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Abstract

In this paper we address the problem of predicting when the available data is incomplete.
We show that changing the generally accepted table-wise view of the sample items into a
graph representable one allows us to solve these kind of problems in a very concise way by
using the well known convex, one-class classification based, optimisation framework. The
use of the one-class formulation in the learning phase and in the prediction as well makes
the entire procedure highly consistent. The graph representation can express the complex
interdependencies among the data sources. The underlying optimisation problem can be
transformed into a on-line algorithm, e.g. a perceptron type one, and in this way it can
deal with data sets of million items. This framework covers and encompasses supervised,
semi-supervised and some unsupervised learning problems. Furthermore, the data sources
can be chosen as not only simple binary variables or vectors but text documents, images
or even graphs with complex internal structures.

1. Introduction

The data collected in the real world are very frequently noisy, incomplete and ambiguous.
For example in weather prediction the malfunction of measuring devices, limitations of
sensors lead to the loss of significant parts of the information making hard the predictions
be reliable. Another area where the incompleteness has to be addressed is the clinical
trials, e.g. follow-up studies, in survival analysis, where new patients enter into the trial
and others fall out before the trial has been finished. The records of these patients are
incomplete, see examples in Molenberghs and Kenward (2007). Restricted resources can
also lead to incomplete data when some measurements are too expensive to carry out in all
experiments.

The machine learning methods are mostly planned to work when all the objects observed
and recorded in all experiments. To overcome on the difficulties caused by the incomplete-
ness quite a few approaches have been developed since the importance was recognised. The
well known and generally applied expectation-maximisation(EM) algorithm was developed
partially too incorporate the potential sources of information from unobserved data by ex-
ploiting certain prior knowledge and assumptions, see in Dempster et al. (1977) and Beal
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and Ghahramani (2002). A great part of the statistical literature, e.g. Little and Rubin
(2002), is devoted to address the problem of missing data since the occurrence of them can
not be in generally avoided in a real experiment.

Our approach to dealing with the incomplete data stems out of conjecture: there ex-
ists a network of relationships among the data sources and the connections between these
sources can be expressed by real valued functions. By approximating these functions by
multilinear functions the recovering of the missing items can be turned into convex one-class
classification problems.

The contribution of this paper to missing value handling can be summarised in the fol-
lowing points:

• The proposed approach can accommodate missing objects with complex structure,
e.g. documents, amino acid sequences of proteins, molecules, images, user profiles.
The structured objects are represented in inner product spaces, thus the flexibility of
the kernel based learning can be applied.

• The estimation of the inferences is based on the maximum margin principle which is
exploited in the well known Support Vector Machine. The optimisation framework
is convex, and it can be reformulated as a on-line method, e.g. a perceptron type
algorithm, and in turn can handle very large datasets.

• It can incorporate prior knowledge about the possible interdependency between the
objects by representing the relations by a graph.

The paper first defines the learning environment, then sets up the basic optimisation
framework. Following that the prediction of the unobserved objects is discussed. At the
end a simple experiment is presented to demonstrate the workability of the approach.

2. Setting

Our description of a sample S is built upon the procedure of the data collection. In this
procedure we have a series of experiments indexed by the set I = {1, . . . ,m}. In each
experiment a set of object observed. These objects come from a given set of object classes
{X1, . . .Xnr}, but the classes represented by an object in an experiment can vary among
the experiments, in other words the set of object observed in an experiment is incomplete,
the classes not observed can be referred as missing items. Let R = {1, . . . , nr} be a set of
indeces of all object classes. The object classes can cover a broad range of collections of
different objects, e.g. vectors, class labels, strings, text documents, see examples on Shawe-
Taylor and Cristianini (2004). They can be collections of graph represented objects, see
examples in Astikainen et al. (2010).

