incrementally
found discretization points, resulting in different defini-
tions of safety functions, see Appendix (Section B) for
more explanations. In the field of safe active learn-
ing with Gaussian Processes [Schreiter et al., 2015]
Turchetta et al., 2016, [Zimmer et al., 2018|, the pro-
posed approach is mostly related to the work by
[Zimmer et al., 2018] on safe exploration. While
[Zimmer et al., 2018] employs an equidistant discretiza-
tion and, thus, being inefficient for complicated cost
functions, our approach attempts to overcome this
limitation by introducing the adaptive discretiza-
tion scheme. Our approach will be compared
with the equidistant discretization as employed by
[Zimmer et al., 2018] in Section [7]

The focus of this work is on the evaluation of the safety
cost function, which can be complementarily combined
with path planning approaches as done for evaluation
in Section [7] In general, planning problems have been
thoroughly investigated in the robotics community,
enabling autonomous navigation and task execu-
tion [Latombe, 1990, [Choset, 2005, [LaValle, 2006].
There is a large body of work on determin-
istic  planning [Canny, 1985 Jan et al., 2013}
Elbanhawi et al., 2013], and probabilistic plan-
ning approaches [Elbanhawi and Simic, 2014}
Chakravorty and Kumar, 2011, [Luders et al., 2013].

Most of the path planning approaches consider the en-
vironment, e.g. the position and shape of the obstacles,
to be deterministically known. For example, collision
detection can typically be performed by employing
assumptions on the geometry of obstacles and robot
[Gottschalk et al., 1996, [Reggiani et al., 2002]. In
constrast to those approaches, we attempt to learn
the environment directly from observations using
Gaussian Processes. This idea has been exploited
recently by several work, e.g. [Dragiev et al., 2011
Bjorkman et al., 2013 [Driess et al., 2017]. The re-
sulting environment map is subsequently employed
as a probabilistic safety cost function to evaluate
candidate paths. To the best of our knowledge,
the proposed adaptive discretization technique for
evaluating probabilistic cost functions in combination
with a planning method is novel, while enabling
efficient planning with safety guarantees.

The goal of our paper for safe path planning is to de-
rive an adaptive discretization algorithm that bounds
the risk of a remaining point being unsafe. We note
that another quantity of interest could be the prob-
ability for the continuous path being safe, see e.g.
[Adler and Taylor, 2007].

3 Learning and Evaluation of Safety
Cost Function with GPs

In this paper, we employ a learned probabilistic safety
cost function. Here, we use a Gaussian Process
model (GP) ¢g: X C R - Z C R, mapping an in-
put point & to a safety cost value z. In general, a
GP is specified by its mean function u(-) and ker-
nel function k(-,-), i.e. g(x;) ~ GP(u(x;), k(z;, z;))
[Rasmussen and Williams, 2006]. Given n noisy ob-
servations and a candidate path 7 discretized by m
discretization points, i.e. T=(xy,...,T,,) ERI*™, the
predictive distribution for the safety values according
to the GP prior is given as

p(C|TaTmZﬂ) = N(ClN(T)’E(T)) ) (1)

where {=(z1,...,2m) €ER™ contains m corresponding
safety predictions for the discretization points. Z, € R"
is a vector concatenating evaluated safety cost values z,
and T,, ¢ R"*? is a matrix containing observed input
points . The mean vector and covariance matrix of
the GP are defined by

w(r)=k(T,, )T (K,+)\1)"'Z,, (2)
S(r) =k (1, 7) k(T 7)T (K, +N1) " k(T,,, ),
where K, € R™"*™ represents the covariance matrix.

As covariance function, a Gaussian kernel can be em-
ployed, i.e. k(x;, x;)=A2exp(—1(@i—x;)T Al (zi—;)),
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which is parametrized by 8, = (Aﬁ,Az). Further-
more, we have an n-dimensional identity matrix I,
the output noise variance \?, and k**(-,-) € R™*™
as a matrix with k7(-,-) = k(zi,z;). The ma-
trix k(-,-) € R™™ contains kernel evaluations re-
lating 7 to the previous n observed input points
[Rasmussen and Williams, 2006, [Zimmer et al., 2018].
Thus, for learning the safety cost function g by op-
timizing the hyper-parameters 6, and \? the safety
cost is evaluated for n input points, giving rise to the
supervised training data set T, as inputs and Z,, as
outputs. Without loss of generality, the evaluation of
the cost, i.e. z values, is designed such that all values
greater than 0 are considered safe for the corresponding
input . In safe dynamic DoE [Zimmer et al., 201§],
for example, z is computed using feedback from the
system, while indicating the distance of a given point x
from the unknown safety boundary in the input space.

