
JMLR: Workshop and Conference Proceedings 11 (2010) 12–19 Workshop on Applications of Pattern Analysis

µTOSS - Multiple hypothesis testing in an open software
system

Gilles Blanchard gilles.blanchard@wias-berlin.de
Weierstrass Institute for Applied Analysis and Stochastics Berlin

Thorsten Dickhaus dickhaus@math.hu-berlin.de
Humboldt-University Berlin

Niklas Hack niklas.hack@meduniwien.ac.at
Medical University of Vienna

Frank Konietschke Frank.Konietschke@medizin.uni-goettingen.de
Georg-August-University Göttingen

Kornelius Rohmeyer rohmeyer@biostat.uni-hannover.de
Leibniz University Hannover

Jonathan Rosenblatt john.ros@gmail.com
Tel Aviv University

Marsel Scheer mscheer@ddz.uni-duesseldorf.de
German Diabetes Center

Wiebke Werft w.werft@Dkfz-Heidelberg.de

German Cancer Research Center

Editors: Tom Diethe, Nello Cristianini, John Shawe-Taylor

Abstract

µTOSS is an R package providing an open source, easy-to-extend platform for multiple
hypothesis testing (MHT), one of the most active research fields in statistics over the last
10-15 years. Its first motivation is to establish a common platform and standardization
for MHT procedures at large. The µTOSS software has been designed and written in the
framework of a “Harvest Programme” call of the PASCAL2 European research network.
Basically, it consists of the two R packages mutoss and mutossGUI. For researchers, it
features a convenient unification of interfaces for MHT procedures (including standardized
functions to access existing specific MHT R packages such as multtest and multcomp,
as well as recent MHT procedures that are not available elsewhere) and helper functions
facilitating the setup of benchmark simulations for comparison of competing methods. For
end users, a graphical user interface and an online user’s guide for finding appropriate
methods for a given specification of the multiple testing problem is included. Ongoing
maintenance and subsequent extensions will aim at establishing µTOSS as a state of the
art in statistical computing for MHT.

© 2010 G. Blanchard, T. Dickhaus, N. Hack, F. Konietschke, K. Rohmeyer, J. Rosenblatt, M. Scheer & W. Werft.

µTOSS

1. Introduction

1.1. Motivation

Multiple hypothesis testing (MHT) has emerged as one of the most active research fields
in statistics over the last 10-15 years, especially driven by large-scale applications, such
as genomics, proteomics or cosmology. According to data presented by Benjamini (2009),
approximately 8% of all articles in the four leading methodological statistical journals nowa-
days deal with multiple testing. Many new multiple (type I and type II) error criteria like
the meanwhile quite popular ”false discovery rate” (FDR) have recently been propagated
and published together with explicit algorithms for controlling them. Moreover, regulatory
agencies have also become more and more aware of multiplicity and reproducibility issues in
research and therefore require multiplicity-adjusted confidence regions for reported effects
whereever possible (cf., e. g., U. S. Food and Drug Administration, 2010).

One major characteristic of recent research in this field consists in more or less direct im-
plementation of the theoretical results into (individual) software. It is fair to say that up to
now every research group uses its own software, making (simulation) study evaluations and
related results not entirely comparable. Moreover, the spread of newly emerging methods
is hindered by the lack of a common software platform to agree on.

Motivated by a suggestion made by Benjamini (2009), we developed an open software
framework for multiple hypotheses testing called ”µTOSS”, sponsored by the PASCAL2
European Network of Excellence and realized at Berlin Institute of Technology. It is based on
the freely available statistical computing environment R, see http://www.r-project.org/.

The µTOSS software is targeted towards researchers working theoretically in the field
of multiple hypothesis testing as well as to end users working in the life sciences. For the
first target group, the unification of interfaces for many known MHT procedures, should in
particular prove useful. Moreover, the simulation tool described in Section 3 facilitates the
comparison of competing methods. End users will profit from the graphical user interface
(GUI, cf. Section 4) and its filter mechanism. The latter serves as a guide to appropriate
procedures depending on the user’s specification of the test problem.