To express the relationship between the classes we assume that there exist a set of un-
known real valued functions Frs : Xr × Xs → R, for some r, s ∈ R, which measures the
strength of the similarity between the objects of all class pairs, where the greater value
of the functions corresponds to the stronger similarity. We call these functions as class
similarities.

The goal is to discover the functions {Frs} connecting X1, . . .Xnr based on a given series
of experiments. Let Ri ⊆ R be the index set of object classes observed in experiment i,
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2. Setting

thus a sample S is given by as a set of tuples (xri ), r ∈ Ri where i = 1, . . . ,m. In the sequel
we call the objects observed in an experiment as sample items too.

We can represent this kind of sample by a table, where the sample items are in the rows
and the object classes correspond to the columns. An element in column r and in row i
of this table is considered missing, or unknown, if there is no observed object of class r in
experiment i. The next table shows an example for nr = |R| = 4, where ∅ denotes the
missing observations.

x1
1 ∅ x3

1 ∅
x1

2 ∅ x3
2 x4

2

x1
3 ∅ ∅ x4

3
...

...
...

...
∅ x2

m x3
m x4

m.

(1)

This representation has a hidden disadvantage. The potential relationships among the
classes is not represented explicitly, however an implicit conjecture is accepted, namely those
objects which observed in an experiment relate to each other.

Our setting is similar to the graphical models. In graphical models the relationships
between random variables are represented via a graph G. The vertices of G are labelled by
a set of random variables and the edges in G correspond to the possible inferences between
these variables, see further details in Wainwright and Jordan (2008). In our case the vertices
of G are labelled by the object classes, but the potential inferences, the prior knowledge,
is given similarly to the graphical models by the edge set E of G. In this paper the graph
G is chosen as an undirected one in the sense such that for all pairs of object classes the
following equality holds: Frs(x

r, xs) = Fsr(x
s, xr), for any xr ∈ Xr, x

s ∈ Xs.
Experiment i provides a subgraph Gi of G with vertices labelled by the objects observed

in this experiment, and an edge e ∈ E is an edge of Gi if both classes spanning e are
observed in this experiment. The set of these edges is denoted by Ei. Figure 1 demonstrates
the configuration described above.

2.1. Learning framework

Let the set Ir ⊆ I be the index set of experiments in which the class r is observed, and
similarly Ie ⊆ I be the index set where the edge e is observed. We assume every experiment
provides at least two observed objects.

We assume that to every object class Xr, r ∈ R there is a function φr which embeds the
objects of this class into a linear vector space Hr, and every vector space Hr is equipped
with a positive definite inner product. The vector φr(x

r) of the corresponding space Hr for
any r ∈ R is called feature vector of the objects xr.

Suppose the following hypothesis that the class similarity function Fe between two classes
Xr and Xs for any edge e = (r, s) ∈ E can be estimated by a function defined on the feature
vectors, Ψe : Hr ×Hs → R, and these functions are linear in each variable. Exploiting the
theory of the multilinear functions we have

Ψe(φr(x
r), φs(x

s)) = 〈We, φs(x
s)⊗ φr(xr)〉, (3)
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Sample items, observed objects in the experiments

Sample Item 1 Sample Item 2 Sample Item 3

(x1
1, x

3
1) (x1

2, x
3
2, x

4
2) (x1

3, x
4
3)

G1, E1 = {(1, 3)} G2, E2 = {(1, 3), (1, 4), (2, 4)} G3, E3 = {(1, 4)}

x1
1 ∈ X1 ∅

x3
1 ∈ X3 ∅

x1
2 ∈ X1

LLLLLLLLLL ∅

x3
2 ∈ X2 x4

2 ∈ X4

LLLLLLLLLL

x1
3 ∈ X1

LLLLLLLLLL ∅

∅ x4
3 ∈ X4

LLLLLLLLLL

(2)

Figure 1: An example of the graph of the classes and the structure of some sample items

for all e = (r, s) ∈ E , and xr ∈ Xr, x
s ∈ Xs, which states that a multilinear function can

be expressed as an inner product between the tensor product of the variables and a tensor
We representing the multilinear function itself.

