Proceedings of Machine Learning Research 109:21-35, 2019 ORSUM 2019

Incremental multi-dimensional recommender systems:
co-factorization vs tensors

Miguel Sozinho Ramalho M.RAMALHO@QFE.UP.PT
LIAAD - INESCTEC, Porto, Portugal
Joao Vinagre JNSILVA@QINESCTEC.PT

LIAAD - INESCTEC, Porto, Portugal

FCUP - University of Porto, Portugal

Alipio Mario Jorge AMJORGEQ@FC.UP.PT
LIAAD - INESCTEC, Porto, Portugal

FCUP - University of Porto, Portugal

Rafaela Bastos RAFAELA.BASTOS@HOSTELWORLD.COM
Hostelworld Group, Porto, Portugal

Editors: Joao Vinagre, Alipio Mério Jorge, Albert Bifet and Marie Al-Ghossein

Abstract

The present paper sets a milestone on incremental recommender systems approaches by
comparing several state-of-the-art algorithms with two different mathematical foundations
- matrix and tensor factorization. Traditional Pairwise Interaction Tensor Factorization is
revisited and converted into a scalable and incremental option that yields the best predic-
tive power. A novel tensor inspired approach is described. Finally, experiments compare
contextless vs context-aware scenarios, the impact of noise on the algorithms, discrepancies
between time complexity and execution times, and are run on five different datasets from
three different recommendation areas - music, gross retail and garment. Relevant conclu-
sions are drawn that aim to help choosing the most appropriate algorithm to use when
faced with a novel recommender tasks.

Keywords: Recommender Systems, Matrix Factorization, Matrix Co-Factorization, Ten-
sor Factorization, Incremental Learning, Data Streams

1. Introduction

Recommender Systems (RS) are the set of tools and algorithms, used in a variety of contexts
and scales, that recommend items to users. Items can be anything that a company has to
offer, from services to products and entities. The ultimate goal of RS is to recommend
relevant items, be that from a commercial or pleasure point-of-view.

Ever since their inception in the mid 90s (Venkatesan and Thangadurai, 2016), these
tools have been improving in terms of efficiency, predictive ability, processing capacity and
in the kind of information used to better describe users, items and the relations between
them. The most typical approaches are:

e Content-based: using item’s attributes to filter relevant recommendations

© 2019 M.S. Ramalho, J. Vinagre, A.M. Jorge & R. Bastos.

RAMALHO VINAGRE JORGE BASTOS

e Usage-based: using activity information and/or ratings to implicitly characterize users
and items and infer user preferences

e Hybrid: a combination of both strategies to increase the recommendation power

With respect to usage-based approaches, often referred to as Collaborative Filtering
(CF), latent factor models have been gaining popularity following the famous Netflix prize
competition (Bell and Koren, 2007). These models work by reducing high dimensional data
to factors that represent implicit information in past user-item interactions. More, those
models range from simple Matrix Factorization (MF) that uses only user-item interactions
(Li et al., 2014), to more complex models such as Matrix Co-Factorization (MCF) and
Tensor Factorization (TF) that expand those interactions to include relevant user and item
attributes and also interaction-specific context.

The distinction between attribute and context is represented in Figure 1. Attributes
are usually static (Woerndl and Schlichter, 2007) properties of either users or items (Rendle
et al., 2011) - consider, for instance, age, gender, price, color, category as examples of both
user and item attributes. Whereas context is interaction-specific (Rendle et al., 2011) and
has a more dynamic nature (Woerndl and Schlichter, 2007) - consider, for instance, location
information, user mood and weather.

a N,
O Attribute
<>
- D < [Attribute

y \ User ltem /

Figure 1: Context and attributes of RS

)

9]
o]
=
9
=
ré
@

More recently, the pragmatic ability to process large amounts of data produced at high
speed has reached an unprecedented level. As such, real-world RS should be able to handle
these challenges and remain informative and efficient. Moreover, recommendation data is
usually sparse, as a consequence of a large number of users and items, such that representing
data as matrices or tensors becomes unfeasible from a memory standpoint. One of the
modeling approaches that best answers all of the above challenges is that of incremental
learning.