1.2. Multiple hypothesis testing in a nutshell

Let a statistical model (X ,A, (Pϑ)ϑ∈Θ) parametrized by ϑ ∈ Θ be given. Multiple hypothesis
testing is concerned with testing a family H = (Hi, i ∈ I) of hypotheses regarding the
parameter ϑ with corresponding alternatives Ki = Θ \ Hi. A multiple test procedure
ϕ = (ϕi, i ∈ I) is a sequence of tests. Its components ϕi map from X into {0, 1} and have
the usual interpretation of a statistical test for the pair of hypotheses Hi versus Ki, namely,
ϕi(x) = 1 means rejection of Hi and decision in favor of Ki whereas ϕi(x) = 0 means no
rejection. Let I0 ≡ I0(ϑ) ⊆ I denote the index set of true hypotheses in H. Moreover, let
R(ϕ) denote the total number of rejections and V (ϕ) the number of type I errors of ϕ, i. e.,
R(ϕ) =

∑
i∈I ϕi and V (ϕ) =

∑
i∈I0 ϕi. The classical multiple type I error measure is the

family-wise error rate (FWER) and can be expressed as FWERϑ(ϕ) = Pϑ(V (ϕ) > 0). In
words, FWERϑ(ϕ) denotes the probability (under ϑ ∈ Θ) that ϕ leads to at least one type I
error. For multiple testing problems of massive size (|H| very large), the false discovery rate
(FDR), defined as the expected proportion of type I errors among all rejections (in formula:

13

Blanchard Dickhaus Hack Konietschke Rohmeyer Rosenblatt Scheer Werft

FDRϑ(ϕ) = Eϑ[V (ϕ)/max(R(ϕ), 1)]) has become a very popular alternative type I error
measure during the last 15 years. A vast diversity of alternative criteria and corresponding
type II analogues has been developed.

It goes beyond the scope of this paper to describe techniques for controlling the FWER
or the FDR (control of an error rate thereby means finding a multiple test ϕ guaranteeing
that the error rate is bounded from above by a fixed significance level α ∈ (0, 1) for all
possible parameter values ϑ ∈ Θ). However, it is worth mentioning that many closely
related multiple statistical decision problems can be solved with MHT techniques, e. g.,
constructing simultaneous confidence regions for model parameters or selection, partitioning
and ranking problems. Therefore, µTOSS provides functions for computing simultaneous
confidence intervals for parameters of specific models in addition to the mere determination
of rejection patterns.

2. General design paradigms and overview of methods

2.1. General objectives

The main cornerstone of the philosophy underlying the µTOSS software is the idea of cre-
ating an open system. Here, “open” is to be understood in two directions: open-source
implementation, and ease of extensibility. Concretely, the software is realized as two
R packages, mutoss and mutossGUI, which can freely be downloaded from R-Forge, see
http://mutoss.r-forge.r-project.org/. Every included method comes with a precise
description of its usage, its assumptions and appropriate references. This is meant to be of
help both to programmers who want to extend µTOSS and to end users who are typically
not experts in the vast diversity of existing MHT procedures. In particular, the GUI fea-
tures an automatic filtering of adequate procedures based on the user’s input, and presents
the documentation of each procedure in an information window (see Section 4 for details).
The components of the µTOSS system provide

(i) multiple tests controlling the family-wise error rate (single-step and stepwise rejective
methods, resampling-based procedures),

(ii) multiple tests controlling the false discovery rate (classical and data-adaptive frequen-
tistic methods as well as Bayesian approaches and resampling-based techniques),

(iii) estimation techniques for the number (or proportion) of true null hypotheses,

(iv) multiplicity-adjusted (parametric and non-parametric) simultaneous confidence inter-
vals.

Emphasis has been put on having a broad coverage of available methods, so that µTOSS
includes both classical procedures and recently developed MHT procedures. In particular,
the package provides µTOSS-compatible functions which serve as interfaces to the standard
packages multcomp and multtest. In addition, very recent algorithms for constructing
nonparametric confidence intervals as published in Konietschke (2009) and Gao et al. (2008)
and implicitly adaptive FDR-controlling step-up-down tests taken from Finner et al. (2009),
Finner et al. (2010) and Blanchard and Roquain (2009) are made available in µTOSS for
the first time.

14

µTOSS

2.2. High-level description

Standard µTOSS specification for functions
One of the first goals in developing the µTOSS package is simply to provide a unified

and standardized set of input and output parameters, shared by all procedures that can
be called by the user. Since those can cover a large variety of very different purposes, any
single procedure actually only uses a subset of all possible input parameters, and returns
a subset of possible output parameters. The important point is that procedures which
are comparable in their purpose (for example: procedures which return a list of rejected
hypotheses based on a list of p-values and a prescribed FDR level) will have the same form
of input and output.

A function following this specification, in the sequel called a µTOSS-compatible function,
is simply an R function taking input parameters under their standard names (and possibly
other procedure-specific tuning parameters), and returning as output a list of results also
following the standard name spefication. Such functions can then be accessed:

1. as simple command-line R functions

2. by applying them on objects of class Mutoss through the wrapper function mutoss.apply

(see below)

3. through the GUI (see Section 4).

