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Abstract

In this paper, we present Fuzzy D’Hondt’s algorithm suitable to aggregate lists of recom-
mended objects originating from various base recommending methods. The algorithm is
inspired by D’Hondt’s election method used to a proportional conversion of votes to man-
dates in public elections. We enhance the original approach to enable fuzzy candidate-party
membership, propose a gradient learning of per-party votes assignments and utilize it for
iterative on-line aggregation of recommendations. Main features of the proposed algorithm
are ability to iteratively learn relevance of individual base recommenders (parties), ability
to account for multiple item’s memberships and capability to provide proportional repre-
sentation of base recommenders w.r.t. their results as well as fair ordering of the final list of
recommended items. Fuzzy D’Hondt’s aggregation method was evaluated in on-line A/B
testing against state-of-the-art approach based on multi-armed bandits with Thompson
sampling and achieved competitive results.
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1. Introduction

Recommender systems (RS) belong to the class of automated content-processing tools, aim-
ing to provide users with unknown, surprising, yet relevant objects without the necessity
to explicitly query for them. The core of recommender systems are machine learning algo-
rithms applied on the matrix of user to object preferences. As such, recommender systems
are highly studied research topic as well as extensively used in real-world applications.
Over the decades of the RS development, a wide range of algorithm types were proposed,
e.g., collaborative, content-based, hybrid, session-based, graph-based or context-aware to
name just a few. Obviously, also the members of the same group of algorithms may differ
significantly from each other. Furthermore, the availability of background information (e.g.,
various attributes in content-based RS) affects the results of otherwise identical algorithms
as well. To sum up, there is a very large space of available RS algorithms and its variants
and it is often unclear, which algorithm(s) to employ for a particular recommending task.
A common practice in such situations is to employ on-line evaluation of algorithms via
A /B testing, or some regret-minimizing methods, such as selection of algorithms via multi-
armed bandits (Audibert et al., 2009). However, in some scenarios, it may be important
to go beyond a simple variant selection. In numerous works, e.g. Di Noia et al. (2017),
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the diversity was identified as one of the key features of the list of recommendations. In
addition to relevance and diversity, Steck (2018) examined the problem of fairness in RS, i.e.,
proportional representation of all user’s interest in the list of recommendations. Common
aggregation techniques, such as weighted average, tend to over-sample the major class, if
there is only a small intersection in the individual lists of recommendations. Similarly, most
of the contemporary individual RS techniques would over-sample items corresponding to
the major user’s interest and ignore his/her other topics.

Both the diversity of recommendations and the fair representation of user’s topics may
be achieved by the utilization of an ensemble of base RS algorithms®' and some suitable
aggregation of their predictions. Nevertheless, each base RS as well as each recommended
item is linked with different relevance or probability of success, which should be attributed
in the aggregation process.

We observed that the above mentioned circumstances are highly similar to the process
of public elections. During elections, political parties propose an ordered list of candidates,
where the ordering can be understood as a relevance of a candidate to the party. During
elections, each party receives a certain portion of votes, which can be considered as party’s
relevance. Votes are further transformed into mandates in the considered assembly. The
key part of the process is the transformation of votes to mandates, for which, several
algorithms were proposed. In this paper, we focus on one of these algorithms, D’Hondt’s
election algorithm (D’Hondt, 1882), which is currently utilized in the election process of
over 50 countries. D’Hondt’s election algorithm focuses on proportional representation of
each party through the mechanism of iterative decay of accountable votes upon the selection
of a party representative. As such, one of the algorithm’s feature is also a fair, deterministic
ordering of the elected candidates.

There are three key differences between the recommendations aggregation and the pub-
lic elections scenarios. First, RS algorithms usually provide more refined item relevance
scores beyond a simple ranking. Second, the same candidate item may be recommended
by multiple algorithms.? Finally, the volume of votes (i.e., algorithm’s relevance) needs to
be set by the system. Therefore, in order to address the fair recommendations aggregation
challenge, we introduced several modifications to the original algorithm and proposed it as
Fuzzy D’Hondt’s aggregation algorithm with iterative voting updates. To the best of our
knowledge, this is the first work aiming to utilize and evaluate D’Hondt’s election method
in the domain of recommender systems.