In essence, incremental approaches use each data instance for learning at the time it is
first seen without the need to iterate over all the past instances. These approaches have
been implemented by big tech companies and there are plenty of software solutions directly
aimed at processing data as streams instead of batches or whole files.

In this paper, we focus on the comparison between matrix and tensor factorization
approaches to the item recommendation problem using additional information for different
application contexts: music platforms, gross retail sales and garment sales. We compare
incremental implementations of the MF and MCF models to a TF technique that has been
overlooked in terms of its applications to incremental algorithms. Efforts were also put

22

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

into the development of a new incremental tensor factorization technique that led to poor
results, its negative results are also reported, nonetheless, so that future work on similar
techniques can take them into account.

The remainder of this work is structured as follows. In Section 2, we present and
explain the inner workings of the incremental factorization models under scrutiny including
the attempts at a new incremental tensor factorization algorithm and the adaptation of a
non-incremental algorithm into a novel incremental version. Section 3 describes how these
incremental algorithms are evaluated and compared. In Section 4, we present the selected
datasets, how each of the different models performs and draw conclusions from these results.
Finally, Section 5 focuses on the takeaways from the present analysis and on what the future
holds for this research topic.

2. Incremental Factorization Models

Factorization models decompose large matrices or tensors into lower dimensional ones, mak-
ing them easier to manipulate. This reduces memory requirements and computational time
while allowing to cope with the typical sparsity of natural user-item interactions. The de-
composition process extracts latent factors from the original data, which can be useful by
themselves or along with other data mining techniques — see, for example: (Lee and Seung,
1999).

RS data can be represented using arrays, and hence modeled through factorization
models. The relations between user-item, user-attribute and item-attribute are represented
in matrices. On the other hand, tensors are used when we want to introduce context into the
modeling. As mentioned before, context can be the location of the user-item interaction, in
this scenario we would have a user-item matrix for each location. Considering the user-item-
context case, we would have a 3-dimensional tensor. As context is part of the interaction
itself (as it happens), it is considered as another dimension of the array. However, tensors
are not limited to context data and can be used with user or item attributes. We actually
take advantage of this in our experiments in Section 4.

In the next subsection, details are given about each factorization model that can be used
in incremental RS. The notation used is presented in Table 1. Furthermore, Algorithm
1 contains the typical structure for processing incremental events, train the models and
evaluate them, as such it will stay relevant for the presented algorithms considering that
each algorithm has its own update steps and although these differ, they fit into the same
template section. Furthermore, algorithms that are not context aware should skip the
if-condition that regards context in the events, denoted with *.

2.1. Matrix Factorization

Matrix factorization (MF), as the simplest approach, uses only user-item interactions data
and thereby it represents an easily understandable and implementable algorithm. The
interaction is represented by a matrix R € R™*". This matrix is also known as feedback
matriz, with m users and n items. Each value r,; of R is 1 if user u interacts with item
and 0 otherwise. The MF model decomposes R into two low-rank matrices A € R™** and
B € R™** that cover a common k-dimensional latent space: R ~ ABT. Matrix A spans the
user space, while B spans the item space. After the decomposition is done, the predicted

23

RAMALHO VINAGRE JORGE BASTOS

Notation Definition
X, X, x, x | Tensor, matrix, vector, scalar
x| Vector norm (£2-norm)
|1 X]| Frobenius norm
#(set) Cardinality
* Element-wise multiplication
o Outer product