Having learned the probabilistic cost function g, we
can evaluate the level of safety &,,(7) for a candidate
path as

Em(T) :=P(21>0,...,2, >0) (3)

z/ N (21, zm|pp(7), B(7)) d21, - - -, 2m
21>0,...,2;, >0

Thus, a path is considered to be safe, if &,,(7) is suf-
ficiently large. In general, the computation of &,,(7)
is analytically intractable and, thus, needs to rely on
some approximation, such as Monte-Carlo sampling,
expectation propagation [Minka, 2001] or Genz’s ap-
proximation method [Genz, 1992].

In the experiments, we focus on modeling obstacles
in a path planning scenario with GP implicit surfaces.
Here, the cost function can be interpreted as a signed-
distance function to the obstacles. Our method is not
limited to obstacle modeling with implicit surfaces. For
example, in an engine model setup, we can derive a
cost function follows: Assume that pressure is a safety
critical quantity and we know from domain experts that
a pressure of 80 is a safety threshold. Then, we can
define a cost function such that all pressures above 80
are mapped to negative values and all below to positive
values. This cost function reflects our setting. While
using a GP classifier is possible and has been used
in the literature [Schreiter et al., 2015, GP regression
allows us to gain more insights in how strongly safety is
violated (little scratch versus destroying the whole sys-
tem) like the distance to the obstacle or the distance to
the pressure safety threshold and is, therefore, relevant
information.

4 Adaptive Discretization for
Evaluation of Continuous Path

As indicated by Eq. , the evaluation of the safety
depends on the number of discretization points. The
higher m, the more accurate is the total safety eval-
uation for the continuous path, which also increases
the computational effort. Thus, we aim to develop
an approach for evaluation of Eq. , where the dis-
cretization points are sequentially chosen, such that
the evaluation of the safety has the desired precision
for a given continuous path.

4.1 Problem Statement

Let our path 7= (x)ier be parametrized by ¢, such
that each ¢ in an interval T'CR is mapped to a point
in the input space x; by a mapping h. We assume
that the mapping h : T'— X is continuously differ-
entiable or at least continuous and piecewise contin-
uously differentiable with finitely many pieces. We
discretize 7 with m discretization points at locations
t;, with i =1,...,m and m > 2. Let x;, = h(t1) de-
note the start point and @y, =h(t2) the end point on
the path, i.e. 7=(x¢,,...,xs,). For a candidate path
connecting the start point with the end point, we are
interested whether it is safe or, more generally, how
much cost we accumulate along that path. To this end,
we map each point on the discretized path z;, to a
safety or cost value given a learned cost function, i.e.
zi ~ g(x,), where g is a GP. We assume that z; >0
indicates safe performance or a sufficient cost. Thus,
we want to approximate the probability for a safe op-
eration as given in Eq. with m discrete points.
The problem is to find the number of discretization
points m and their corresponding locations t;, such that
Pz <0|21>0,...,27,>0)-P(21>0,...,2,>0) <e¢
for all t €T =[t;,t2] with € being the required precision.

4.2 The Algorithm

The basic steps of the procedure are summarized in Al-
gorithm [T} The main goal is to estimate &, (7) with few
discretizations m, while ensuring a required precision e.
Given m locations ti,...,t, with positive safety &,,,
the next position t* to be evaluated is determined by

t* = argmax, o P(2 <0|21 >0,...,2,>0) - &,

(4)

= argmax,c P2, <0,21>0,...,2,>0)

Thus, t* is found by the worst-case probability for
observing a negative value at another location t € T.
When this probability becomes small, it is reasonable
to terminate the algorithm (see Step 5 in Algorithm [I]).
Practically, the probability P(z¢|z1 >0, ..., 2z, >0) can
be computed, for example, by Monte Carlo sampling.
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Algorithm 1 Adaptive Discretization for Evaluation
of Probabilistic Cost Function

1: Input: € >0, GP cost function g, a mapping h,
candidate path 7.

