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Abstract

In this paper we describe an online/incremental linear binary classifier based on an inter-
esting approach to estimate the Fisher subspace. The proposed method allows to deal with
datasets having high cardinality, being dynamically supplied, and it efficiently copes with
high dimensional data without employing any dimensionality reduction technique. More-
over, this approach obtains promising classification performance even when the cardinality
of the training set is comparable to the data dimensionality.

We demonstrate the efficacy of our algorithm by testing it on EEG data. This classifi-
cation problem is particularly hard since the data are high dimensional, the cardinality of
the data is lower than the space dimensionality, and the classes are strongly unbalanced.
The promising results obtained in the MLSP competition, without employing any feature
extraction/selection step, have demonstrated that our method is effective; this is further
proved both by our tests and by the comparison with other well-known classifiers.
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1. Introduction

Given a set of training vectors P =
⋃C

c=1 Pc = {pi}
N
i=1 sampled from a set of linearly

separable classes, where c is the label of the class and pi ∈ <D, Fisher Linear Discriminant
Analysis (FLDA) is often applied, due to its simplicity and efficacy, to project the data on
the c− 1 dimensional linear subspace where the data separability is maximal.

In (Rozza et al., 2009) the authors exploit the appealing properties of FLDA by proposing
a binary classifier, called Isotropic PCA Classifier (IPCAC), that exploits theoretical results
presented in (Brubaker and Vempala, 2008) to efficiently estimate the Fisher Subspace
(FS). More precisely, Brubaker and Vempala demonstrate that, given a set of clustered
points sampled from an isotropic Mixture of Gaussians (MoG), FS corresponds to the span
of the class means; as a consequence, when a binary classification problem is considered, FS
is spanned by f = µA−µB

||µA−µB ||
, being A/B the two classes, and µA/B the class means.

IPCAC exploits this result by firstly whitening the training set P, computing the unit
vector f , and then classifying a new point p by thresholding its projection on FS as follows:

(W T
Nf) · p− γ = w · p− γ < 0 ; γ =

〈
arg max
{γ̄}⊆{w·pi}

Score(γ̄)

〉
(1)
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where the matrix WN represents the whitening transformation estimated on the N training
points, Score(γ̄) computes the number of correctly classified training points when γ̄ is used
as threshold, and 〈·〉 represents the average operator.

Despite the effectiveness of IPCAC and its improvements (Rozza et al., 2010), when the
dataset is high dimensional the computation of WN is impractical. Moreover, as other
techniques based on the estimation of FS, IPCAC fails when the training-set cardinality is
equal or lower than the space dimensionality.

To address these problems, in this work we propose an improvement of IPCAC, that will
be referred as O-IPCAC (Online IPCAC). In O-IPCAC two main improvements have been
defined: firstly, the data whitening has been replaced by a process that whitens the data
in a linear subspace πd = Span 〈v1, . . . ,vd〉 , d � D, while maintaining unaltered the
information related to the orthogonal subspace (πd)⊥ = Span 〈vd+1, . . . ,vD〉; secondly, the
classification algorithm has been designed to perform online/incremental training.

We demonstrate the efficacy of our algorithm by employing it on EEG classification. Re-
cently this problem is raising a wide interest since it is the fundamental step of Brain to
Computer Interface (BCI) systems, which are based on the translation of brain activity into
commands for the computer. The task of EEG classification is a hard problem, since the two
classes are often highly unbalanced, the selection of discriminative information is difficult,
the data are high dimensional, and the cardinality of the training sets are often lower than
their dimensionality (for a survey see Lotte et al. (2007)). To deal with these problems,
feature extraction/selection techniques are generally used to compute a small number of
features representing the data; unfortunately, this approach causes loss of discriminative
information, and might affect the classification accuracy. Note that, while dimensionality
reduction is exploited by several EEG classification systems (Wei et al., 2007), so that their
performance mainly depends on the quality of the used features, O-IPCAC can be applied
on the raw data since it has been developed to deal with high dimensional datasets whose
cardinality is lower than the space dimensionality.

The EEG dataset employed in this work has been distributed for the MLSP 2010 competi-
tion (Hild et al., Sept. 2010); it consists in a multi-channel time-series containing measures
of brain electrical activity recorded while a subject viewed satellite images. The classifier
must analyze the brain activity to recognize those images containing a predefined target.

The promising results achieved in the MLSP competition, and the comparison with state-
of-the-art methods, prove the efficacy of our approach.