Utilization of multi-armed bandits in recommendations aggregation is closely related to
our approach. We can specifically mention the BEER framework by Brodén et al. (2018).
However, in BEER, authors did not consider the possible synergic effect, where a single ob-
ject is recommended by multiple RS. Furthermore, BEER is based on Thompson Sampling,
which does not focus on proportional representation, but performs a stochastic selection of
the best method w.r.t. current level of knowledge. Similarly to our work, Steck (2018) aims
on proportional representation of topics, however he focused on re-ranking of a single list of
recommendations instead of RS aggregations. To sum up, main contributions of the paper
are as follows:

1. For instance, each individual RS may exploit different recommending paradigm (and therefore provide
diverse recommendations in general) or focus on individual user’s topic separately.
2. Using the original metaphor, we may say that the party-candidate membership is fuzzy.
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e Extension of original D’Hondt’s election algorithm to handle fuzzy affiliation of can-
didates to parties.

e Proposal of an on-line iterative votes assignment algorithm based on positive and
negative implicit feedback.

e Evaluation of the proposed Fuzzy D’Hondt’s algorithm on the recommendations ag-
gregation task in an on-line A /B testing.

2. Methods
2.1. D’Hondt’s Election Algorithm

In order to make this paper self-contained, let us first describe the original D’Hondt’s
Election Algorithm.? Suppose that we have a list of political parties . For the process
of elections, each party p; € P creates an ordered list of candidates C; = [(k, ci)], where k
and c}€ denotes a rank and a candidate proposed by party p; on k-th position. During the
elections, some amount of votes v; is assigned to each party p;. D’Hondt’s is initialized with
per-party accountable votes a; equal to the original volume of votes v;. Then, the algorithm
iterates over the following steps until the demanded volume of mandates is met.

e Select party ppest with the highest volume of accountable votes, best = argmaxy; a;.

e Select best ranked candidate (k,cZeSt) of party ppest, which was not selected before

and append cZeSt to the list of representatives.

e Decrease the volume of accountable votes of party ppest as follows: apest = Vpest/(k+1).

There are several notable features of the presented method. First, D’Hondt’s method
solves the problem of proportional transformation of votes to mandates through the ac-
countable votes reduction upon candidate selection. This is by design a greedy solution
iteratively selecting the current best method (party) and thereafter reducing its preference.
Based on the form of the votes reduction, D’Hondt’s algorithm slightly favours large parties
(i.e., highly preferred methods) over scattered small parties (Schuster et al., 2003). This
seems suitable also in the case of recommendations aggregations, where methods with neg-
ligible preference should be ignored as a noise (note that even random recommendations
usually attract some users). Second, the method always selects the most preferred one out
of the remaining party’s candidates and therefore, it iteratively constructs the ordered list
of current best candidates.

2.2. Fuzzy D’Hondt’s Aggregations

The original D’Hondt’s method reflects well the need for proportionality while aggregating
results of multiple base recommenders and it copes well with the problem of highly diverse
set of recommended objects. Nonetheless, it ignores the possible synergic effect, if the same

3. For the sake of simplicity, we do not describe some of D’Hondt’s method variants. See, e.g., Gallagher
(1991) for more details.
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Algorithm 1 Fuzzy D’Hondt’s Aggregation - Mandates Selection

Input: set of parties p; € P, set of candidates ¢; € C, relevance matrix R, per-party
votes v; € V, volume of mandates m
Output: ordered list of selected candidates C

Vi:ai:vi,kizl
Cs=0

for 1 €[0,...,m] do
select cpest according to Eq. (1)
append cpest to Cs
remove Cpest from the set of candidates C
Vi ki = ki + 7 pest; ai = vi/k;
# increase the per-party counters of selected candidates and update accountable votes

end for
return C|

candidate item is recommended by multiple base recommenders. In order to address also
this issue, we propose a fuzzy extension of original D’Hondt’s algorithm as follows.