Table 1: Table of symbols

Input : k (iterations), A\, n
Output: A, B, C
for (u,i,f) € D do
if u ¢ rows(A) then
| a, ~ N(0,0.1)
end
if i ¢ rows(B) then
| b; ~ N(0,0.1)
end
*For context-aware algorithms also check:
if f ¢ rows(C) then
| cf ~ N(0,0.1)
end

fort <+ 1to k do
| Perform incremental updates specific to each algorithm

end

end
Algorithm 1: Abstract structure for incremental algorithms

value of the interaction of user v with item 7 is given by 7,; = aubiT. Incremental approaches
already exist, as the one presented by Vinagre et al. (2014a) which uses stochastic gradient
descent (SGD) as a search function it also devises a mechanism to give greater importance to
more recent events, it is called Recency Adjust ISGD (RAISGD) and is the chosen algorithm
in this work to represent the Matrix Factorization class of algorithms as a proved baseline
for non-context aware techniques, its objective function is:

min (1= 7ui) + A (Jauf? + [bif?) (1)
AB

(u,8)eD
Where 1 — #,; is the error term and A > 0 a regularization parameter. The incremental

update steps for SGD are:

a, — a, + n[(1 —7y) by — Aay]

As such, and considering the k& and D in Algorithm 1 we have a linear complexity for
this model of O(kN) where N = |D|, the length of the dataset.

24

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

2.2. Matrix Co-Factorization

Following the above idea, Co-factorization techniques use contextual information to improve
the recommendations. The main idea is that of considering four matrices A (user matrix),
B (item matrix), X (users’ attribute matrix) and Y (items’ attribute matrix) that cover
the common k-dimensional latent space, having S ~ AXT and T ~ BYT. Also, A, B, X
and Y that minimize the L? loss function:
min |
ABXY
An incremental technique based on RAISGD has been developed by Anyosa et al. (2018).
This concrete implementation is suited for implicit feedback situations, so it is adequate
for situations where there is a lack of explicit negative feedback and we can assume all the
events are positive ones. This technique is called CORAISGD and was selected for this
works’ experiments as the first representative of Co-factorization techniques. In this paper
we abbreviate the technique’s name to CORA.
Focusing only on the learning logic behind CORA and considering that X € RP** and
Y € R?*%. Let G be the set that contains all attributes’ values of X and let H be the set
that contains all attributes’ values of Y. Then, #(G) = p and #(H) = ¢. For a given (u, 1)
tuple:

R~ ABY|[+ (|8 — AXT|[+ [|T - BY"[[;.. (3)

e Let G, be the set of attributes’ values that user u has.
e Let H; be the set of attributes’ values that item ¢ has.

e Determine X, € R#(Gu)*k 4 submatrix of X, where each row of X, is the corre-
sponding X4 = %41, Zg2, ..., Tgk| row of X, where g € G,

e Determine Y; € R#Hi) ¥k 4 submatrix of Y, where each row of Y; is the correspond-
ing yn = [Yn1,Yn2, - -, Ynk] row of Y, where h € H;

As done in MF case, for incremental implementations we optimize over the known values
(u,1) of dataset D. The regularized and weighted loss function is given by:

. a2 w2 . T2 w3 _hvT 2
ARy 2 jer (=) e L2+ gy 1= b
(u,i)€D (4)
+A<|a 24 bl + e X +1||Y«||2)
U 1 #(Gu) U F #(H’L) 1 F b

where wy,ws, w3 are weight parameters, A is the regularization parameter and the other
values are the same as considered before.

Incremental Matrix Co-Factorization optimizes using SGD, for each (u, i) we follow the
gradient of (4), using the update expressions given below:

25

RAMALHO VINAGRE JORGE BASTOS

w2

#(Gu)

ay, < a,+n [wl (1 —7yi) b + (1 — auXE) X, — /\au]

Z (5)
w9 T\ T A
Xu%Xu+77|:#(Gu) (1_auxu) au_#(Gu)Xu:|
w3 T A
Y, <Y, —— (1-b;Y,) b;——Y;|.
Yot g 0D T g

Just as Machine Factorization, so does this Matrix Co-Factorization technique have a
linear complexity of O(kN) considering, however, the existence of more update steps which
reflect in a scale factor that does not increase the complexity but may affect execution time.

2.3. Factorization Machines

Factorization Machines (Rendle, 2010) is a technique that is not recommender system-
specific but that can be used effectively for this purpose. These are inspired by classical
Support Vector Machines and work with feature vectors which, in the context of the datasets
used in Section 4, consist of {user,item, contexrt}. An incremental version has been pro-
posed by Kitazawa (2016), focusing on recommendations. Although the reported approach
tackles cold start — a typical problem in recommender systems — by performing batch train-
ing on 30% of the data, in this work we do not make the same decision, so as to make the
comparison between algorithms more fair.