2. Online IPCAC

Given the matrix P ∈ <D×N , representing a training dataset P = PA∪PB, |P| = N = NA+
NB, let α be the ratio D/N ; when α ≈ 1 the performance of IPCAC deteriorates dramatically
since the sample covariance matrix SN = 1

N−1PP
T is not a consistent estimator of the

population covariance matrix Σ (see Johnstone and Lu (2004)). More precisely, assuming
that Σ = Σ∗ + σ2I, where Σ∗ has rank k < D and σ2I represents the contribution of a
zero mean Gaussian noise affecting the data, calling σ2 = λ1 = . . . = λD−k−1 < . . . < λD
the ordered eigenvalues of Σ, and denoting with l1 < . . . < lD the ordered eigenvalues of
SN , in (Paul, 2007) it is proved that only the portion of the spectrum of Σ above σ2 +

√
α

can be correctly estimated from the sample. Furthermore, when α ≈ 1 the estimates of
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the smallest eigenvalues li can be much larger than the real ones, and the corresponding
estimated eigenvectors are uncorrelated with the real ones. These results motivate our
choice of improving IPCAC by considering only the largest eigenvalues; this is obtained by
substituting the whitening step by a “partial” whitening with respect to the first d ≤ D
principal components of P , where d is a parameter to be set1.

To estimate the linear transformationW , which represents the partial whitening operator,
we apply the Truncated Singular Value Decomposition(TSVD, Hansen (1986)), obtaining the
low-rank factorization P ' UdQdV

T
d . The d largest singular values on the diagonal of Qd,

and the associated left singular vectors, are employed to project the points in P on the
subspace SPd spanned by the columns of Ud, and to perform the whitening, as follows:

P̄W d
= qdQ

−1
d P⊥SPd

= qdQ
−1
d U

T
dP = W dP (2)

where qd is the smallest singular value of the points projected in SPd. Note that, to obtain
points whose covariance matrix best resembles a multiple of the identity, we have chosen
to set the value of the d largest singular values to qd instead of 1, thus avoiding the gap
between the d-th and the (d+ 1)-th singular value.

The obtained matrix W d projects and whitens the points in the linear subspace SPd;
however, dimensionality reduction might delete discriminative information, decreasing the
classification performance. As an example, consider two classes with the shape of two
parallel pancakes in <D: if the direction defined by the two class means in the original
space (µA − µB) is orthogonal to the subspace πd defined by the first d ≤ D principal
components, the dimensionality reduction process projects the data on πd, obtaining an
isotropic mixture of two completely overlapped Gaussian distributions.

To avoid this information loss, we add to the partially whitened data the residuals (R)
of the points in P with respect to their projections on SPd:

R = P −UdP⊥SPd
= P −UdU

T
dP

P̄WD
= UdP̄W d

+R = UdW dP + P −UdU
T
dP =

(
qdUdQ

−1
d U

T
d + I −UdU

T
d

)
P = WP

where W ∈ <D×D represents the linear transformation that whitens the data along the
first d principal components, while keeping unaltered the information along the remaining
components. FS is estimated by exploiting the whitened class means, µA and µB, obtained
by the class means in the original space µ̂A and µ̂B as follows:

µA = Wµ̂A =
(
qdUdQ

−1
d U

T
d + I −UdU

T
d

)
µ̂A = qdUdQ

−1
d U

T
d µ̂A + µ̂A −UdU

T
d µ̂A (3)

The same calculation is done for µB. Using these quantities we estimate f = µA−µB

‖µA−µB‖
.

Then, we process an unknown point p by transforming it with W , and projecting it on f ;
both these steps are performed by the inner product w · p, where:

w = W Tf = qdU
T
dQ
−1
d Udf + f −UT

dUdf (4)

Finally, given γ as in Equation (1), p is assigned to class A if w ·p < γ, to class B otherwise.

1. We empirically chose d = min(log2
2 N,D) since we noticed that in our tests, on both synthetic and real

data, the generalization capability of O-IPCAC remains approximately maximal by employing this value.
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Notice that we never explicitly compute the matrix W , but we perform the matrix times
vector operations reported in Equations (3) and (4), thus preventing a quadratic time/space
complexity. After the training phase, the classification model is represented by w and γ.