Suppose that C is a set of all candidates proposed in the elections across all parties.
Furthermore, suppose that instead of a simple ranking of candidates, each party can express
the relevance of its candidates as follows: C; = [(7L, cx)]; 7% € (0,1], ¢, € C. We can naturally
extend this per-party rating to the full list of candidates by assuming zero relevance: Ve; €
C,cj ¢ C;: 13;- = 0. In this way, we can construct a matrix of per-party ratings of all
candidates R, such that each cell r; ; € R contains the relevance of j-th candidate to the
i-th party.

Similarly to the original method, some amount of votes v; is assigned to each party p; and
the algorithm iteratively selects candidates until the desired volume of mandates is reached.
However, instead of selecting the best party and then its best remaining candidate, Fuzzy
D’Hondt’s method selects candidate with the highest overall relevance, which is calculated
as a weighted sum of accountable votes, where the weights are per-party relevance scores of
candidates.

Chest = argmax ( Z ai x 1) (1)
VC]'EC VpEP

After the selection of the best actual candidate, the accountable votes of parties are
decreased in proportion to the per-party candidate’s relevance. Further details can be
found in Algorithm 1. In our use-case, we represent recommenders as parties and top-k
recommended items correspond with the selected candidates. Candidates’ relevance scores
w.r.t. each party are normalized into a unit vector to prevent bias.

It is easy to see that the proposed fuzzy extension of D’Hondt’s method provides the
same results as the original method, if the lists of candidates are disjoint and the relevance
score for a candidate on k-th position is defined as 1 — kx¢ for some sufficiently small e. The
crucial part of the algorithm proposal is the proportional reduction of accountable votes



PESKA BALCAR

according to the fuzzy per-party affiliations, which prevents over-sampling of candidates
preferred by a single method.

2.3. Iterative Votes Assignment Algorithm

Both D’Hondt’s election method and it’s proposed fuzzy extension suppose that votes are
supplied by a third party.

We propose to assign per-party votes dynamically, in accordance with the observed
negative and positive implicit feedback. In the evaluation, we assume that clicking on a
recommended item is an expression of positive preference (of the respective item), while
ignoring recommendations is an expression of (weak) negative preference. Nonetheless, the
actual selection of feedback events may differ according to the considered domain. Proposed
algorithm considers per-party votes v; as variables and aims to maximize the weighted sum
of votes for preferred candidates ¢; € F* and minimize the same criterion for ignored
candidates ¢; € F~ at the same time (Eq. 2).

r@f}lix( Z ( Z Ui*""i,j) — Aneg Z ( Z Uz'*ﬁ‘,j)) (2)

VC]'E]:"' Vp; €P Ve €F~ Vp; €P

Similarly as Frigé et al. (2017), we opted for on-line learning approach that performs a
single stochastic gradient ascend (descend) step for each positive (negative) feedback event.
The update steps are

Vi = Vi + Npos * (Tz‘,j — Z Tk,j) for positive feedback events
Vk£i

3)

and v; = v; — Npeg * (Tz}j - Z rk,j) for negative feedback events,
Vk#£i

where 7,05 and 7,¢4 are learning rate hyperparameters. One advantage of such setting is
the ability to adapt to performance changes of individual base recommenders over time.
In order to prevent divergence of the votes assignment, we impose minimal and maximal
boundaries for the volume of votes and linearly scale them so that the sum of all votes
equals one. The method can be initialized either with uniform votes distribution, or based
on the previous performance evaluation of base recommenders.

