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Abstract

Web servers and server-side applications constitute the key components of modern Internet
services. We present a pattern recognition system to the detection of intrusion attempts
that target such components. Our system is anomaly-based, i.e., we model the normal
(legitimate) traffic and intrusion attempts are identified as anomalous traffic. In order to
address the presence of attacks (noise) inside the training set we employ an ad-hoc outlier
detection technique. This approach does not require supervision and allows us to accurately
detect both known and unknown attacks against web services.
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1. Introduction

Today, most of on-line services are implemented as web applications. On-line banking,
web search engines, email applications, social networks are just few examples of such
web services. Web content is generated in real time by a software application running
at server-side, i.e. the so-called web application. For example, a request on the following
link http://www.google.com/search?q=wapa&hl=en generates a HTML page containing
search results for wapa in en language.

According to this scheme, the operations performed by web applications depend on their
inputs (e.g. the strings wapa and en). This scheme is indeed flexible and has been proven
very successful to support the information exchange on the Internet. On the other hand,
unexpected -well-crafted- inputs may be submitted by cyber-criminals to remotely gain
confidential data or perform unauthorized operations. Since web services are becoming
even more complex and ubiquitous, it is very difficult to encounter all possible exceptions
to the expected behavior of web servers and web applications. This explains why server-side
web security is currently one of the key problems of the Internet [SANS (2009)].

In this paper we present a pattern recognition system for the detection of attacks against
web services. We focus on the detection of attacks targeting input validation vulnerabilities,
i.e. the most diffused and threatening attacks [SANS (2009)]. As in related work [Kruegel
et al. (2005), Bolzoni and Etalle (2008), Guyet et al. (2009), Krueger et al. (2010)], we
assume that by collecting a large enough sample of real web requests on a web server, it
is possible to describe the legitimate (normal) profile of web server’s inputs. Our goal is
to distinguish between attacks and legitimate requests, but also to identify different attack
categories. Thus, we identify a set of discriminant features and for each request feature a
model of its legitimate profile is built. An attack may be identified by an anomalous value in
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Figure 1: Basic scheme of the proposed Intrusion Detection System.

any of the predefined features. Each model may be considered as an independent anomaly
sensor, and the vector of models’ outputs may be used to infer the attack class.

The paper is structured as follows. Section 2 outlines the general architecture of our
system. Section 3 describes the system’s training process. In Section 4 we present more in
detail features and models used to describe the legitimate profile of web requests. In Section
5 we present the performance of our system on a production web server. Finally, in Section
6 conclusions are drawn.

2. Architecture

Figure 1 depicts the basic architecture of our Intrusion Detection System (IDS). It is com-
posed by multiple, independent, anomaly sensors. Each sensor is dedicated to the detection
of anomalies in a specific feature of web requests, since each feature, independently, could
be useful to spot an attack pattern. Also, the set of detected anomalies may be employed
to infer the attack category (or identify new attack categories). Each sensor is composed by
a statistical model of the legitimate (normal) feature’s values and a decision module based
on a probability threshold. Whenever a test request reaches the web server, the probability
(of normality) of each feature’s value is assigned by the corresponding model. Then, the
corresponding decision module applies a suitable threshold to the output of the model to
establish whether the feature’s value is anomalous or not. The request is flagged as an
attack if it has at least one anomalous feature (i.e. we employ a OR rule).

3. Training

Legitimate users, i.e. users that employ web services as expected, are typically in higher
number than malicious users, i.e. cyber-criminals that try to exploit web service’s vulner-
abilities to their own benefit. Thus, an enough large set of requests towards a web server
may be considered as representative of legitimate behavior (training set). Nevertheless,
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some attacks, i.e. noise, may be present in such a set. Due to the ad-hoc nature of web ser-
vices, this noise cannot be easily filtered out considering known attacks, or through manual
inspection. To address this issue, for each request feature we identify and filter out outlier’s
values. Then, the remaining feature values are employed to build the corresponding statis-
tical model. Finally, for each model, we set up the probability threshold so that all filtered
training samples are classified as legitimate. The outlier detection algorithm, presented in
Section 3.1, is independent on the considered features or models. Thus new traffic features
and models may be easily employed by our system.