2: Initialization: Set x;, and =z, as start point and
end point of 7, i.e. m=2

3: Compute &, according to Eq. using g

4: Compute

t* =argmax, . P(2: <0|21>0,...,2,>0) - &n

if P(z« <0|21 >0,...,2,m > 0)-&, < e then
Return &,

else
Set ty,41 = t* and evaluate x;,, , =h(tp41)
Add x4, , to the discretization set for T

10:  go to Step 3 with m=m + 1

11: end if

As z, 21, ..., zy follows a normal distribution, one can
easily draw samples from this distribution and hereby
approximate the desired probability.

Furthermore, note that the mapping h has to be
defined based on the parametrization of the path 7.
For example, if 7 is parametrized as a hyperplane with
x¢, and x;, as start point and end point, then h can
be given as: h(t) =, +t(xy, —xs, ); t€T=]0,1]. Thus,
locations of discretization points can be obtained by
optimizing t as provided in Eq. .

4.3 Computational Requirements

Assume that the dataset from which the GP is trained
contains n data points. Training the GP on this dataset
has a complexity of O(n?), which, if the dataset does
not change, has to be performed only once. By sav-
ing the Cholesky decomposition of the kernel matrix
K, +)\?1, computing the safety probability of a path for
m discretization points with nyc many Monte-Carlo
samples has a complexity of O(mn? + m? + nycem?)
(mn? to compute the covariance prediction at the m
discretization points, m? to perform a Cholesky decom-
position of this covariance prediction and nyem? to
generate the nyc Monte-Carlo samples).

This shows that also from a computational point of
view it is desired to need as little discretization points
as possible to calculate the safety probability for a
desired e.

The number of Monte Carlo samples needs to be
carefully (potentially adaptively) chosen in order to
make sure that the MC error is small enough. Al-
ternatively to MC, techniques like expectation prop-
agation [Minka, 2001] could be applied. Sparse GP
techniques [Quinonero-Candela and Rasmussen, 2005

Snelson and Ghahramani, 2006] together with varia-
tional inference [Titsias, 2009] could further be utilized
to reduce the computational complexity.

5 Theoretical Results

In this section, we provide some results on the theoret-
ical investigation of the proposed algorithm. Detailed
proofs and further results are given in the Appendix.

5.1 Convergence of £,, and justification of
the algorithm’s termination criterion

This subsection will show that the safety indicator &,
converges for m — oo (Theorem . This indicates that
it is reasonable to step-wise increase m, while evaluating
the safety along the path. In addition, max;er P(2; <
0lz1 >0,...,2;m, >0)-P(21 >0,...,2, >0) is a de-
creasing sequence in m. This represents the worst-case
probability for each step. Therefore, the term is a
useful termination criterion (Remark [[)). This is an
advantage over heuristically choosing m.

Theorem 1 (Convergence). Let @y, ,Tt,,... be a se-
quence of intermediate points. Let us denote the cor-
responding sequence of safety indicators with z1, za, . ..

Then, &, defined in Eq. converges for m— oo.

Theorem [1] puts a theoretical justification to using &,
as an approximation for the cost along the path. Note
that &, is a decreasing sequence due to the definition
as an intersection of sets of z; >0. However, it does not
yet justify our termination criterion. Therefore, we also
need that maxser P(2:<0|21>0,...,2,;,>0)-P(z >
0,...,2m >0) is a decreasing sequence, as only that
guarantees us that the benefit of an additional iteration
stays small once it got small, i.e.

Lemma 1 (Decreasing sequence). Using the same no-
tation as in Theorem[1], it holds for eacht € T = [t1,t5]:
Pz < 0lz1 > 0,...,2, > 0)P(z1 > 0,...,2,, >
0) > P(Zt < 0|21 > 0,...,2Zm+1 >0) P(21 >
O,...,Zm+1 > 0)

Remark 1. Lemma [1] especially holds for the maz-
imum over t. Therefore, the sequence maxierPz: <
0]z1>0,...,2m>0-P(z1 >0,...,2, > 0) is a decreas-
mg sequence in m.