2.4. Design Choices, Remarks

Let us summarize some design choices and alternatives, which can be explored in the future.
First, candidates selection process is deterministic by design (which is obvious, given the
original task), but a stochastic implementation would be also possible, subjected to some
minor changes in votes and/or candidate’s preference definitions. While designing votes
aggregation (Eq. 1), we opted for a simple solution, as this is a pioneering work of this
research direction. However, other solutions, such as some S-norm aggregations are possible
as well (Klement et al., 2000). The volume of results provided by base RS can be considered
as an implicit hyperparameter of the method, where larger volumes generally favor items
that are not optimal for any individual RS, but good-enough for most of them, i.e., with
more recommended items, we are moving from maz-like to mean-like aggregations. Finally,
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utilization of weak negative feedback can be considered as a kind of regularization for votes
assignment, preventing some early random successes to permanently bias the assignment.

3. Evaluation

In this section, we describe the evaluation of proposed Fuzzy D’Hondt’s Aggregation method
in on-line A/B testing against a state-of-the-art RS aggregation algorithm as well as some
individual base recommenders. Let us first describe the dataset and base recommenders.

3.1. Dataset and Base Recommender Systems

Experiments were conducted on SLAN tour - a medium-sized Czech travel agency. The
agency sells tours of various types to several dozens of countries. Some tours (such as
trips to major sport events) are one-time only events, others, e.g., seaside holidays or
sightseeing tours are offered on a similar schedule with only minimal changes for several
years. All tours contain a textual description accompanied with a range of content-based
(CB) attributes, e.g., tour type, meal plan, type of accommodation, length of stay, prices,
destination country, points of interest etc. Agency’s website contains attribute and keyword
search GUI as well as some browsing and sorting options. Recommendations are displayed
throughout the website, specifically on main page, browsed categories, search results and
tour details. However, due to the importance of other GUI elements, recommendations are
usually placed below the initially visible content.

In accordance with Kaminskas et al. (2017), we focused on item-to-item recommending
models and utilized three base RS algorithms corresponding with three principal sources
of data: object’s CB attributes, their textual description and the history of users’ visits.
Expected output of a RS based on CB attributes are objects similar to the ones in a query.
Stream of user’s visits (i.e., collaborative filtering) reveals related, not necessarily similar
objects. Text-based approaches also provide similar objects, however based on unstructured
knowledge hidden in plain-text descriptions.

For each type of source information, we utilized one state-of-the-art algorithm: Skip-
gram word2vec model (Mikolov et al., 2013) applied on the stream of objects visited by a
user, Doc2vec model (Le and Mikolov, 2014) applied on the textual description of objects
and finally, cosine similarity utilized on CB attributes.* Given a query of a single object,
the outcome of base recommenders would be a list of top-k objects most similar to the query
(w.r.t. cosine similarity on the considered data representation). We then derived numerous
variants of the base algorithms, utilizing different hyperparameter settings (e.g., window
and embedding sizes), several variants of user’s history aggregation and options to enhance
novelty or diversity of the resulting list of recommendations.” Word2vec algorithms were
trained on more than one year of historical usage data (sequences of visited objects per
user), while doc2vec and cosine CB models received description of all tours available within
this period.

4. As a pre-processing, nominal attributes were binarized and numeric attributes were standardized.
5. Details can be found in Peska and Vojtas (2018)
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3.2. Evaluation Protocol

In evaluation, we focused on on-line performance of algorithms through A/B testing. Eval-
uation was conducted on the travel agency’s production server between July 6 and July 29,
2019 and each user was assigned one of the evaluated recommenders based on his/her ID.
Proposed Fuzzy D’Hondt’s algorithm was compared against two base RS: a word2vec model
with diversity enhancements and a cosine CB. Those were the best performing RS in our
previous work. In addition, we employed a recommendation aggregation technique based
on multi-armed bandits, BEER(TS,SB) by Brodén et al. (2018). Both Fuzzy D’Hondt’s
and BEER(TS,SB) were supplied with the top-100 predictions of four base recommenders.
Both methods were initialized according to the past individual performance of base RS.
Furthermore, we set 7,05 and 7, to 0.03 and 0.00012 respectively. We consider 7,,s value
to be a reasonable compromise between quickly converging and noise-prone systems, while
Nneg Was selected to maintain approximately half of the importance of the positive feedback
(after the incorporation of positive vs. negative events ratio). Nonetheless, we plan to run
a proper hyperparameter tuning in the future.

