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We start the supplement from ‘B’ to avoid confusion between equation numbering and assumption
numbering in the main text for (A#).

B Proofs for Section 3
B.1 Proof of Theorem 1
The proof of Theorem 1 consists of two part. First we bound the absolute bias by E(K, θ) using
assumptions (A-1) and (A-2). Then we bound the relative bias using the triangle inequality

Proof of Theorem 1. The bias of ĝK is bounded by the expected error between ĝK and ĝT

‖E [ĝK(θ)]− g(θ)‖ = ‖E [ĝK(θ)− ĝT (θ)]‖ ≤ E [‖ĝK(θ)− ĝT (θ)‖] . (B.1)

Applying the triangle-inequality to the difference between ĝK and ĝT gives

‖ĝK(θ)− ĝT (θ)‖ =

∥∥∥∥∥
s∑

k=K+1

∂Ls
∂hs−k

· ∂hs−k
∂θ

∥∥∥∥∥ ≤
s∑

k=K+1

∥∥∥∥ ∂Ls
∂hs−k

∥∥∥∥·∥∥∥∥∂hs−k∂θ

∥∥∥∥ ≤ s∑
k=K+1

∥∥∥∥ ∂Ls
∂hs−k

∥∥∥∥·M , (B.2)

where in the last inequality we apply the assumption (A-2), ‖∂ht/∂θ‖ < M for all t. Taking the
expectation with respect to s of both sides of Eq. (B.2) gives

E [‖ĝK(θ)− ĝT (θ)‖] ≤
s∑

k=K+1
E
∥∥∥∥ ∂Ls
∂hs−k

∥∥∥∥ ·M =
s∑

k=K+1
E [φk] ·M , (B.3)

where we recall that φk = ‖∂Ls/∂hs−k‖.
Recursively applying assumption (A-2) to E [φτ+t] gives

E [φτ+t] ≤ β · E [φτ+t−1] ≤ . . . ≤ βt · E [φτ ] . (B.4)

Combining Eqs. (B.1), (B.3), and (B.4) gives us the first half of the result

‖E [ĝK(θ)]− g(θ)‖ ≤ E [‖ĝK(θ)− ĝT (θ)‖] ≤
s∑

k=K+1
E [φk] ·M = E(K, θ) . (B.5)

To bound the relative error, we apply the reverse triangle inequality to ‖g(θ)‖

‖g(θ)‖ ≥ ‖E [ĝK(θ)]‖ − ‖E [ĝK(θ)]− g(θ)‖ ≥ ‖E [ĝK(θ)]‖ − E(K, θ) , (B.6)
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when ‖E [ĝK(θ)]‖ − E(K, θ) > 0.
Since E(K, θ) is an upper bound for the numerator and ‖E [ĝK(θ)]‖ − E(K, θ) is a lower bound for the

denominator, we obtain the result

‖E [ĝK(θ)]− g(θ)‖
‖g(θ)‖ ≤ E(K, θ)

‖E [ĝK(θ)]‖ − E(K, θ) = δ(K, θ) . (B.7)

B.2 Proof of Theorem 2
Let 〈x1, x2〉 denote the inner-product between two vectors.

We first presents some Lemmas involving ĝ(θ) and g(θ) when the gradient has bounded relative bias δ.

Lemma 1. If ĝ(θ) has bounded relative bias of δ then

E 〈g(θ), ĝ(θ)− g(θ)〉 ≤ δ‖g(θ)‖2 and E 〈g(θ), ĝ(θ)〉 ≥ (1− δ)‖g(θ)‖2 (B.8)

Proof of Lemma 1. The first inequality follows from the Cauchy-Schwartz inequality and bound on relative
bias

E 〈g(θ), ĝ(θ)− g(θ)〉 = 〈g(θ),E [ĝ(θ)]− g(θ)〉 ≤ ‖g(θ)‖‖E [ĝ(θ)− g(θ)‖ ≤ δ‖g(θ)‖2 . (B.9)

The second inequality follows immediately from the first

〈g(θ), ĝ(θ)〈= 〈g(θ), g(θ)〉+ 〈g(θ), ĝ(θ)− g(θ)〉 ≤ ‖g(θ)‖2 − δ‖g(θ)‖2 = (1− δ)‖g(θ)‖2 . (B.10)

The next lemma bounds the second moment of ‖ĝ(θ)‖.