We can show via some linear algebra that the multilinear functions Ψe corresponding to
the edges can be reformulated to express directed relations

〈We, φs(x
s)⊗ φr(xr)〉 = 〈φr(xr),We, φs(x

s)〉Hr = 〈φs(xs),W′
e, φr(x

r)〉Hs , (4)

where the subscript of the inner product 〈 〉H refers to the space on which the inner product
is defined. These equations turn the tensor We into a linear transformation projecting one
space into the other.

As a consequence, φr(x
r) can be predicted by a linear function Weφs(x

s) in the sense of
angle minimisation, since if the norm of the linear operator We is fixed then the greater
value of the inner product implies smaller angle between the vectors φr(x

r) and Weφs(x
s).

This tensor based formulation allows us to extend the framework into one dealing with
relationships between more than two object classes. In this way the graph G can be gener-
alised to hyper-graphs.

3. Optimisation problem, off-line case

Here we briefly outline the maximum margin based, one-class classification type, optimisa-
tion problem to learn all the functions ψrs simultaneously. It must be emphasise that the
optimisation schema presented here is not the only one to solve this kind of tasks, it is only
a possible prototype.

We apply edge relating Hinge-loss type loss functionals

max
(
0, 1− 〈We, φs(x

s
i )⊗ φr(xri )〉

)
. (5)
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4. Estimating unknown items in an experiment

To enforce the hyperplane to achieve the maximum separating margin from the origin the
Frobenious norm of the linear operators, the Euclidean norm of the linear vector space of
these operators, have to be minimised. The optimisation problem realising this separation
problem can be written up by

min 1
2

∑
e∈E ‖We‖2F ## regularisation

+CR
∑

e∈E ξ
e + CI

∑
i∈I ξi ## edge wise and experiment wise loss

w.r.t.{We}, {ξe}, e ∈ E , {ξi}, i ∈ I,
s.t. 〈We, φs(x

s
i )⊗ φr(xri )〉 ≥ 1− ξe − ξi,

ξe ≥ 0, ξi ≥ 0, i ∈ I, e ∈ E

(6)

where CR > 0 and CI are penalty constants. After assigning Lagrange multipliers to all
constraints, and exploiting the Karush-Kuhn-Tucker conditions of optimality we obtain

We =
∑

i∈Ie α
e
i

(
φs(x

s
i )⊗ φr(xri )

)
, e = (r, s). (7)

By substituting back the formulas of the primal variables depending on the Lagrange
multipliers into the Lagrangian functional and turning the maximisation with respect to
the dual variables into minimisation we have the dual problem of (6)

min 1
2

∑
e,f∈E

∑
i,j∈Ie α

e
iα

f
j κr(x

r
i , x

r
j)κs(x

s
i , x

s
j)−

∑
i∈I
∑

e∈Ei α
e
i

w.r.t. {αe
i}, i ∈ I, e ∈ Ei,

s.t. 0 ≤
∑

i∈Ie α
e
i ≤ CR, e = (r, s) ∈ E , ## experiment wise coupling

0 ≤
∑

e∈Ei α
e
i ≤ CI , i ∈ I, ## edge wise coupling

(8)

where we have the shorthand notations for the kernel functions to each object class

κr(x
r
i , x

r
j) = 〈φr(xri ), φr(xrj)〉, r ∈ R, i, j ∈ Ir. (9)

In writing up the dual problem the following identity is applied

〈φs(xsi )⊗ φr(xri ), φs(xsj)⊗ φr(xrj)〉 = 〈φs(xsi ), φs(xsj)〉〈φr(xri ), φr(xrj)〉. (10)

4. Estimating unknown items in an experiment

After computing the linear operators {We}, e ∈ E based on a given sample we are ready the
predict the missing items both in a known experiment or a new one. A new experiment with
no contribution in the computation of the linear operators has the index i+, and Ĩ = I ∪ i+
is the index set referring both the known and the new included experiments.