Considering the learning process of incremental factorization machines we have the
traditional learning model as:

d
~ T T
g(x):= wo F+W X+ E E V, Vi XX
~— —— =~
global bias linear =1 =i interaction

Figure 2: Factorization Machines predictor

Where z is the input vector containing {user,item,contextl, context2, ...}, d is the
number of context attributes used (1 for the case of our experiments), V € R¥¥* is a rank-k
matrix. Kitazawa (2016) has proposed an incremental learning process for this estimator.

Non-incremental Factorization Machines have an original complexity of O(kN?) that
can, however, be reformulated to avoid exhaustive computations and reduced to O(kN)
(Rendle, 2010). This is precisely the linear complexity achieved by the aforementioned
proposal for Incremental Factorization Machines (Kitazawa, 2016).

2.4. CANDECOMP/PARAFAC (CP) Tensor Factorization

In an effort to create an incremental tensor factorization algorithm inspired by non-incremental
CP tensor decomposition — see (Hitchcock, 1927) —, the current section describes a new

26

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

incremental approach to tensor factorization. However, the preliminary results with the
datasets used in this study were unsatisfying and are therefore not presented in Section 4.

Nevertheless the overall approach consists of incrementally factorizing a tensor R €
RMXNXC (see Figure 3) into three matrices A € RM*K B ¢ RV*K and C € RE*K that
cover a common K-dimensional latent space, such that: R ~ [A,B,C]. Matrix A spans
the user space, B spans the item space and C the context space.

For the presented incremental implementation, we have the following regularized func-
tion to minimize:

. ~ 2 2 2 2
g > (=) (Jauf” + I fegf?) (6)
(usi,f)€D

Considering this, an SGD-based optimization can be executed with the obtained gradi-
ents:

ay < ay +1[(1 —7uif) bixcy — Aay]
bi < bi +n[(1 = Fuif) ay * ¢y — Aby] (7)
cy<cr+n [(1 - fm-f) a, *b; —)\Cf]

A linear time complexity is also expected from this algorithm, which is in agreement

with the time complexity for the non-incremental techniques on which it is based (Rendle
and Schmidt-Thieme, 2010).

Context

User

Item's
attribute

Figure 3: Tensor visualization of user-item-context tuples for factorization models

2.5. Pairwise Interaction Tensor Factorization

A well established approach for RS using tensors is the Pairwise Interaction Tensor Fac-
torization (PITF), which is a special case of the Tucker Decomposition (R Tucker, 1966)
with linear runtime for learning and prediction (Rendle and Schmidt-Thieme, 2010). Fur-
thermore, the originally proposed version’s optimization criterion is based on Bayesian
Personalized Ranking (BPR). The original version includes an outer for-loop for each of the
max;terations and inside it there is an inner-loop that iterates every data point and per-
forms the necessary updates to the model. Algorithm 2 shows the exact opposite: first each
data point is iterated and then the model is updated once for every value in max;terations.
The consequence is that this is now an incremental version and one can indeed perform both
incremental evaluations (see Section 3 for further detail) as well as predictions at any point

27

RAMALHO VINAGRE JORGE BASTOS

in the dataset, which was impossible up to now, given that the model had to go over the
entire dataset multiple times. This is, then, an Incremental PITF (IPITF) and corresponds
to the version proposed and analyzed in Section 4.

Input : k (mazx;terations), \, n

for (u,i,f) € D do

Perform optional prediction + evaluation

for t + 1 to k do

Uy, f 4= Uy, p +1(0 % (faf — f,%’f) — AUy f)))
bing = dip +n0(0* (E, , —H,)= A*iif))
9.5 19+ 00ty —)\igf)

%f 1y (=8t — MY ;)
tAf —th 4 n(0is — AL)
th ¢t s 4+ m(=6iip — MG ;)
end

end
Algorithm 2: Incremental Pairwise Interaction Tensor Factorization

With each ¢ and @ representing the gradients for the PITF update, n is the learning
rate and A the regularization parameters, ¢ is the prediction error. Original PITF has
a complexity that is linear according to the number of factorization dimensions used the
incremental version does not increase the complexity only the order of operations (Rendle
and Schmidt-Thieme, 2010).