Lemma 2. If ĝ has bounded relative bias δ and bounded variance σ2 for all θ (assumption (A-4)), then

E [‖ĝ‖2] ≤ (1 + δ)2‖g‖2 + σ2 . (B.11)

Proof of Lemma 2.
‖ĝ‖2 = ‖g‖2 + 2〈g, ĝ − g〉+ ‖ĝ − g‖2 (B.12)

Take the expectation, we obtain the result

E ‖ĝ‖2 = ‖g‖2 + 2E 〈g, ĝ − g〉+ E ‖ĝ − g‖2 , (B.13)

where expand the mean-squared error into the bias squared plus variance

E ‖ĝ − g‖2 = ‖E ĝ − g‖2 + E ‖ĝ − E ĝ‖2 ≤ δ2‖g‖2 = σ2 . (B.14)

Therefore
E ‖ĝ‖2 ≤ ‖g‖2 + 2δ‖g‖2 + (δ2‖g‖2 + σ2) = (1 + δ)2‖g‖2 + σ2 (B.15)

We now begin the proof of Theorem 2 which builds off the proof in [Ghadimi and Lan, 2013].

Proof of Theorem 2. From the L-smoothness of L, assumption (A-3), we have

L(θ)− L(θ′)− |〈g(θ), θ − θ′〉| ≤ L

2 ‖θ
′ − θ‖2, ∀θ, θ′ . (B.16)

Substituting θ = θn+1 and θ′ = θn, where θn+1 and θn are connected through SGD Eq. (10), we
obtain
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L(θn+1) ≤ L(θn) + 〈g(θn), θn+1 − θn〉+ L

2 ‖θn+1 − θn‖2 (B.17)

= L(θn)− γn〈g(θn), ĝ(θn)〉+ L

2 γ
2
n‖ĝ(θn)‖2 . (B.18)

Taking the expectation with respect to ĝ(θn) on both sides and using Lemmas 1 and 2 gives us

EL(θn+1) = L(θn)− γnE 〈g(θn), ĝ(θn)〉+ L

2 γ
2
nE ‖ĝ(θn)‖2 (B.19)

≤ L(θn)− γn(1− δ)‖g(θn)‖2 + L

2 γ
2
n((1 + δ)2‖g(θn)‖2 + σ2) . (B.20)

Rearranging terms with γn gives
γn(1− δ)

2

(
2− γn

L(1 + δ)2

(1− δ)

)
· ‖g(θn)‖2 ≤ L(θn)− EL(θn+1) + γ2

n

Lσ2

2 . (B.21)

As we assume the stepsizes are γn < 1−δ
L(1+δ)2 , therefore (2 + γn

L(1+δ)2

(1−δ) ) < 1 and we can drop these terms.
Taking the summation over n and taking the expectation with respect to ĝ(θn) for n = 1, . . . , N we obtain

N∑
n=1

γn
(1− δ)

2 · min
n∈[1,N+1]

‖g(θn)‖2 ≤ L(θ1)− EL(θN+1) +
N∑
n=1

γ2
n

Lσ2

2 . (B.22)

Finally, we divide both sides by
∑
n γn

1−δ
2 and apply EL(θN+1) ≥ minθ∗ L(θ∗) to obtain the result

min
n∈[1,N+1]

‖g(θn)‖2 ≤
2DL + Lσ2∑N

n=1 γ
2
n

(1− δ)
∑N
n=1 γn

, (B.23)

where DL = L(θ1)−minθ∗ L(θ∗).
If we use a constant stepsize γn = γ for all n ∈ [1, N ], then the optimal stepsize for N steps of SGD is

γ =
√

2DL
NLσ2 which achieves min

n∈[1,N+1]
‖g(θn)‖2 ≤ 1

1− δ ·
√

8DLLσ2

N
. (B.24)

If instead a decaying O(n−1/2) stepsize is used, then the numerator of Eq. (B.23) grows as a harmonic
series O(

∑
n n
−1) = O(logn), while the denominator grows O(

∑
n n
−1/2) = O(n1/2). Therefore the

overall rate is O(n−1/2 logn).