Remark (1| means that the stopping criterion in Step
5 of Algorithm [I] is reasonable in the sense that if
maxser P(2: <021 >0,...,2, >0)-P(21>0,..., 2, >
0) is small for a certain m, we know that it will only
become smaller and can therefore terminate the Al-
gorithm Note that the determination criterion is
guaranteed to be reached, as we will show in Theorem

Bl
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5.2 A different proof that leads us towards a
convergence rate

We can also show that maxier Pz < 0lz; >
0,...,2m>0)-P(21>0,..., 2z, >0) becomes small with
a different proof. This second proof is constructive in
the way that it allows us to choose an € and determine
a minimum m, for which the term maxs;er P(z: <
0lz1 >0,...,2m >0)-P(21 >0,...,2, >0) <e. This
relation between € >0 and m then allows us to derive
a convergence rate. In addition, this also allows us
to a-priori determine a number of intermediate points
needed to reach a certain accuracy.

Definition 1. For t; <t<ts, define t"" = min{t;,1 =
L...,mlt; >t} and t™ = max{t;,i =1,...,m|t; < t}.
Hence, xym is the preceding point of &, on the path and
Ty 1S the following point.

Within the GP framework with Gaussian kernels, mean
and variance of any predictive distribution (conditional
or unconditional) are continuously differentiable func-
tions in the input variable. As x; is a continuously
differentiable function in ¢, mean and variance are also
continuously differentiable in ¢. The interval T is com-
pact. Therefore, there exist Lipschitz constants for
the mean and variance as a function in ¢. Specifi-
cally, let us denote the mean and variance of zt|zt¢z
for a Zgm As [t,pm and Ot Then, it holds for all
t € T that |p, j—py il < Li(®)[t—t'| VE,t' € T and
similar |0, j— 0y ;| < La(f)|t—t'|. Ly() and Ly(t) are
continuous functions in £. So, they have a maximum
on the compact interval T" which we will denote with
Ly =maxj Ly(t) and Ly =max;cp Lo (t). If the path
T is only piecewise continuously differentiable, a Lips-
chitz constant can be derived for each piece and then
an overall Lipschitz constant can be calculated with
the triangle inequality.

Note that the Lipschitz constant L; depends on the
values of Z,, and z;m, while Ly does not, as the predic-
tive variance of a GP does not depend on the outputs.
While Z,, has been measured before the start of our
algorithm (and 7 is finite), zym can vary and it might,
therefore, be important to state the dependency of L;
on zgm. The maximum of the first derivative of p, ; (see
Eq. (2) for definition of mean) depends linearly on Zgm
and so does L. Let i=max;cr p+ be the maximum of
e and & =maxyr oy be the maximum of the standard
deviation.

Definition 2. For ¢ > 0, we define ofe)
such that Pyo)([p — aler)o,p + ale)o]) =
Pyo,1)([—aler), afe)]) = 1 — e (e.g. afer) = 2 for
€1 = 0.05, 20 interval captures 95% of the probability
mass).

Assumption 1. We denote the variance of the GP

as o and the mean as pui. We assume that either the
variance is uniformly lower bounded or the absolute
value of the mean. Formally, Ja; > 0,9 > 0 such
that Vt € T it holds || > aq or op > .

Assumption [I] is not restrictive, as it only requires that
our GP is not degenerate (almost zero variance) and
has almost zero mean at the same time. We define
B = min(aq, ag).

Theorem 2. As in Theorem[1] let @y, x¢,,... be a
sequence of intermediate points for which it holds t; <
t; < to,i =1,2,.... Let us denote the corresponding
sequence of safety indicators with z1,zo,.... When
introducing an m + 1-st point into a set of m points,
we can bound the probability

max Pz <0|z1 >0,...,2m, >0) - & <e  (B)
€

for any € > 0 if m is large enough such that

1
Liy+ a(er) Lo

with § = %“-\/ﬁﬁ, v = ﬁ&log(i)—&—ﬂ (see Lemma%
T and t™ as in Deﬁm'tion a(e1) as in Definition
and B as in Assumption 1. €1, € and €4 can be chosen
independently but need to fulfill €1 + €3 + 2¢e4 < €.