3. Incremental Evaluation of Recommendations
3.1. Prequential Evaluation

Considering the aforementioned algorithms perform incremental learning over data streams,
it is necessary to use a suitable evaluation process (Gama et al., 2009). In our experiments,
we use the prequential evaluation protocol studied by Vinagre et al. (2014b).

As each (u,1i) (or (u,i,c)) event arrives in the stream, we first use it to test the model,
and then we use it to update the model. We perform the following steps for each new event:

1. If w is a known user (and the context ¢ is also known, where applicable), use the
current model to recommend a list of items to u, otherwise go to step 3;

2. Score the recommendation list given the observed item 4;
3. Update the model with (u,) (or (u,1,c));

4. Proceed to the next observation.

3.2. Metrics

We report accuracy using the HitRate@N measure at cut-offs of Ne {1,5,10,20}. The
HitRate@N= 1 if item ¢ is in the first N recommended items, and equals 0 otherwise. To

28

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

obtain the top-N items, we previously score all the available items using #,;, order them,
and select those with the highest values.

Additionally, we present selected plots of the moving average of HitRate@20 that is
computed considering an averaged mean over batches of size n = 5000, that was chosen to
foster illustrative information visualization. We also report the average update time per
tuple processed by each algorithm to allow for a comparison between time complexity and
execution time.

3.3. Statistical Tests

Our incremental implementations provide us with a sequence of the hit rate values that
represent the learning process of the models. We can use sliding windows to report the
mean of the hit rate continuously. Hence, in each window we are going to have a sequence
of hit rate € {0, 1} of size n that is compatible with the case of the 0-1 loss function described
by Gama et al. (2009). Consequently, we use the McNemar test in each window, to compare
the incremental learning performance of the different models.

The test defines that given two algorithms A and B, we count the number of times n1g
where the prediction of A is correct and the prediction of B is wrong and the number of
times ng; where we have the opposite situation. The statistic of the test is given by:

2
M= (n10 — no1) , ()
710 + No1

where M ~ x? and the critical value for a significance level of a = 0.01 is M = 6.635. As we
can see, the computations are simple and can be easily implemented over a finished stream
approach.

4. Experiments
4.1. Datasets

Five datasets were selected for experimental analysis, three from the music field, one from
apparel sales and another from general purpose sales, as follows:

e Last.fm: obtained from a music service website with the same name (Bertin-Mahieux
et al., 2011) (LFM)

e Palco Principal: obtained from a social network of the same name and collected by
Vinagre et al. (2014a) (PLC)

e #nowplaying: obtained from the Twitter users’ posts of current listened songs and
gathered by Zangerle et al. (2014) (NP)

e RentTheRunway: obtained from the reviews in an online platform that allows women
to rent clothes for various occasions (Misra et al., 2018) (RTR)

e Epinions: ratings for general consumer reviews (Zhao et al., 2014) (EPI)

Table 2 describes the number of events, users and items in each dataset as well as the
number of unique attributes in the context dimension, and the dataset sparsity.

29

RAMALHO VINAGRE JORGE BASTOS

Dataset | Events | Users | Items | Attributes | Sparsity (%)
LFM 403798 280 196734 21566 99.999966
PLC 508705 | 20875 | 25262 5163 99.999981

NP 444086 4131 175014 36519 99.999998
RTR 177928 | 101233 | 5801 68 99.999554
EPI 119158 | 73794 | 33973 2150 99.999998

Table 2: Dataset Description

4.2. Experimental Setup

We tuned the hyper-parameters manually, using the first 25% of the instances of each
dataset. For each hyper-parameter, several values were selected and tested while fixing
the remaining parameters. After all the results were reported, we selected each parameter
individually according to the value that performed better, using the HitRate@QN values as
mentioned above, for that purpose. This assumes a certain level of independence between
parameters but proved a valid approach as the results were in agreement with previous
reported work.