With training sets of high cardinality, or when mini-batches of training data Bk =
BA,k ∪ BB,k are dynamically supplied, subsequent training phases must be applied to up-
date the classification model. To this aim, the algorithm has been extended to perform
online/incremental training by updating the following parameters:

Nk, NA,k, NB,k : number of training points seen until the k-th training phase;

µk, µ̂A,k, µ̂B,k : the means employed to obtain the centered sets Pk, PA,k, and PB,k respectively;

Udk ,Qdk
,V dk : the SVD matrices related to Pk, truncated to dk principal components;

σA, σB : the standard deviations of the projections wT
kPA,k and wT

kPB,k.

Consider the case when k-1 training phases have been performed and a new mini-batch
Bk is provided, where |Bk| = nk = nA,k + nB,k. Firstly, we update Nk, NA,k, NB,k,
µk, µ̂A,k, µ̂B,k, and we center the points in Bk around the old mean: B̄k = {p−µk−1|p ∈ Bk}.
Secondly, we update the TSVD matrices by means of the algorithm described in (Brand, 2006)
and by exploiting the information carried by B̄k, so that: P̄ k ' U ′

dkQ
′
dk
V ′T

dk
, where P̄ k

represents the set P̄k = Pk−1 ∪ B̄k. Finally, considering that the updated TSVD matrices
are related to the points P̄k that are centered on µk−1, a re-centering operation is required
to obtain TSVD matrices related to points centered on µk; this is done by applying the
re-centering rank-one modification described in (Brand, 2006), and choosing as translation
the quantity n

N

〈
B̄k
〉
. Given the updated means and TSVD matrices, we can: estimate the

whitened means µA,k and µB,k by employing Equation (3); obtain the updated vector fk;
compute the the new vector wk through Equation (4). Notice that these computations
require to store only O(Dnk +Ddk) real values per mini-batch.

Regarding the update of the thresholding value γk we have not employed Equation (1),
since it requires to store the whole training set, and it is not able to handle unbalanced
classes; therefore, we have chosen to set the value of γk so that it corresponds to the
point having the same Mahalanobis distance |ξ| from the projections of the mean vec-
tors on the FS: µ̄A,k = fk · µA,k and µ̄B,k = fk · µB,k. More precisely, we impose
that µ̄A,k + ξ σA,k = µ̄B,k − ξ σB,k, where σA,k and σB,k are the standard deviations of
the projections of the whitened points on fk. Defining γk = µ̄A,k + ξ σA,k we obtain
γk = µ̄A,k + σA,k (µ̄B,k − µ̄A,k) / (σA,k + σB,k). The employed quantities are updated by using

the relation σ2 = E
[
x2
]
− E [x]2:

µ̄A,k =
NA,k−1 µ̄A,k−1 + nA,k

〈
wT
k BA,k

〉
NA,k

µ̄2A,k−1 = E
[{(

wT
k p
)2 | p ∈ PA,k−1

}]
= µ̄2

A,k−1 + σ2
A,k−1

µ̄2A,k = E
[{(

wT
k p
)2 | p ∈ PA,k}] =

NA,k−1 µ̄2A,k−1 + nA,k

〈(
wT
k BA,k

)2〉
NA,k

σA,k =
√
µ̄2A,k − µ̄2

A,k

where we have denoted with
(
wT

k BA,k

)2
the set of real values {(wk · p)2|p ∈ BA,k}. The

updated quantities µ̄B,k, µ̄2B,k, and σB,k are similarly evaluated.
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The computational cost of the training algorithm is dominated by the incremental rank-d
SVD that requires O(DNd) operations for d ≤

√
min(N,D) (see Brand (2006)). Regarding

the memory requirements, O-IPCAC stores O(Dnk + Ddk) real values during the training
tasks, and only O(D) values during classification.

3. Data Description and Pre-processing

The data used in our tests have been distributed by the organizers of the MLSP 2010 com-
petition for research purposes2, and consist of EEG brain signals collected while the subject
viewed satellite images and tried to detect those containing a predefined target. There are
64 channels of EEG data, the total number of samples is 176378, and the sampling rate is
256Hz. During the EEG recording 2775 satellite images were shown, partitioned in 75 activa-
tion blocks with 37 images per block. All images within a block were consecutively displayed
for 100 ms (an “image trigger” is provided to indicate the time samples corresponding to
the on-set of each image). Each block was initiated by the subject after a rest period, the
length of which was not specified in advance. The classifier must analyze the brain activity
to recognize those images containing the target.