[t — "] <

(6)

In case of equidistant design, the condition on m can
be simplified as we state in Corollary

Corollary 1. Using the same notation as in Theorem
[4 it holds for an equidistant design with t; —t;—y =
Aji = 2,...,m. We have the following bound A <

, form> Livtale)le | g

)
Liva(er) Lo F]

5.3 A convergence rate

As we have established a relation between € and m, we
can now state a convergence rate.

Theorem 3. Under the assumption of Theorem [3
we achieve a convergence rate of H%s for an arbitrary
k>0, e

P(Zt§0‘21>0,...,zm>0)-§m:(9(m—ﬁ)_

This convergence rate is build on the condition @
stating that the set of intermediate points will become
dense if m increases. In order to ensure this condition,
we can enrich the adaptive set of points, for example, by
choosing every mpix-th point according to an equidis-
tant placement. This approach would have the same
convergence rate, however, with a constant worse by a
factor of muyix. Here, muy,ix reflects the user’s prefered
balance between theoretical guaranty and amount of
adaptiveness.
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6 Gaussian Process Probabilistic
Roadmap

We now describe how the proposed approach can
be embedded into sampling based path planning
algorithms, in particular probabilistic roadmaps
[Kavraki et al., 1996], for planning safe paths in not
perfectly known environments with obstacles. The re-
sulting framework, which we call GP-PRM, provides
provably safe graph construction, as well as path plan-
ning using the established graph. Note that the main
focus of this work is the adaptive evaluation of the
safety cost function. Therefore, many extensions to the
resulting planning algorithm are possible.

6.1 Obstacles as GP Implicit Surfaces

For representing the obstacles and their uncertainty,
we employ a GP implicit surface model, which has
been used in robotics for grasping and tactile ex-
ploration [Dragiev et al., 2011}, Bjorkman et al., 2013
Driess et al., 2017]. The underlying assumption is that
objects in the input space are encoded in the zero-
level set of a signed-distance function z : X — R, where
z(x) >0 indicates no objects at «, z(x)=0 and z(x) <0
imply that « is directly on the surface of an object
and inside of an object, respectively. The surface is
approximated as the zero-level set of the GP mean
function S = {@ € R?: p(x)=0}. The advantage of
this approach is that obstacles can be learned directly
from raw sensor observations, i.e. no pre-processing to
extract polyhedral shapes (or even convex decomposi-
tions) are necessary as required by related work, e.g.
[Gottschalk et al., 1996]. Furthermore, such a model
naturally fits into our safety evaluation with adaptive
discretization.

6.2 GP-PRM

The proposed GP-PRM for safe path planning consists
of two phases, the construction and the planning phase.
In the first phase, a roadmap of safe paths is created
which is represented by a graph (V, E) of configuration
vertices V. C X and edges EC {(z,2') : @, ' €V}. In
the second phase, the actual path from a start xs€ X
to a goal x4 € X configuration is planned. The graph
(V, E) defines continuous paths 7 as linear splines via
a sequence of adjacent vertices as support points, such
that h(t1) =x,, =xs, h(t2) =24, =2, The resulting
algorithm (cf. Sec. Algo. [2) for the construction
phase follows in large parts the standard PRM proce-
dure modified to incorporate the safety by our proposed
adaptive discretization procedure. First, ny € N config-
urations from the space likely not containing an obsta-
cle Xfee C X are sampled and added to V. The free
space for a required safety probability pmi, is estimated

Adaptive Equi. coarse Equi. fine
PRM creation 27+ 1 56 + 4 162 + 4
Planning 76 + 3 309 + 6 1309 + 12
Path safe? Vv X v

Table 1: Runtime in seconds for creation and planning of
scenario in Fig. [T] with thin obstacle. We compare our adap-
tive discretization with equidistant discretization (coarse
and fine). Planning is performed with the waypoint ap-
proach. The red cross indicates that the roadmap falsely
contains paths that are unsafe.