For complementary pairs of algorithms, namely RAISGD and CORA, as well as con-
textless iFM and iFM, the same hyperparameters were used, namely the ones calculated
for the context-aware version. This was so that an estimate of the impact of the extra
dimension could be measured instead of tuning for both settings, which would result in lack
of consistency for comparing these approaches among themselves and against the remaining
ones.

Afterwards, we used the chosen hyper-parameters to evaluate the algorithmic perfor-
mance in the 100% of the datasets and report the results. The experiments were ran on a
32-core cluster of Intel Core Processor (Haswell, no TSX) and in a Python 3.6 environment.

4.3. Results

Table 3 summarizes the overall performance of the multiple algorithms across the selected
datasets. From this table we can make multiple observations:

e IPITF has the best predictive power

e iFm and CORA present similar results, which is in accordance with their similar
nature. This observation is even more clear in Figures 4 and 5.

e Likewise, contextless iFM and RAIGSD behave similarly, also in accordance with their
context-aware versions and their shared nature

Additional experiments were executed for the context-aware algorithms were ran on
noisy datasets - original datasets where the context dimension was randomly generated
without changing the cardinality of that dimension in each of the original datasets. In
those experiments, iFM and CORA produced poor results (HitRate@20 ~ 0) reflecting
these algorithms problems in handling noise. In contrast, IPITF proved to be somewhat
robust to noise. The difference in the average values for the HitRate@20 is as described in

30

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

RAISGD CORAISGD

HitRate@ 1 5 10 20 1 5 10 20
Ifm 0.00000 | 0.04051 | 0.06027 | 0.06889 | 0.00025 | 0.04051 | 0.05885 | 0.07411
plc 0.00006 | 0.29242 | 0.33716 | 0.36368 | 0.05154 | 0.31932 | 0.43586 | 0.51479
np 0.00028 | 0.00133 | 0.00292 | 0.00621 | 0.00003 | 0.00751 | 0.11808 | 0.15790
epinions | 0.00004 | 0.00036 | 0.00060 | 0.00146 | 0.00004 | 0.00040 | 0.00069 | 0.00122
renttr 0.00014 | 0.00103 | 0.00190 | 0.00366 | 0.00004 | 0.00055 | 0.00114 | 0.00212

iFM No Context iFM

HitRate@ 1 5 10 20 1 5 10 20
Ifm 0.00004 | 0.00041 | 0.00347 | 0.01949 | 0.00007 | 0.00224 | 0.01658 | 0.05440
plc 0.00034 | 0.01714 | 0.11939 | 0.34074 | 0.00242 | 0.05613 | 0.24665 | 0.52018
np 0.00006 | 0.00046 | 0.00362 | 0.02483 | 0.00005 | 0.00171 | 0.01950 | 0.08683
epinions | 0.00016 | 0.00047 | 0.00129 | 0.00297 | 0.00036 | 0.00062 | 0.00091 | 0.00144
renttr 0.00003 | 0.00025 | 0.00098 | 0.00254 | 0.00003 | 0.00033 | 0.00080 | 0.00153

Not applicable IPITF

HitRate@ 1 5 10 20
Ifm 0.04105 | 0.13207 | 0.20262 | 0.30006
plc 0.94084 | 0.96192 | 0.96863 | 0.97452
np 0.37141 | 0.49350 | 0.54430 | 0.59707
epinions 0.12199 | 0.24846 | 0.32191 | 0.40196
renttr 0.02888 | 0.09345 | 0.13842 | 0.20245

Table 3: Average hit rates for all the datasets, all algorithms and hit rate cutoffs of 1,5,10
and 20. The main left column is for algorithms that are not context aware and

right column for those that are.

Table 4, it is clear that the results in the original dataset are better but that the addition of
noise only affects the predictive power by an offset that can be attributed to the information
contained in the context dimension, that is lost in the noisy datasets.