We assumed that there is a multivariate real valued function Ψ such that if the similarity
is stronger than the value of Ψ(xr, xs) is greater. Therefore if xt

ĩ
, t ∈ R, t /∈ Rĩ is a missing

item in experiment ĩ ∈ Ĩ then we expect that this missing item maximises the multilinear
similarity functions with the observed ones. The reason for this approach is that because
the edge wise predictions of a missing item can contradict, the solution with the possible
smallest discrepancy should be accepted.
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The prediction is obtained by the following optimisation problem

xt
ī

=


arg max g(λ)−D

∑
r∈Rĩ

ηr ## margin maximisation + loss

w.r.t. xt ∈ X t, ηr ∈ R, r ∈ R
s.t. 〈φt(xt),Weφr(x

r
ĩ
)〉 ≥ λ− ηr

ηr ≥ 0, e = (r, t), r ∈ Rĩ, t /∈ Rĩ.

 (11)

In this optimisation problem D > 0 is penalty parameter, and the function g is a monoton-
ically increasing real valued function on R+. To receive SVM type objective function g can
be chosen as g(u) = u2.

The optimisation problem (11) similarly to (6) implements a one-class classification prob-
lem where the data points are the predictions computed on the observed objects and the
feature vector of the unknown object serves as normal vector in the separation from the
origin, hence the optimisation problem (11) tries to maximise the margin against all possi-
ble relations expressible by the observed objects in the given experiment by exploiting the
knowledge incorporated in the linear operators computed earlier. The slack variables {ηr}
provide the loss if the feature vectors of one or more observed objects depart too much from
the feature vector of the unobserved item.

We can solve this problem in two steps, in the first one the optimum feature vector φ∗t (x
t)

is derived. Following a similar argument that was applied in the computations of the linear
operators {We} the optimum feature vector can be computed based on the optimum value
of dual variables {βr}, r ∈ Rĩ corresponding to the dual problem of (11), thus we have

φ∗t (x
t
ĩ
) =

∑
r∈Rĩ

βrWeφr(x
r
ĩ
) =

∑
r∈Rĩ

β∗r
∑

j∈Ie αjφt(x
t
j)κ(xrj , x

r
ĩ
). (12)

From this formula we can estimate the optimum for xt
ĩ

by applying

xt∗
ĩ

= arg maxxt∈Xt
〈xt,

∑
r∈Rĩ

βrWeφr(x
r
ĩ
)〉

= arg maxxt∈Xt

∑
r∈Rĩ

β∗r
∑

j∈Ie αjκ(xt, xtj)κ(xrj , x
r
ĩ
).

(13)

5. Experiments

In the experiments we used examples from the UCI Repository of machine learning datasets,
the details about this repository are given by Blake and Merz (1998). The datasets included
into the experiments are Wisconsin Breast Cancer, N = 699, and Credit Card Ap-
plication Approval,N = 690.

The variables were uniformly randomly subsampled with probabilities running from 0.1
to 1.0 with step size 0.1 in ten different experiments. Two-fold cross validation is applied
to avoid empty folds when the subsamples are very sparse. The subsampling was carried
out on the training and the test sets as well. The implicit similarity functions are defined
by linear kernels. The network graph connecting the classes was a star shaped one with the
class label in the centre, since both datasets used in the experiments originally represent
a binary classification problem. The accuracy of the prediction of the class labels of the
incomplete data sources is demonstrated in Figure 2.
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Figure 2: Predicting from incomplete data

6. Discussion

In this paper we outlined a general maximum margin based learning framework to han-
dle incomplete data sources. The data sources can cover broad range of possible objects
with reach internal structure. We exploit the inner product based geometric relationships
between these complex objects to solve the prediction problem.
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