based on the safety evaluation Eq. for a single point
only, i.e. Xgooe ={x€X : P(2(x)>0)>pmin}, which
can be computed by the 1D Gaussian cumulative den-
sity function. To connect the vertices, first the kxny €N
nearest neighbors Nye.(x) CV of each € V are
obtained. Then the safety probabilities of the paths
connecting & to &’ € Nyear are determined with our
adaptive evaluation algorithm. If the safety probabil-
ity is larger than pmin, the edge (z,z’) is added to
the graph. After the roadmap has been constructed,
planning a path results in a graph search problem. In
contrast to a standard PRM, where one would query
the shortest path from the start to the goal, we addi-
tionally want to satisfy safety probability requirements
on the complete path. In this work, we consider two
approaches, one where a variety of candidate paths is
generated by sampling a waypoint. The other approach
is to solve a weighted shortest path problem, where
the weights are determined by the distance and the
safety probability on each edge. For details refer to the
appendix Sec. [A23] Due to the fact that we discard
edges with safety probability smaller than p.,, the
creation of the roadmap already pre-selects reasonable
candidate paths. This is motivated by the fact that a
longer path has less or equal safety probability than a
sub-path.

7 Evaluation

We demonstrate the advantages of our adaptive evalu-
ation algorithm compared to an equidistant evaluation
as employed by [Zimmer et al., 2018| and show the be-
havior of the resulting GP-PRM planner for various
scenarios. The appendix additionally contains another
experiment and states all hyperparameters.

7.1 Thin Obstacle

In this experiment, we show that an equidistant evalu-
ation could lead to highly overestimated safety proba-
bilities. Fig.[Ta] shows the reconstructed object surface
of a thin obstacle (orange). The true obstacle has a
thickness of 0.01. The candidate path shown in blue
with length 1.0 passes directly through the obstacle.
For the position of the obstacle shown in Fig.[Ta] the
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(a)  Across
thin obstacle

(b) Path from equidis- (c) Path from adaptive (d) Safety prob. for path of (b)
tant evaluation: p = evaluation: p =0.46 over number of discretization
0.39 points m

Figure 1: Path safety evaluation through thin obstacle. Orange is the learned obstacle surface from the GP model, blue
denotes the path to be evaluated. The path in (b) is evaluated with the equidistant method, which falsely classifies the path
as safe. (d) Evolution of the safety probability for path of (b) over the number of discretization points. The green line

shows the adaptive evaluation, which after only 3 points evaluates the safety to zero.

(b) p=0.35

(c) p=10.44

(d) p = 0.69 (e) p = 0.80

Figure 2: Adaptation to data. Orange in (a) show the learned obstacles from the GP. The blue path in (b)-(e) is the
safest found path. Red dots are obstacle observations (z(x) = 0), green dots free space (z(x) = 1).

equidistant evaluation yields a safety probability of
p=0.53+0.008 (100 different random seeds). To show
that this not only happens for this specific configura-
tion, we move the object in y-direction to 100 different
positions and repeat the experiment. For the equidis-
tant evaluation, in 59% of the obstacle positions, the
estimated safety probability is greater than zero. The
mean of those probabilities greater than zero is 0.51. In
contrast, the adaptive evaluation in all these cases di-
rectly evaluates the safety probability to p=0 with only
3 discretization points. Two of those points arise from
the initialization of the algorithm (start and end of the
path). The point chosen by the algorithm is always in-
side the obstacle in this experiment. Next, we consider
a planning task in a workspace that contains such a
thin obstacle. Figure[Ib]and [Idshow the reconstructed
surfaces of the obstacles. The path passing through the
thin obstacle in Figure [1b|is planned with the equidis-
tant evaluation and falsely predicts a safety of p=0.39.
Again, with our proposed adaptive evaluation, such
an unsafe path is never considered and the safest path
with p=0.46 shown in Figure [l¢| avoids the thin obsta-
cle. Note that here, the equidistant evaluation iterates
until the covariance matrix 3(7) becomes numerically
indefinite, which happens before the resolution of the
equidistant algorithm is fine enough to capture the thin
obstacle. If the covariance is regularized, 3(7) + 021
for 0, = 1075, the equidistant evaluation can be com-
puted for a much finer resolution. In Figure the