Dataset | original - noisy
Ifm 0.053943
ple 0.057924
np 0.134431

Table 4: Difference between HitRate@20 average values for IPITF without and with noise
in the context dimension (for the lfm, plc and np datasets)

Figures 4 and 5 provide a more detailed comparison specific to the Ifm and plc datasets,
respectively. Plots from the remaining datasets are not included as there is little to gain in
terms of novel information.

Figures 6 and 7 display the results of a McNemar Test over a sliding window, with a
significance of 1%, for CORA and iFM. Although these algorithms are somewhat similar in

31

RAMALHO VINAGRE JORGE BASTOS

LFM

RAISGD
CORAISGD

FM no context
FM
PITF

0.25

0.20

HitRate@20

0 50000 100000 150000 200000 250000 300000 350000 400000
events

Figure 4: Evolution of HitRate@20 as events are seen, for the 1fm dataset

0.9 97 —— RAISGD
~——— CORAISGD
0.8 —— FM no context
— FM
071 — prrr
4 /
© 0.6
51
g
= 05
=
0.4
0.3
0.2
0 100000 200000 300000 400000 500000

events

Figure 5: Evolution of HitRate@20 as events are seen, for the plc dataset

McNemar Test for 1% significance in LFM dataset

I No significant difference
I CORAISGD is significantly better
B FMis significantly better

0 50000 100000 150000 200000 250000 300000 350000 400000

Figure 6: McNemar tests comparison for CORA and iFM for the 1fm dataset

terms of predictive power, CORA still reveals to be either as good or significantly better
than iFMs, regardless of the dataset.

McNemar Test for 1% significance in PLC dataset

I No significant difference
I CORAISGD is significantly better
B FMis significantly better

0 100000 200000 300000 400000 500000
Figure 7: McNemar tests comparison for CORA and iFM for the plc dataset

The execution time of the algorithms - amount of time needed to updated and predict
for one event - is consistent across all the datasets. The average execution time values

32

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

are presented in Table 5. Their values, in seconds and in decreasing order are as follows:
0.88s for iFM, 0.25s for IPITF, 0.022 for CORA and 0.021 for RAISGD. With the iFM
implementation being significantly slower than that of CORA and RAISGD - 40 times
slower processing each individual event. IPITF is also slower than CORA and RAISGD by
a factor of approximately 11.

Algorithm | Execution Time (s)
iFM 0.88
IPITF 0.25
CORA 0.022
RAISGD 0.021

Table 5: Average Execution Time across algorithms

5. Conclusions

With this survey, four different algorithms for incremental recommender systems have suc-
cessfully been compared, two of which work for context-aware situations (CORA, IPITF),
one for contextless scenarios (RAISGD) and one for both (iFM). Efforts for developing a
new tensor-inspired incremental approach were also presented (incten). IPITF is also a part
of the proposed novelties, as an incremental version of the existent PITF approach. IPITF
proved to have surpassed all other algorithms in terms of predictive power and resilience to
noise.

In terms of Matrix Factorization-inspired approaches, CORA proved to be either as good
or better than iFM and both surpassed the respective contextless approaches. Likewise it
is reported that both these approaches are susceptible to noise in the context dimension.

In terms of time complexity, all algorithms fall into the linear class, a typical requirement
for incremental learning algorithms. However, the execution times differ significantly with
iFM proving to be slowest by a factor of 80 to RAISGD and CORA and by a factor of 3.5
to IPITF.

Acknowledgments

This work is financed by National Funds through the Portuguese funding agency, FCT -
Fundagao para a Ciéncia e a Tecnologia within project: UID/EEA /50014/2019.

References

Susan C. Anyosa, Joao Vinagre, and Alipio M. Jorge. Incremental matrix co-factorization
for recommender systems with implicit feedback. In Companion Proceedings of the The
Web Conference 2018, WWW ’18, pages 1413-1418, Republic and Canton of Geneva,
Switzerland, 2018. International World Wide Web Conferences Steering Committee. ISBN
978-1-4503-5640-4. doi: 10.1145/3184558.3191585. URL https://doi.org/10.1145/
3184558.3191585.

