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Abstract

This study explores the feasibility of estimating the Body Condition Score (BCS) of cows
from digital images by employing statistical shape analysis and regression machines. The
shapes of body cows are described through a number of variations from a unique average
shape. Specifically, Kernel Principal Component Analysis is used to determine the compo-
nents describing the many ways in which the body shape of different cows tend to deform
from the average shape. This description is used for automatic estimation of BCS through
regression approach. The proposed method has been tested on a new benchmark dataset
available through the Internet. Experimental results confirm the effectiveness of the pro-
posed technique that outperforms the state-of-the-art approaches proposed in the context
of dairy cattle research.

1. Introduction and Motivations

The energy reserves in cows in terms of body fat stores and mobilization during the dif-
ferent lactation stages have important implications for milk production, animal well-being,
reproductive performance, and, more generally, farm productivity. Body Condition Score
(BCS) is widely considered an important tool for management of dairy cattle because it is
a simple and repeatable system used to evaluate body fat stores and estimate cumulative
energy balance through visual or tactile inspection (Ferguson et al., 1994). The score range
used by most dairy management advisors applies a scale from 1 to 5, with 1 representing
emaciated cows and 5 representing obese cows.

Despite the general consensus on the benefits of the BCS evaluation in farms, less than 5%
of US dairy farms have adopted this practice in the production chain. The main reasons that
discourage the use of the traditional BCS evaluation techniques are the lack of computerized
reports (Ward, 2003), the subjectivity in the judgment that can lead to different scores for
the same cow under consideration, and the complex, not immediate, and time consuming
on-farm training of technicians. Furthermore, the measurements must be revised frequently
on each cow augmenting hence the costs for the farms.
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The feasibility of estimating the BCS from digital images has been demonstrated in recent
works. Ferguson et al. (2006) assessed the ability to assign a BCS to a dairy cow directly
from digital photographs. In that study, BCS could be assessed by human observers from
digital photographs or a video taken from the rear of a cow at a 0 to 20 degree angle
relative to the tail head. Bewley et al. (2008) assessed the feasibility of using digital images
to determine BCS employing a semi-automatic estimation technique from digital images.
They considered a single image of the dorsal view of the cow captured automatically as
cows passed through a weigh station and used 23 anatomical points to define the shape
of the body of the cow. These points, selected in a manual way, were used to compute
15 angles around the hooks, pins, and tailhead, in order to describe the cow’s contour. A
regression machine was employed to infer the BCS from the computed angles. Halachmi
et al. (2008) tested the hypothesis that the body shape of a fatter cow is rounder than that
of a thin cow and, therefore, may better fit a parabolic shape. The posterior part of the cow
was considered in performing the parabolic fitting. The BCS estimation was achieved by
considering the absolute differences between the real body shape and the fitted parabola.

The main objective of this study is to propose a technique able to describe the shape of
body cows in a reconstructive way. Shapes of cows were reconstructed by using a linear com-
bination of basis shapes obtained through Kernel Principal Component Analysis (KPCA).
KPCA is used to model the variability of the shapes of cows within a set of examples. In this
manner cows’ body shapes were described through the different variability from the average
shape considered into the kernel space. The method produced a compact description of the
shape to be used for automatic estimation of BCS through regression approach. A bench-
mark dataset useful for dairy cattle research purposes, available through the Internet1, was
also built as reference for researchers and/or technicians. The dataset was used to test and
compare the proposed method with respect to the other state-of-the-art approaches cited
above. The experimental results confirm the effectiveness of the proposed approach that
achieves the best performances in terms of BCS estimation accuracy.

The remainder of the paper is organized as follows: Sections 2, 3, and 4 describe the
proposed system for BCS assessment. Section 5 details the experimental settings and reports
the obtained results. Finally, conclusions and avenues for further research are given in
Section 6.