Based on the collected data, we evaluated two metrics: click through rate (CTR) and
visit after recommend rate (VRR). CTR is a fraction between the volume of clicked and
recommended objects and indicates that a recommendation was relevant for the user and
caught his/her attention. VRR is a weaker criterion checking that after the object was rec-
ommended, the user also visited it (i.e., (s)he might not pay attention to recommendations,
but the recommended object was probably relevant). Although VRR is weaker than CTR,
we selected it as a main evaluation metric due to the higher volume of recorded events and
also because recommended objects were often placed outside of the initially visible area and
therefore CTR may underestimate the true utility of recommendations.

We further evaluated two derived metrics: CTRy and VRRy, where clicks (visits) are
divided by the volume of unique users instead of the volume of recommended objects. We
introduce these criteria, because applied RS may also have some impact on the length of
user sessions, i.e., the volume of provided recommendations.

3.3. Results and Discussion

A total of 78356 objects were recommended to the 2299 users. The total volume of click-
through events was 576 and the total volume of visits after recommendation was 7663. Table
1 contains overall results of the evaluation. We may observe that although Fuzzy D’Hondt’s
was outperformed by BEER(TS,SB) w.r.t. CTR, the results were opposite according to
VRR. We hypothesize that this is an effect of stochastic sampling utilized by BEER(TS,SB),
which results in more diverse recommendations through time and therefore may repeatedly
attract user’s attention. Therefore, we plan to evaluate a variant of Fuzzy D’Hondt’s method
with stochastic sampling or introduce relevance penalization through time for displayed
items. In 3 out of 4 evaluated metrics, one of the aggregated methods outperformed both
base recommenders.

6. Both base RS from A/B testing and two additional RS selected w.r.t. diversity of algorithms and their
past performance: a doc2vec model and another word2vec model without diversity enhancements. For
detailed parameters, see Table 2 (lines 3, 7, 10 and 12) in Peska and Vojtas (2018).
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o = :ch:s(:gasr; Fuzzy D'Hondt's Algorlthm CTR VRR CTRU VRRU

Cosine CB 0086 089 262 2707

Word2vec w. div. .0071 104 220  3.250

S BEER(TS,SB) 0077 078  .282  2.861

Fuzzy D’Hondt’s  .0063 .118 239  4.504
Figure 1: Utilization of base RS. Table 1: Results of A/B testing.

In order to compare the models of aggregation methods, we exploited the log of rec-
ommended items. Figure 1 depicts the share of individual base recommenders on the final
recommendations.” Both BEER(TS,SB) and Fuzzy D’Hondt’s most preferred Cosine CB,
which corresponds to the CTR results of base RS. Nonetheless, Fuzzy D’Hondt’s algorithm
provides more uniform representation of base RS, which, given the small differences of base
RS’s results, seems to be a legitimate choice. Also, the relative share of base RS on click-
through events corresponds with their representation within recommended objects for Fuzzy
D’Hondt’s algorithm.

In general, we may conclude that if we are aiming on proportional representation of base
RS,® Fuzzy D’Hondt’s method seems to be a better choice than BEER(TS,SB).

4. Conclusions and Future Work

In this paper, we presented Fuzzy D’Hondt’s algorithm for recommendations aggregation. It
aims to achieve a proportional representation of the base RS according to their performance
and to provide a fair ordering of items according to their overall relevance w.r.t. all base
RS. In evaluation, we showed that the proposed algorithm provides more proportional
distribution w.r.t. base recommenders and outperforms its competitors in three out of four
evaluated metrics.

In this short paper, we only evaluated a single variant of the proposed algorithm on a
single dataset, so in the future work, we plan to extend the evaluation part with additional
domains and base RS, employ stochastic items sampling as well as the concept of relevance
penalization through time for displayed items. Furthermore, we would like to explore also
other election algorithms and their potential applicability to RS aggregation task.
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