3.1. Outlier detection algorithm

Let us consider a training set S = {x1,x2, . . . ,xN} composed by N patterns. A statistical
model m is built using the entire set S. Let p[X = x|m] be the likelihood given by the
model m to the pattern x ∈ S. Now, let us define the relative distance measure δ between
two patterns xj and xk as

δ(xj,xk) = |p[X = xj|m]− p[X = xk|m]| xj,xk ∈ S

The training set can be expressed as S = T ∪O, where T is the set of target patterns and
O is the set of outlier patterns (attacks, noise). In order to identify these two sets, we apply
a single-linkage clustering [Jain et al. (1999)], where the distance between two patterns
is defined by δ(xj,xk) and the number of clusters is two. This choice is in agreement
with the notion of outlier detection, where the distance δ between a target pattern and a
outlier pattern is expected to be higher than the distance δ between two target patterns
or two outlier patterns. We validate the clusters T and O by verifying that |T | � |O|
(e.g. |T | > 10 · |O|), since the majority of patterns inside S are assumed as target patterns.
Afterwards, a new model m′ can be trained using only patterns in T , which is considered
as the filtered training set.

4. Request features and models

Let us refer to the following example, that lights out the general format of a HTTP request
message:

Request fields Request message (example)
−−−−−−−−−−−−−−− →
web application GET /search?q=wapa&hl=en HTTP/1.1

http version Host: www.google.com

method User-Agent: Mozilla/5.0

header Accept: text/html

header input value Accept-Language: en

web application attribute Accept-Charset: utf-8

attribute input value Keep-Alive: 300

Connection: keep-alive

Referer: http://www.google.com/

Cookie: NID=34=Y7dBzu40Q2eiPOOwXKTZ
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Table 1 summarizes the discriminant features employed by our system. For each feature,
we describe the principal category of attacks we may detect, as well as the employed model.
Each model, enumerated as A, B, C, may be applied to infer the statistical profile of different
features. Models are described in Sections 4.1 4.2, 4.3.

Table 1: Summary of the discriminant features employed by our system. For each feature,
we specify the category of attacks that may be detected, and the employed model.

Feature Attacks Model

Sequence of web application at-
tributes

any attack that injects malicious input on “un-
common” attributes for the web application

A (a model for each web
application)

Sequence of input characters on
web application attributes

input validation attacks leveraging on a specific
attribute

A (a model for each web
app. attribute)

Frequency of requests on web appli-
cations

automated queries performed by software
robots

B (a model for each web
application)

Request Method information gathering / buffer overflow attacks
exploiting this field

C

HTTP version information gathering / buffer overflow attacks
exploiting this field

C

Request headers: input length buffer overflow attacks leveraging on the header
input

B (a model for each re-
quest header)

Request headers: non-
alphanumeric input characters

code injection attacks leveraging on the header
input

C (a model for each re-
quest header)

Request headers: allowed input
characters (digit or alphabetic or
alphanumeric)

information gathering attacks leveraging on the
header input

C (a model for each re-
quest header)

Ratio between rejected and total re-
quests (per source IP address)

information gathering and automated discovery
of common (vulnerable) web applications

B

4.1. Model A: sequence of symbols

A sequence of symbols is described through a Hidden Markov Model. The training phase is
based on the well-known Baum-Welch algorithm [Rabiner (1989)]. We compute the number
of states as the average number of distinct symbols of each training sequence. Moreover, we
randomly initialize the state transition and the symbol emission matrices. Finally, we build
the dictionary of symbols by extracting them from training sequences. Indeed, these choices
are in some way arbitrary. However, they allowed us to attain excellent results in previous
work [Corona et al. (2009)] and do not require a-priori knowledge about the structure of
training sequences.

We train the HMM on the (raw) training set S. Subsequently, in order to identify outlier
samples inside the training set (i.e. noise), we apply the algorithm described in Section 3.1.
Finally, we (re)train the HMM using the filtered training set.

Given an observed sequence x, we obtain the most probable state sequence by using the
Viterbi Algorithm [Rabiner (1989)]. Then, the probability of the sequence

p[x is legitimate|model-a]
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is computed by combining state transition and the symbol emission matrices, according to
the most probable state sequence and the sequence of symbols under analysis.

4.2. Model B: statistical distribution of a non-negative integer value

This model is built from a training set S = {x1, x2, . . . , xN}, where each element is a non-
negative integer value, i.e., xi ∈ N0. In practice, according to the selected features, the
higher xi, the lower the likelihood that it is legitimate. So, we define the probability of a
certain value x as:

{
p[x is legitimate|model-b] = p[|X − µ| ≥ |x− µ|] = σ2

(x−µ)2
if x ≥ µ+ σ

p[x is legitimate|model-b] = 1 otherwise
(1)

Since large values should receive lower likelihood, we compute the probability that the
random variable X, having mean µ and variance σ2 exceeds the x value. To this end, we
use the well-known Chebyshev inequality p[|X−µ| ≥ q] ≤ σ2

q2
, with q = |x−µ| and consider

the upper limit of p[|X − µ| ≥ |x− µ|].
Initially, the model is based on the mean µ and the variance σ2 of values inside the (raw)

training set S. Then we apply the outlier detection algorithm described in Section 3.1.
Finally a new model is built considering the filtered training set.