2. Cows’ Body Shapes and Their Alignment

Among the visual cues used by human visual system, the shape provides important infor-
mation that allows humans to distinguish between objects of different categories (Belongie
et al., 2002) as well as information that are relevant to understand the differences in the
appearance of an object within a specific class (Cootes et al., 1992). Shapes are typically
represented by locating a finite number of landmarks on the outline of an object. The
mathematical representation for n landmarks located into the shape of an object is a 2n-
dimensional column vector:

s = [x1, x2, . . . , xn, y1, y2, . . . , yn]T = [s1, s2, . . . , sn, sn+1, sn+2, . . . , s2n]T (1)

In this paper we have used the 23 anatomical points indicated by Bewley et al. (2008) as
landmarks useful to represent the outline of cows’ body shapes (Figure 1(a)). We started
by considering the following shape definition (Dryden and Mardia, 1998): “Shape is all the

1. The BCS Database is available at: http://iplab.dmi.unict.it/bcs/
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geometrical information that remains when location, scale and rotational effects are filtered
out from an object”. According to this definition, to obtain a consistent shape representa-
tion, location, scale and rotational effects were filtered out by aligning the corresponding
anatomical landmarks of the different involved shapes. The alignment of cows’ body shapes
was carried out by establishing a coordinate reference system (position, scale and rotation,
commonly known as pose) to which all shapes referred. The reference anatomical landmarks
we used for this task were the landmarks corresponding to foreribs, tail and hooks, as high-
lighted in Figure 1(a). First, shapes were translated to the origin (Figure 1(b)). Shapes

Figure 1: Anatomical landmarks in a cow body shape (a), shape translation (b), shape rotation (c), and
shape scaling (d).

were then rotated such that the left hook and the right hook had the same horizontal co-
ordinate (Figure 1(c)). To perform translation and rotation of shapes, the middle point
between the left hook bone and the right hook bone was taken into account. Finally, shapes
were scaled to fit in a unit square (Figure 1(d)). After alignment, all the shapes referred to
the same coordinates system centered into the origin. Shapes were hence modeled by using
the statistics on the 23 anatomical landmarks.

3. Kernel PCA Based Shape Analysis

In computer vision literature, several shape descriptors have been proposed (Cootes et al.,
1992; Belongie et al., 2002; Xu et al., 2009). Shape descriptors based on Kernel Principal
Component Analysis (KPCA) has been successfully used for statistical shape analysis and
recognition (Samuel et al., 2006; Sahbi, 2007). Kernel PCA is the extension of PCA to deal
with non-linear cases using the technique of kernel methods. The basic idea beyond kernel
methods is to map the data in the input space into a high dimensional feature space via
some non-linear function Φ and then apply a linear method in the augmented space to do
further analysis.

Let S = {s1, . . . , sm} a set of cows’ body shapes and S
′

= {s′1, . . . , s
′
m} the set of shapes

obtained through the alignment procedure (see Section 2). Let Φ : R2n → RnΦ be a mapping

function acting on the input space S
′
. The mean shape of S

′
Φ can be simply computed as

follows:

s
′
Φ =

1

m

m∑
i=1

Φ(s
′
i) (2)

The sample mean is the vector that minimizes the sum of the squared error criterion func-
tion:

s
′
Φ = argmin

vΦ

m∑
i=1

||vΦ − Φ(s
′
i)|| (3)
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The sample mean s
′
Φ is the zero-dimensional descriptor of the dataset S

′
Φ and can be con-

sidered as a “prototype” of the data (i.e., it is the most similar to all the sample into the
dataset), but it does not reveal any of the variability in the data. The modes of variations,
the ways in which the points of the shape into the Kernel space tend to move with respect
to the average shape, can be found by applying principal component analysis (PCA) to the

deviations from the mean s
′
Φ. In this way a shape into the kernel space can be considered

as a linear combination of basis shape into the kernel space, and the basis components can
be used as descriptor of the shape. Kernel PCA finds the principal axes by diagonalizing
the following matrix:

CΦ =
1

m

m∑
i=1

[(
Φ(s

′
i)− s

′
Φ

)(
Φ(s

′
i)− s

′
Φ

)T ]
(4)

Specifically, taking into account the nφ×nφ covariance matrix above, the modes of variation
are described by the unit eigenvectors of CΦ such that

CΦeΦ
j = λΦ

j e
Φ
j j = 1, . . . , nΦ (5)

eΦ
j
T
eΦ
j = 1 j = 1, . . . , nΦ (6)

where λΦ
j is the jth eigenvalue of CΦ. The eigenvectors of the covariance matrix corre-

sponding to the largest eigenvalues describe the most significant modes of variations in the
variables used to derive the covariance matrix CΦ. Taking into account the considerations
made by Halachmi et al. (2008), where the BCS is estimated using a parabolic fitting of
the cows’ body shapes, in our experiments we have tested a polynomial mapping function
to model the shape of cows.