B.3 Comparison of Bounds to [Chen and Luss, 2018]
In Section 3.3 for Theorem 2, we assume the relative bias is bounded, that is ‖E [ĝ(θ)]− g(θ)‖ ≤ δ‖g(θ)‖
for all θ (Eq. (11)). Chen and Luss [2018] prove similar results to Theorem 2, where they assume the
relative error of each gradient is bounded in high probability, that is there exists δ, ε > 0 such that

Pr(‖ĝ(θ)− g(θ)‖ ≤ δ‖g(θ)‖) > 1− ε , for all θ . (B.25)

Although Markov’s inequality implies that if the relative bias is bounded by δ · ε, when Eq. (B.25) holds
for δ, ε, their non-convex optimization results only hold in high probability rather than uniformly. A key
drawback of their results, is that the relative error must be bounded in high probability for all steps of
SGD (ĝ1:N ); therefore the required ε for each step depends on the total number of SGD steps during
training [see Chen and Luss, 2018, Eq.(7) and Theorem 5]. Specifically, Chen and Luss [2018] observe that
the probability the relative error is controlled for all N steps is bounded by 1− εtotal ≤ (1− ε)N under
the additional assumption that the noise in ĝ(θ) is independent. For their results to hold with probability
1− εtotal after N steps, each gradient must have a relative error bound with ε ≤ 1− (1− εtotal)1/N . Chen
and Luss [2018] achieve this by restricting ε ≤ εtotal/N . Our result assumes the relative error is bounded
in expectation, which sides steps this issue. However our results are not as robust in the sense that they
do not hold if the noise in ĝ(θ) does not have an expected value (e.g. if ĝ(θ)− g(θ) is Cauchy).
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C Additional Experiments
This section provides additional tables and figures for the experiments in Section 5 as well as results on
time series prediction with temporal point processes.

In our experiments, we selected the stepsize γ for SGD by performing a grid search over powers of 10
and selected the largest stepsize that did not diverge for fixed TBPTT (with K = 15 for the synthetic
tasks, K = 100 for the language modeling tasks, and K = 6 for the temporal point process tasks). We
also consider adaptive and decaying stepsizes (specifically ADADELTA, SGD with Momentum, and
epoch-wise stepsize decay); however, we did not see a significant difference in results.

C.1 Additional Figures and Tables
C.1.1 Synthetic ‘Copy’ Experiment

Figure C.1 shows the validation PPL for the two experiments in Section 5.1. The left pair of figures
show the validation PPL while the right pair shows the cumulative minimum (i.e. the ‘best’) validation
PPL. The test PPL plots in Figure 1 are piecewise constant evaluated using these ‘best’ validation PPL
parameters. The top row corresponds to the fixed-memory m = 10 copy experiment, and we see the
loss decays relatively smoothly. The bottom row corresponds to the variable-memory m ∈ [5, 10] copy
experiment, and we see heavy oscillation in the validation error as it decays.

Table C.1 is a table of the test PPL results evaluated at the ‘best’ validation PPL. This table provides
the numeric values of the ‘best’ PPL values for Figures 1 and C.1. We see that the adaptive TBPTT
perform as well as or outperform the best fixed K TBPTT.
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Figure C.1: Synthetic Copy Supplement: (left) Valid PPL vs epoch, (right) ‘Best’ Valid PPL vs epoch
(Top) fixed m = 10, (bottom) variable m ∈ [5, 10]. Solid dark lines are our adaptive TBPTT methods,
dashed colored lines are fixed TBPTT baselines.
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Table C.1: Table of PPL for Synthetic Copy Experiments: (left) fixed m = 10, (right) variable m ∈ [5, 10].
‘Valid PPL’ is the best validation set PPL. ‘Test PPL’ is the test set PPL at parameters of the best
validation set PPL. Standard deviation over multiple initializations are in parentheses.