The object class Mutoss

The class Mutoss provides a structure where all the possible standard input/output pa-
rameters of the µTOSS specification are present as slots:

> slotNames("Mutoss")

[1] "data" "model" "description" "statistic"

[5] "hypotheses" "hypNames" "criticalValues" "pValues"

[9] "adjPValues" "errorControl" "rejected" "qValues"

[13] "locFDR" "pi0" "confIntervals" "commandHistory"

The wrapper function mutoss.apply (which takes as argument an object of class Mutoss
and a µTOSS-compatible function) reads the object’s relevant slots to be fed as the function
input, and fills or replaces the object’s slots whose names are present in the function output
list. This construction allows to follow a consistent and unified processing flow by applying
in succession several different processing functions to an object. In this perspective, it also
keeps track of useful side information in the process: command history is recorded in a
special slot, and for each individual slot, the name of the last function that modified its
value is stored.

Statistical models
Multiple testing procedures can be used for a wide variety of different statistical models.

This variety prevents from defining a set of unique parameters which could cover the model
specification in all cases. Consequently, we introduced a generic input slot, “model”, which
should contain a structure with all relevant information pertaining to the model definition.

15

Blanchard Dickhaus Hack Konietschke Rohmeyer Rosenblatt Scheer Werft

In turn, this structure must follow a certain standard model-dependent specification; at this
point we have defined such parameter specifications for several standard models such as one-
and two-sample t-tests, F-tests, tests for linear contrasts, etc. Given the model specification,
it is possible to compute a list of marginal p-values from the raw data. While some generic
MHT procedures can be applied to any list of marginal p-values, other procedures can only
be applied for a specific model (but are then often more efficient than generic procedures).

Extensibility
Given the architecture described in the previous paragraph, it is straightforward to add

new processing functions to the package: basically it is only necessary to provide a function
whose input and output are µTOSS compatible. In addition, in order for this function to be
correctly accessible in the GUI, it is necessary to provide an information function having the
name mutoss.<functionname>, and whose role is to provide metadata about the original
function, namely: input and output parameters used, and a HTML-formatted description
text (see Section 4.1 for more details).

Example
We demonstrate very briefly the use of the Benjamini-Hochberg adaptive procedure

(cf. Benjamini and Hochberg (2000)) using both the direct call to the function or the
mutoss.apply strategy.

> pval = c(runif(95),0.005*runif(5)) # some toy p-values

> BHoutput = adaptiveBH(pValues = pval, alpha = 0.05)

Benjamini-Hochberg (2000) adaptive step-up procedure

Number of hyp.: 100

Number of rej.: 2

rejected pValues adjPValues

1 96 0.0001267805 0.01229771

2 97 0.0006986036 0.03388228

> newObject <- mutoss.apply(new(Class="Mutoss", pValues=pval), f=adaptiveBH,

+ alpha=0.05, silent=T)

+ #same thing as above, through mutoss.apply

> which(newObject@rejected)

[1] 96 97

3. Simulation platform

The standardization of input/output parameters is of primary importance in order to set
up comparison benchmarks between different procedures in an easy manner. This is of use
on the one hand for users wanting to explore the output of different methods on a given
dataset, and on the other hand for developers of new methodology who want to compare
the performance of their method against reference procedures on simulated data.

16

µTOSS

Given the importance of the latter use case, functions for facilitating a large simulation
setup are included as part of µTOSS. The simulation platform consists of just two functions,
simulation() and gatherStatistics(), which are essentially automating loop work for
the user. They can be generally thought of as performing Map/Reduce type operations.
At this point, the corresponding loops are performed sequentially, but future development
should include parallelization support if available.

The simulation() function takes three input arguments: the number of replications;
the data generating function and its parameters; a list of processing functions and their
parameters. The data generating function must be provided by the user and follow a
standard specification of its output which is comparable to that of µTOSS compatible
functions. The parameters used in arguments 2 and 3 can in general themselves be lists of
values to be looped over.

What the simulation() function does is to call the data generating function for each
possible parameter configuration coming from the parameter list of argument 2. The re-
sulting data is then fed to each of the procedures listed in argument 3, and for each possible
parameter configuration coming from their respective parameter lists. This is also repeated
over the number of replications.

The output of simulation() is a list of objects of the class MutossSim (an extension of
the class Mutoss discussed previously), each object storing the speficic simulation parameter
configuration (for data generation as well as processing) used to generate it, along with the
result of the procedure.

The gatherStatistics() function also takes three input arguments: a list of objects
created by simulation(), a list of postprocessing functions to be applied to each single
object, and a list of postprocessing functions to be applied to each group of objects.

The second argument is typically made of numeric output functions; each of these func-
tions is applied to each object appearing in the first argument’s list (for example: calculation
of the number of false positives in each simulation run). A “group of objects” is the set of
objects sharing an identical simulation parameter configuration. Each function appearing
in argument 3 (for example: mean or variance) is applied separately for each object group,
and to each output column generated by the single object functions. If the third argument is
non-void, the output data frame has only a single row for each unique simulation parameter
configuration (hence its characterization as a “reduce” step).