4. Cows’ Body Shape Descriptor and BCS Estimation

The eigenvectors {eΦ
j }

nΦ
j=1 useful to describe the shapes in a reconstructive way were com-

puted using Kernel PCA (see Section 3). Any shape in the training set mapped into the
kernel space through Φ can therefore be generated by using the following equation:

Φ(s
′
i) = s

′
Φ +

nΦ∑
j=1

aΦ
i,je

Φ
j (7)

where aΦ
i,j = eΦ

j
T
(

Φ(s
′
i)− s

′
Φ

)
(8)

The eigenvectors {eΦ
j }

nΦ
j=1 are the set of basis of the shapes into the kernel space S

′
Φ useful

to generate new samples. Unseen shapes in the kernel space can be generated by varying
the values of each aΦ

i,j taking into account that its variance is represented by λΦ
j . Since

most of the samples lie within three standard deviations of the mean, the suitable range for

aΦ
i,j is [−3

√
λΦ
j , 3

√
λΦ
j ]. This range is also used to detect outlier (probably due to error in

manual labeling). Given a training set of cows’ body shapes, Kernel Principal Component

Analysis can be applied after alignment and hence each shape s
′
i can be described into the

Kernel space by using the vector aΦ
i = [aΦ

i,1, ..., a
Φ
i,nΦ

]. The shape descriptors of the training
set can be used together with a regression machine to build a system for BCS estimation:

BCSi = aΦ
i,nΦ

wnΦ + aΦ
i,nΦ−1wnΦ−1 + ...+ aΦ

i,1w1 + w0 (9)

Given the descriptors of the shape in the training set, the regression model can be fitted
by using a simple least squares method. The learned parameters [w0, w1, ..., wnΦ ] are then
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used to infer the BCS of new shape samples describing them through the basis [eΦ
1 , ..., e

Φ
nΦ

]

previously learned on the training set, the sample mean s
′
Φ, and the formula (8).

5. Experimental Settings and Results

Images of cows in a dairy farm were acquired by means of a standard network digital camera.
The camera was positioned at the exit gate from the couple of milking robots at 3 m from
the floor to allow capturing images of the dorsal area of cows (top-left in Figure 2(b)). The
image acquisition system gathered a huge amount of data (approximately 172800 images
for each acquisition interval of four hours) to be analyzed. The useful information (i.e.,
the cow is in the scene) was contained in a very small subset (about 40). To overcome
this problem, the selection of the frames to be analyzed has been done through a series of
image processing algorithms (see Battiato et al. (2010) for all details). The filtering process
led to a final set with 286 images, corresponding to 29 different cows. An ad-hoc software
application was implemented to allow technicians to label each acquired image with the 23
anatomical points useful for BCS estimation according to Bewley et al. (2008).

At the beginning of the acquisition time, 2 technicians were employed to identify the cows
at the exit alley of the milking robot. The clocks of both the image acquisition system and
the technicians were synchronized. Technicians filled a report with one record for each cow
involved in the experiment. The report contained the cow identification (ID) marked in
the collar, the BCS, estimated according to Ferguson et al. (1994), and a timestamp. Once
the report was completed, the assigned BCSs were properly associated to acquired cows’
images by using the timestamp. This procedure produced a dataset of 29 images (one for
each cow involved in the experiment) labeled with the mean of BCSs estimated by the two
technicians.

A semi-automatic procedure was adopted to assign ID label and BCS score (i.e., the
ground truth) to all the other acquired images selected by the filtering pipeline. To estab-
lish similarity between images labeled by the technicians and unlabeled images obtained
with the filtering process, each image was first binarized by considering the average color
within the shape region, and then represented as a binary distribution taking into account
the black and white pixels within the shape region (Figure 2(a)). Similarity between the
distributions related to different images was measured by using the coefficient of Bhat-
tacharyya (1943). Since the binarized texture of cows can be similar in their distribution if
the shape is considered as whole, in the final solution we adopted a more robust representa-
tion of the content of images based on a binary distribution for each subregion of the shape
obtained considering anatomical landmarks and the center of mass of the anatomical points
(Figure 2(b)). The similarity between two images, represented by using binary distribu-
tions of subregions within the shape is obtained by averaging the similarity of distributions
of corresponding subregions measured with the Bhattacharyya coefficient. The developed
software took as input an image from the labeled dataset and retrieved the first K (K=10
in our experiment) similar unlabeled images. A technician was employed to associate the
retrieved unlabeled images to the target labeled image through visual inspection. The ID
and BCS of the target image were automatically associated by the software to the images
selected by the technician. This software was useful to speed up the labeling phase.
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(a) Similarity between cows’ images. (b) Binary distribution of subregions.