Fixed Copy m = 10

K Valid PPL Test PPL

5 1.655 (0.012) 1.646 (0.012)
10 1.035 (0.007) 1.036 (0.005)
15 1.038 (0.005) 1.039 (0.003)
20 1.045 (0.009) 1.040 (0.006)
30 1.044 (0.007) 1.043 (0.004)
δ = 0.9 1.018 (0.005) 1.022 (0.006)
δ = 0.5 1.024 (0.003) 1.027 (0.002)
δ = 0.1 1.029 (0.004) 1.030 (0.005)

Variable Copy m ∈ [5, 10]

K Valid PPL Test PPL

5 1.46 (0.01) 1.47 (0.01)
10 1.41 (0.02) 1.39 (0.02)
15 1.39 (0.03) 1.37 (0.03)
20 1.39 (0.03) 1.35 (0.03)
30 1.33 (0.02) 1.31 (0.01)
δ = 0.9 1.37 (0.02) 1.35 (0.02)
δ = 0.5 1.33 (0.01) 1.32 (0.02)
δ = 0.1 1.31 (0.01) 1.29 (0.01)

C.1.2 Language Modeling Experiment

Figure C.2 shows the validation PPL for the two language modeling experiments in Section 5.2. The left
pair of figures show the validation PPL while the right pair shows the cumulative minimum (i.e. the ‘best’)
validation PPL. The top row corresponds to the PTB experiment. We see that fixed TBPTT with small
K quickly begins to over-fit (as the validation PPL increases). With larger K, fixed TBPTT achieves
lower validation (and test) PPL, but requires more epochs. We see that the adaptive TBPTT with
δ = 0.1, achieves a better PPL much more rapidly. The bottom row corresponds to Wiki2 experiment,
where we see that the adaptive TBPTT and best fixed TBPTT method perform similarly.

Table C.2 is a table of the test PPL results evaluated at the ‘best’ validation PPL. This table provides
the numeric values of the ‘best’ PPL values for Figures 2 and C.2. We see that the adaptive TBPTT
perform as well as or outperform the best fixed K TBPTT.

0 5 10 15 20 25 30 35 40

Epoch

100

150

200

250

300

V
al

id
P

P
L

K

10

50

100

200

300

adaptive0.9

adaptive0.5

adaptive0.1

0 5 10 15 20 25 30 35 40

Epoch

100

150

200

250

300

C
u

m
M

in
V

al
id

P
P

L

K

10

50

100

200

300

adaptive0.9

adaptive0.5

adaptive0.1

0 5 10 15 20 25 30 35 40

Epoch

100

150

200

250

300

350

V
al

id
P

P
L

0 5 10 15 20 25 30 35 40

Epoch

100

150

200

250

300

350

C
u

m
M

in
V

al
id

P
P

L

Figure C.2: Language Modeling Supplement: (left) Valid PPL vs epoch, (right) ‘Best’ Valid PPL vs
epoch. (Top) PTB, (bottom) Wiki2. Solid dark lines are our adaptive TBPTT methods, dashed colored
lines are fixed TBPTT baselines.
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Table C.2: Table of PPL for Language Modeling experiments: (left) PTB, (right) Wiki2. ‘Valid PPL’ is
the best validation set PPL. ‘Test PPL’ is the test set PPL at parameters of the best validation set PPL.
Standard deviation over multiple initializations are in parentheses.

PTB

K Valid PPL Test PPL

10 99.7 (0.6) 99.9 (0.8)
50 110.4 (0.4) 110.8 (0.8)
100 116.2 (0.5) 116.9 (0.5)
200 125.2 (1.2) 126.1 (0.9)
300 161.5 (0.5) 161.2 (0.3)
δ = 0.9 100.1 (0.5) 99.0 (0.5)
δ = 0.5 90.1 (0.4) 89.5 (0.3)
δ = 0.1 88.1 (0.2) 87.2 (0.2)

Wiki2

K Valid PPL Test PPL

10 144.2 (0.4) 136.5 (1.3)
50 133.4 (2.9) 127.2 (2.8)
100 134.4 (0.3) 127.8 (0.5)
200 130.3 (1.1) 124.6 (0.7)
300 129.6 (1.4) 124.0 (2.2)
δ = 0.9 130.0 (1.3) 124.1 (2.2)
δ = 0.5 127.2 (0.7) 121.7 (0.6)
δ = 0.1 127.5 (0.6) 121.9 (1.2)