4.3. Model C: statistical distribution of symbols

This model is built from a training set S = {x1, x2, . . . , xN} where each element is a symbol.
For a generic symbol x we assign the following probability:

p[x is legitimate|model-c] =
count(x)

N
(2)

that is, the relative frequency count(x) of x in the training set S. Then we apply the
outlier detection algorithm described in Section 3.1. The filtered set of symbols T is used
to build a new model following the previous eq. 2. Any symbol not in T is considered as
anomalous.

5. Experiments

We experimented with about 450,000 requests, collected from a production web server of
our academic institution, in a week time-interval. We subdivided this dataset (Λ) in two
datasets: Σ composed by the first 200,000 requests of Λ and T containing all remaining
requests. Dataset Σ has been used to train our detection system1.

We labeled all requests inside Λ with the help of models built by our system. Recall that
attack samples are expected to receive lower probability with respect legitimate samples
(see Section 3). So, for each feature, we manually inspected samples receiving the lowest

1. In is worth noting that we may not randomly split dataset Λ. This because the last feature in Table
1 depends on the sequence of requests during the time. The training phase required 2 hours and 53
minutes on a common laptop with Linux OS.

164



Detection of Server-side Web Attacks

likelihood. On the basis of our experience and by employing contextual information2, we
labeled such samples as legitimate or attacks. Such an approach (used also in our previous
work [Corona et al. (2009)]) allowed us to find 232 attack requests in Λ. We labeled as
legitimate all other web requests in Λ. It is worth noting that the employed approach is
effective to label input validation attacks (the focus of this work), while some other attacks
may go unnoticed.

The IDS detected autonomously all attacks inside the set Λ. A portion of them (102
attacks), was among the requests employed to train the IDS itself (Σ). On the other hand,
our system raised a total of 1,252 false alarms (i.e. a false alarm rate of 0.28%) on set Λ.

To better evaluate the detection rate of our system, we built a set of input validation
attacks Φ against both web server and web applications of the portal. We then evaluated
how many of them were actually detected by the IDS. These attacks have been thoroughly
suited to the specific configuration of web server and web application inputs [Corona (2010)].
Dataset Φ accounts for 507 attacks against the web portal under analysis. We analyzed
these well-crafted attack requests with our system, and 505 (99.6%) of them have been
successfully detected. It is worth noting that the two missed attacks were information
gathering attacks with low impact on the security of web services under test. Table 2
outlines the performances of our detection system, in terms of (a) detection, (b) false alarm
rate and (c) average response time per request, evaluated on datasets Λ and Φ.

These results clearly highlight that our approach can accurately spot attacks even if they
are included in the traffic collected to train the system. We detected all attacks encountered
in the wild (i.e. within dataset Λ) and almost all our “custom” attacks in the dataset Φ. In
addition, a very low false positive rate is generated (0.2-0.3%). Nevertheless, most of alerts
are actually false alarms, since the attack class is heavily undersampled.

Parameter Dataset Value

detection rate
Λ = Σ ∪ T 232 attacks out of 232, 100%, ∼39alerts/day
Φ 505 attacks out of 507, 99.6%

false alarm rate
Λ 1,252alerts/447,178reqs, 0.28%, ∼209alerts/day
Σ 450alerts/200,000reqs, 0.22%, ∼150alerts/day
T 802alerts/247,178reqs, 0.32%, ∼267alerts/day

response time Λ 1.2 milliseconds

Table 2: Overview of the performaces of the IDS evaluated on datasets Λ and Φ. Our
system has been trained on Σ (the first 200,000 requests of Λ).

6. Conclusions

We presented a pattern recognition system for the detection of attacks against web services.
The proposed system is able to learn without supervision from real web traffic towards a
web server (training set). An important aspect is that our system handles the presence
of attacks in the training set. The experimental evaluation on a production web server

2. For example, we verified legitimate web application inputs by links contained inside web pages, and by
browsing as a normal web user.
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showed that our IDS is able to attain very good performances, with both high detection
and very low false alarm rates. Nevertheless some questions still remain open. IDSs operate
in an adversarial environment. We have to evaluate the robustness of our system in front
of targeted noise that tries to evade/attack the outlier detection algorithm. Moreover, the
false alarm rate may be further reduced, e.g. through a more sophisticate outlier detection
algorithm. These aspects will be object of future work.
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