33

https://doi.org/10.1145/3184558.3191585
https://doi.org/10.1145/3184558.3191585

RAMALHO VINAGRE JORGE BASTOS

Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge. Acm Sigkdd
Ezplorations Newsletter, 9(2):75-79, 2007.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million
song dataset. In Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.

Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. Issues in evaluation of stream
learning algorithms. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 329-338. ACM, 2009.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1-4):164-189, 1927.

Takuya Kitazawa. Incremental factorization machines for persistently cold-starting online
item recommendation, 2016.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788, 1999.

Fangfang Li, Guandong Xu, and Longbing Cao. Coupled item-based matrix factorization. In
International Conference on Web Information Systems Engineering, pages 1-14. Springer,
2014.

Rishabh Misra, Mengting Wan, and Julian McAuley. Decomposing fit semantics for product
size recommendation in metric spaces. In Proceedings of the 12th ACM Conference on
Recommender Systems, RecSys 18, pages 422-426, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5901-6. doi: 10.1145/3240323.3240398. URL http://doi.acm.org/
10.1145/3240323.3240398.

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31:279-311, 02 1966. doi: 10.1007/BF02289464.

Steffen Rendle. Factorization machines. In Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM ’10, pages 995-1000, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4256-0. doi: 10.1109/ICDM.2010.127. URL
http://dx.doi.org/10.1109/ICDM.2010.127.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for
personalized tag recommendation. In Proceedings of the Third ACM International Con-
ference on Web Search and Data Mining, WSDM ’10, pages 81-90, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-889-6. doi: 10.1145/1718487.1718498. URL
http://doi.acm.org/10.1145/1718487.1718498.

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. Fast
context-aware recommendations with factorization machines. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in Information Re-
trieval, pages 635-644. ACM, 2011.

34

http://doi.acm.org/10.1145/3240323.3240398
http://doi.acm.org/10.1145/3240323.3240398
http://dx.doi.org/10.1109/ICDM.2010.127
http://doi.acm.org/10.1145/1718487.1718498

INCREMENTAL MULTI-DIMENSIONAL RECOMMENDER SYSTEMS: CO-FACTORIZATION VS TENSORS

M Venkatesan and K Thangadurai. History and overview of the recommender systems.
Collaborative Filtering Using Data Mining and Analysis, page 74, 2016.

Joao Vinagre, Alipio Mério Jorge, and Joao Gama. Fast incremental matrix factorization
for recommendation with positive-only feedback. In International Conference on User
Modeling, Adaptation, and Personalization, pages 459—470. Springer, 2014a.

Joao Vinagre, Alipio Mario Jorge, and Joao Gama. Evaluation of recommender systems
in streaming environments. In Proceedings of the Workshop on Recommender Systems
FEvaluation: Dimensions and Design in conjunction with the 8th ACM Conference on
Recommender Systems (RecSys 2014), Foster City, CA, USA, October 10, 2014., 2014b.

Wolfgang Woerndl and Johann Schlichter. Introducing context into recommender systems.
In Proceedings of AAAI workshop on recommender systems in E-commerce, pages 138—
140, 2007.

Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Gilinther Specht. nowplaying music
dataset: Extracting listening behavior from twitter. In Proceedings of the 1st ACM
International Workshop on Internet-Scale Multimedia Management, ISMM ’14, pages
21-26, New York, NY, USA, June 2014. ACM.

Tong Zhao, Julian McAuley, and Irwin King. Leveraging social connections to improve
personalized ranking for collaborative filtering. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management, CIKM
14, pages 261-270, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2598-1. doi:
10.1145/2661829.2661998. URL http://doi.acm.org/10.1145/2661829.2661998.

35

http://doi.acm.org/10.1145/2661829.2661998

	Introduction
	Incremental Factorization Models
	Matrix Factorization
	Matrix Co-Factorization
	Factorization Machines
	CANDECOMP/PARAFAC (CP) Tensor Factorization
	Pairwise Interaction Tensor Factorization

	Incremental Evaluation of Recommendations
	Prequential Evaluation
	Metrics
	Statistical Tests

	Experiments
	Datasets
	Experimental Setup
	Results

	Conclusions