We pre-processed each channel with a Gaussian filter with cut-frequency of 2.2Hz, and
we subtracted the filtered data from the original one to obtain high-pass filtered signals.
These signals were then used to extract 64×97 image blocks, where each image block starts
exactly 65 time samples (≈ 250ms) after the corresponding image trigger. We underline
that each image block covers a time window approximately located between 250ms and
550ms after the image trigger, since this range contains the P300 waves (Picton, 1992) and
other possible brain activations (Chiappa, 1997). The extracted blocks are serialized in 2775
vectors in <6208, of which only 58 points represent images with target.

4. Results

In this section we consider both the results achieved in the MLSP 2010 competition, and the
tests we performed to compare O-IPCAC with state-of-the-art online/incremental classifiers.
Notice that the considered high dimensional EEG data cannot be processed by most batch
algorithms such as LDA or SVM, due to either memory requirements, or training time. On
the other side, online algorithms such as O-IPCAC can handle this problem since they per-
form subsequent training phases on mini-batches of training data. Therefore we compare
our method with: Perceptron, Second Order Perceptron (SOP, Cesa-Bianchi et al. (2005)),
Online Independent SVM (OISVM, Orabona et al. (2007)), Passive Aggressive (PA, Crammer
et al. (2006)), Alma (Gentile, 2002), and Incremental LDA (ILDA, Kim et al. (2007))3.

To evaluate the performance of our classifier comparing it with the other methods, we
employed the dataset described in Section 3, we computed the Receiver Operating Char-
acteristic (ROC) curve, and we estimated the Area Under the Curve (AUC). To obtain an
unbiased evaluation, we performed ten-fold cross validation, and we averaged the computed
sensitivity and specificity values.

2. http://www.bme.ogi.edu/∼hildk/mlsp2010Competition.html.
3. We appropriately tuned all the parameters of the employed algorithms. Notice that for the kernel

methods the best results are achieved by choosing the linear kernel.
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Figure 1: ROC curves

Figure 2: AUC per classifier

Classifier AUC

O-IPCAC 0.9541

OISVM 0.8766

SOP 0.8479

ILDA 0.5315

Alma 0.5110

PA 0.4835

Perceptron 0.4507

Figures 1 and 2 show the obtained ROC curves and the AUC of the tested classifiers; it can be
noted that O-IPCAC achieves the best results. Furthermore, these results demonstrate that
the first order techniques (Perceptron, Alma, and PA) cannot discriminate the two classes,
while O-IPCAC, SOP, and OISVM, which are second order techniques, achieve good results.
Note that ILDA, despite being a second order method, obtains bad results since it is not
able to manage datasets whose cardinality is lower than their dimensionality. We underline
that our method is able to handle strongly unbalanced classes thanks to the thresholding
method based on the Mahalanobis distance that avoids any experimental setup.

Regarding the MLSP competition, to evaluate the various approaches the organizers have
acquired the training set (described in Section 3) and the test set by performing two different
experiments. The test data differ from the training one since different image durations
(50ms, 100ms, 150ms, and 200ms) are used in different activation blocks. While the training
set was distributed by the MLSP organizers, the test set was not.

In the MLSP competition the efficacy of the proposed approaches were evaluated by esti-
mating the ROC curves, and comparing the AUCs. Our algorithm covered the 80% of the area,
ranking seventh among the 35 participants (Hild et al., Sept. 2010). It is worth noting that
the first 10 algorithms have very close classification performance (between 82% and 79%).
Considering that we performed just a high-pass filtering as pre-processing step, avoiding
any kind of bootstrap aggregating technique, we believe that the achieved results are very
promising and they confirm the quality of the proposed classifier.

5. Conclusions and Future Works

This work proposes an online/incremental linear binary classifier that has been developed
to deal with: high dimensional data, classification problems where the cardinality of the
point set is high or the data are dynamically supplied, and highly unbalanced training sets
whose cardinality is lower than the dimensionality.

We evaluated the performance of our algorithm by executing experiments on EEG data
distributed by the MLSP competition. It is important to underline that, instead of focusing
on complex features extraction/selection techniques, we propose a classifier that is able to
deal with the MLSP raw data achieving good results, as demonstrated in Section 4.
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In future works we want to apply our method to datasets characterized by a very large
ratio between dimension and training points, such as Microarray data. Furthermore, to
cope with classification problems where the probability distribution underlying the data
changes with time, we want to develop an adaptive version of O-IPCAC.
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