evolution of safety probability for the path shown in
is plotted over the number of discretization points. The
adaptive evaluation again only requires 3 points (green
curve) to correctly evaluate the path as unsafe. The
unregularized equidistant evaluation terminates after
m=101 discretization points when X(7) becomes nu-
merically indefinite, predicting a safety of p=0.39. The
blue curve shows the regularized equidistant evaluation.
Only after m =229 points, the path is considered to
be unsafe. Looking at these results shows the difficulty
of determining the number of discretization points a
priori, since a heuristically chosen convergence criteria
would even in the regularized equidistant case termi-
nate before the resolution is fine enough to correctly
classify the path as unsafe. Furthermore, as can be
seen in Table [T} the adaptive evaluation algorithm is
significantly faster in both creating the PRM and the
subsequent planning. Even when spending twice the
amount of time for a coarse equidistant evaluation (res-
olution 0.012) compared to the adaptive algorithm, the
equidistant variant still falsely plans an unsafe path.

7.2 Adaptation to Data

In Figure 2] we demonstrate how the knowledge about
the environment influences the planned paths. In each
of the subfigures - the data representing the
obstacles (red points) is the same, while the amount of
observed free space data (green) varies. The path shown
in blue is the safest path found for each. Figure [24]
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Figure 3: Workspace exploration result after 51 iterations. Violet are the true obstacles, orange in (a) the obstacle
estimations based on the GP data. Green points in (a), (b) are collision free observations, red obstacle observations. The
yellow stars in (b) are the 9 desired targets with the planned paths in blue. (c) shows the number of planned collision free
paths between the 9 targets (36 are possible in total), (d) the safety probabilities of these paths.

shows the roadmap created of data in Figure 2bJand the
GP obstacle reconstruction (orange line). Depending
on the available free space data, the safest planned
paths follow this data. If very little data is available
(Figure, the safest path avoids the obstacles by large
margin. When the information is available that there
are no additional obstacles in the middle between the
obstacles as for example in Figure the safest path

passes through a more complex region of the workspace.

7.3 Exploration and Safe Path Planning for
Autonomous Robots

In this experiment, we consider a 2D robot that explores
the environment. The robot can only observe whether
there is an obstacle or not at its current location, e.g.
through direct contact in case of a vacuum cleaner
robot. Starting with only a single observation, one
iteration consists of first sampling a target position
in the workspace. Then a path towards this target is
planned based on the roadmap constructed with the
currently available data with our proposed algorithm.
The robot then moves either until it has reached the
target or until it has collided with an obstacle. During
the execution, data is collected. Afterwards, the GP
model is updated with the new data and the procedure
starts again. Figure [3a] shows the true obstacles, the
collected data and the obstacle GP model learned after
51 iterations. To evaluate the exploration progress,
after each iteration, paths are planned between 9 target
points (yellow stars in Figure . In Figure the
number of successfully planned paths, i.e. collision free,
between the targets is shown. After 18 iterations, all 36
paths between the targets are collision free. Figure 3d]
visualizes the corresponding safety probabilities. Since
the exploration itself is performed with our proposed
algorithm, very little collision data is required to safely
plan paths in the whole workspace.

The true obstacles of this scenario have sharp corners.

As can be seen in Figure [3al and also representing
sharp objects with a homogeneous squared exponen-
tial kernel is difficult (which has been mentioned in
the literature repeatedly in the context of implicit sur-
face modeling [Driess et al., 2017] [Driess et al., 2019]).
However, in our case this is not crucial problem, since
for solving the safe path planning task, one does not
have to precisely reconstruct the exact surfaces of all
obstacles. As shown in Figure [3a] only 11 obstacle
observations are necessary to complete the task, while
being far away from precisely modeling the exact ob-
stacle shape. Furthermore, representing sharp corners
with a GP implicit surface model can also lead to
numerical instabilities. Here, our proposed adaptive
discretization scheme is also advantageous, since it is
numerically more stable than an equidistant variant.

In the appendix, further runs of the same experiment
with different random seeds are shown as well as more
details on the parameters. Please also refer to the video
attachment for this experiment.

8 Conclusion

In this paper, we propose an adaptive discretization
approach for safety path evaluation, while employing a
probabilistic cost function. Our approach can be com-
bined with other state-of-the-art planning techniques,
e.g. probabilistic roadmap, to obtain provable safe path
planning. The proposed technique is, however, general
and presents a building block for safety related planning
task, e.g. dynamic DoE and safe active learning.
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