Figure 2: Ground truth propagation.

Method Mean BCS error

Modified Halachmi 0.9837

Bewley (model 1) 0.3295

Bewley (model 2) 0.3289

KPCA - Linear Kernel 0.3218

KPCA - Polynomial Kernel 0.3059

Table 1: Mean BCS error comparison.

All the labeled images together with the related ground truth (anatomical points and
BCS) and the labeling SW are available at http://iplab.dmi.unict.it/bcs/.

In order to assess the effectiveness of the methods, the Leave One Out Cross Validation
(LOOCV) procedure and the Regression Error Characteristic Curves (REC) (Bi and Ben-
nett, 2003) were used. Each run of LOOCV involved a single observation of the dataset as
test, and the remaining samples as training data. This was repeated to guarantee that each
sample was used once as the test data. The average error rate was computed taking into
account all runs. The REC curve is essentially the cumulative distribution function of the
error. The area over the curve is a biased estimation of the expected error of an employed
regression model.

Results of errors obtained from estimation of BCS using the different models are reported
in Table 1. The Halachmi approach was not able to provide satisfactory results (Fig-
ure 3(a)). The parabolic fitting might be not accurate enough when is performed consid-
ering only the 23 labeled points. Bewley’s models obtained similar results (model 2 was
slightly better than model 1) (Figure 3(b) and Figure 3(c)). Their performances are better
for the central BCS values (around 3.5) and worst in the extreme cases (2.5 and 4.5) corre-
sponding to thin or fat cows. Our approach, in particular the one using polynomial kernel,
outperformed the other techniques, obtaining satisfactory results even in the extreme cases.
Predicted BCS versus true BCS (estimated by technicians) results are reported in Figure
3(d) and Figure 3(e). As shown in Figure 4(a), the KPCA with polynomial kernel is able to
follow the ideal line better than Bewley’s approach. In Figure 4(b) the comparison through
REC curves confirms that the proposed method outperforms state-of-the-art techniques for
BCS assessment.
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Figure 3: Predicted BCS versus true BCS (estimated by technicians). (a) Halachmi approach. (b) Bewley’s

model 1. (c) Bewley’s model 2. (d) Proposed approach KPCA-Linear. (e) Proposed approach
KPCA-Polynomial.
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(a) KPCA-Polynomial vs Bewley’s model 2.
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Figure 4: (a) Proposed kernel approach with polynomial kernel (blue line) versus Bewley’s model 2 (red
line). As shown in (a) the proposed approach follows the ideal line better than Bewley’s model. In
(b) the REC Curves of the different models involved in the comparison confirm the effectiveness
of the proposed approach.

6. Conclusion and Future Works

BCS estimation systems are desired to cut down time and costs of the traditional BCS
estimation techniques. These systems can produce an objective evaluation of BCS in a
way that is less invasive for the cows. In this paper a new method for BCS estimation is
discussed. The cow body shape is described considering the deviation from the average
shape in the kernel space. The method produced a description of the shape to be used for
automatic estimation of BCS through a regression machine. Experimental results confirm
the effectiveness of the proposed approach that outperforms the previous state-of-the-art
methods in the field. A second contribute of this study is the new benchmark dataset useful
for research purposes. The new BCS dataset is publicly available through the Internet.
Future works will be devoted in building a fully automatic system for BCS evaluation in
which the shape of a cow will be automatically extracted through segmentation procedure
from digital images acquired with a low cost camera. Additional side views will be included
and combined with the dorsal view to better estimate the BCS. Moreover, the benchmark
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database will be extended to include more samples and extreme cases (cows with BCS<2.5
and 4.5<BCS).
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