The output of gatherStatistics() is a data frame, having one column per simulation
parameter for recalling their value, and one column for each of the possible combinations
of (single object postprocessing, group postprocessing). This data frame can be used in a
variety of ways to visualize the outputs using standard libraries in R.

4. Graphical user interface

The µTOSS graphical user interface is essentially a visual representation of the underlying
concept described in Section 2.2. Its leftmost part (cf. Figure 1) consists of a series of
buttons the functionality of which is to modify the associated slots of the active object
of class ”Mutoss”. A filtering mechanism (cf. Section 4.1 for details) guides the user to
appropriate functions. After the user has specified the input data set, a statistical model,
a family of hypotheses to be tested and the type and level of error control, (s)he can

17

Blanchard Dickhaus Hack Konietschke Rohmeyer Rosenblatt Scheer Werft

Figure 1: Screenshot of the µTOSS GUI

select an appropriate method by clicking on either one of the three buttons “adjusted p-
values”, “confidence intervals” or “rejected”. According to the information entered before,
only procedures that match these specifications can be selected.

When a procedure is selected, a subwindow provides additional information on the selected
method and possible further arguments or parameters can be entered or selected (an example
is shown in Figure 1). Once all computations are done, the results are displayed in the right
part of the GUI. Results are either presented in textual form (listings) or in graphical form
(charts). They can be saved as R objects or printed into a PDF document.

4.1. Filtering mechanism

The filtering mechanism in the µTOSS GUI is based on the wrapper function class
MutossMethod. The contents of the slots of a ”MutossMethod” object provide the GUI
with all necessary information for realizing the filtering. The following slots are available.

> slotNames("MutossMethod")

[1] "label" "errorControl" "callFunction" "output" "info"

[6] "assumptions" "parameters" "misc"

To illustrate the process, assume that a function foo exists the output of which can be used
to fill certain slots of a ”Mutoss” object. Then, all that is to be done in order to make foo

accessible via the µTOSS GUI is to write a wrapper function named mutoss.foo returning
an object of type MutossMethod. The ”label” slot should contain a string with the name

18

µTOSS

of the procedure foo is implementing, ”callFunction” should equal foo and the other self-
explaining slots should contain the meta information about the procedure realized by foo.
Every time the µTOSS GUI is invoked, it screens the R workspace for functions with the
prefix mutoss. and automatically enters them.

5. Outlook

It is envisioned to include modules for graph-based hierarchical testing and for planning and
evaluating group-sequential and adaptive (clinical) trials in subsequent releases of µTOSS.
Ongoing maintenance is assured by making use of the bug-tracking functionality provided
by R-Forge. Subsequent extensions of µTOSS are planned depending on the feedback from
the scientific community. The general aim thereby consists in establishing µTOSS as a state
of the art in statistical computing for MHT.

Acknowledgments

We like to acknowledge PASCAL2 and especially Nicola Cancedda for support and the
Machine Learning / Intelligent Data Analysis group at Berlin Institute of Technology for
hosting the core developing phase of µTOSS.

References

Y. Benjamini. Simultaneous and selective inference: current successes and future chal-
lenges. Keynote lecture, 6th International Conference on Multiple Comparison Proce-
dures, Tokyo, 2009.

Y. Benjamini and Y. Hochberg. On the adaptive control of the false discovery rate in
multiple testing with independent statistics. J. Edu. and Behav. Stat., 25:60–83, 2000.

G. Blanchard and E. Roquain. Adaptive FDR control under independence and dependence.
Journal of Machine Learning Research, 10:2837–2871, 2009.

H. Finner, T. Dickhaus, and M. Roters. On the false discovery rate and an asymptotically
optimal rejection curve. The Annals of Statistics, 37:596–618, 2009.

H. Finner, V. Gontscharuk, and T. Dickhaus. FDR controlling step-up-down tests related
to the asymptotically optimal rejection curve. Under review, 2010.

X. Gao, M. Alvo, J. Chen, and G. Li. Nonparametric multiple comparison procedures for
unbalanced one-way factorial designs. Journal of Statistical Planning and Inference, 138:
2574–2591, 2008.

F. Konietschke. Simultane Konfidenzintervalle für nichtparametrische relative Kontrastef-
fekte. Ph. D. dissertation, Georg-August University, Göttingen, 2009.

U. S. Food and Drug Administration. Draft guidance on ”adaptive de-
sign clinical trials for drugs and biologics”. http://www.fda.gov/Drugs/

GuidanceComplianceRegulatoryInformation/Guidances/ucm121568.htm, 2010.

19