C.2 Temporal Point Process Estimation
We now consider applying our adaptive TBPTT scheme to optimizing neural networks for temporal point
prediction as in [Du et al., 2016]. Given a sequence {(yi, ti)Ni=1} of categorical observations yi ∈ Y and
observation times ti ∈ R , the task consider by [Du et al., 2016] is to predict (yi, ti) given (yj , tj)j<i.
Following [Du et al., 2016], we model the sequence using an RNN, with input embedding layers for yi−1
and ti−1, and two output prediction layers: one for yi and another for λ(t) the conditional temporal point
process intensity. The loss now consists of two terms, which define the negative log-likelihood (NLL) for a
temporal point process: (i) cross entropy loss for yi and (ii) a temporal point process loss for λ(ti) given
by Eq.(12) in [Du et al., 2016]. [Du et al., 2016] also evaluate the neural network model by measuring the
zero-one loss of the predicted observation ŷi to yi and the root mean-squared error (RMSE) of the mean
predicted observation time t̂i = E [ti|λ(t)] to ti.

We fit such a model using a two-layer LSTM to the ‘Book Order’ financial data used in [Du et al.,
2016]. For the input layers, we use an embedding of size 128 for the two state categorical observations y
and a two dimensional encoding of ti (i.e. [ti − ti−1, ti]). For the two-layer LSTM, we use a hidden and
cell state dimension of size 128. And the output layer dimensions follow [Du et al., 2016]. For training,
we use a batchsize of S = 64 and a fixed learning rate of γ = 0.1 for SGD. We compare gradients from
fixed TBPTT K ∈ [3, 6, 9, 15, 21] and our adaptive TBPTT method δ ∈ [0.9, 0.5, 0.1]. We set W = 200,
K0 = 6 and [Kmin,Kmax] = [1, 100] for Algorithm 1.

The ‘Book Order’ dataset consists of the high-frequency financial transactions from the NYSE for a
stock in one day. It consists of 0.7 million transactions records (in milliseconds) and the possible actions
Y are ‘to buy’ or ‘to sell’. We use the train-test split of [Du et al., 2016] and split their test set in half to
form a validation set.

The results of our experiment in Figures C.3 and C.4 and Table C.3. From Figure C.3(bottom
center-right and bottom right) we see that the adaptive methods control for bias, by slowly increasing
K. From Figure C.3(top right) and Table C.3, we find that adaptive TBPTT methods achieve the best
test set NLL. We also see from Figure C.3(bottom left and bottom center-left) and Table C.3 that fixed
TBPTT K = 3 performs better at predicting yi at the cost of increased error in predicting ti. Similarly,
fixed TBPTT K = 15 and K = 21 are better at predicting ti, but poorer at predicting yi.
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Figure C.3: Book Order Experiment. Top row: (left) Test NLL. (center) truncation length κ̂(δ, θn), (right)
relative bias δ̂(K). Bottom row: (left) Test RMSE for t, (right) Test 01-Error for y. Solid dark lines are
our adaptive TBPTT methods, dashed colored lines are fixed TBPTT baselines.

Table C.3: Table of metrics for Book Order experiment. Test metrics are evaluated at the parameters of
the best valdiation set NLL. Standard deviation over multiple initializations are in parentheses.

K Valid NLL Test NLL RMSE(t) 10−3 01-Loss(y)

3 -4.983 (0.013) -4.694 (0.015) 3.9705 (0.0016) 0.3827 (0.0003)
6 -4.905 (0.006) -4.716 (0.006) 3.9691 (0.0007) 0.3959 (0.0009)
9 -4.898 (0.005) -4.732 (0.005) 3.9634 (0.0003) 0.3944 (0.0011)
15 -4.875 (0.007) -4.734 (0.004) 3.9619 (0.0011) 0.3971 (0.0010)
21 -4.831 (0.026) -4.719 (0.019) 3.9622 (0.0001) 0.4316 (0.0336)
δ = 0.9 -4.930 (0.016) -4.745 (0.009) 3.9641 (0.0007) 0.3932 (0.0006)
δ = 0.5 -4.890 (0.003) -4.733 (0.013) 3.9662 (0.0043) 0.3953 (0.0002)
δ = 0.1 -4.867 (0.001) -4.739 (0.002) 3.9634 (0.0003) 0.3954 (0.0001)
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Figure C.4: Book Order Experiment: (left) Valid NLL, (right) ‘Best’ Valid NLL. Solid dark lines are our
adaptive TBPTT methods, dashed colored lines are fixed TBPTT baselines.
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