
8 Supplement

8.1 Proof of Lemma 3.1

Since the result is exactly symmetric when non-
instrumented units are matched we prove it only for
the case when instrumented units are matched. Assume
w 2 Rp. For a given unit i with zi = 1, suppose we could
find a ✓i⇤ as defined in the AME-IV problem. Let us de-
fine another unit k with zk = 0, and xk�✓i⇤ = xi�✓i⇤, by
definition of MG(✓i⇤,xi) it must be that xk 2 MG(✓i⇤,xi).
So 1[xi 6=xk] = J � ✓i⇤, where J is a vector of length p
that has all entries equals to 1.

Assume there is another unit j with zj = 0, and j 6= k.

If j 2 MG(✓i⇤,xi), then 1[xi 6=xj ] = J � ✓i⇤. So

wT1[xi 6=xk] = wT (J � ✓i⇤) = wT1[xi 6=xj ]

If j /2 MG(✓i⇤,xi), let us define ✓ij = J � 1[xi 6=xj ],
obviously ✓ij 6= ✓i⇤. Since ✓i⇤ 2 argmax

✓2{0,1}p

✓Tw, we

have:

wT1[xi 6=xk] = wT (J � ✓i⇤)

= wT � wT✓i⇤

< wT � wT✓ij

= wT (J � ✓ij)

= wT1[xi 6=xj ].

Therefore,
k 2 argmin

j=1,...,n
Zj=0

wT1[xi 6=xj ].

This concludes the proof.

8.2 Asymptotic Variance and Confidence Intervals
for LATE Estimates

To construct estimators for the variance of �̂ we use an
asymptotic approximation, that is, we will try to esti-
mate the asymptotic variance of �̂, rather than its small
sample variance. The strategy we use to do this is the
same as Imbens and Rubin (2015), with the difference
that our data is grouped: we adapt their estimators to
grouped data using canonical methods for stratified sam-
pling. In order to define asymptotic quantities for our
estimators, we must marginally expand the definitions
of potential outcomes introduced in our paper. In prac-
tice, while our framework has been presented under the

assumption that the potential outcomes and treatments
are fixed, we now relax that assumption and instead treat
yi(1), yi(0), ti(1), ti(0) as realizations of random vari-
ables Yi(1), Yi(0), Ti(1), Ti(0), which are drawn from
some unknown distribution f(Yi(1), Yi(0), Ti(1), Ti(0)).
In this case the SUTVA assumption requires that each
set of potential outcomes and treatments is independently
drawn from the same distribution for all units. As usual,
lowercase versions of the symbols above denote observed
realizations of the respective random variables.

The asymptotic behaviour of our method is straightfor-
ward. Since the covariates we consider are discrete (say
binary for convenience) there are only a finite number of
possible covariate combinations one can observe. If the
sample size n increases and the probability of observing
all combinations of covariates is positive then asymp-
totically all possible combinations of covariates will be
observed. In fact, most units will be matched exactly
when n � p. This means that our matched groups will
only contain exactly matched units, and therefore be ex-
actly equal to a stratified fully randomized experiment in
which the strata are the matched groups, by our Assump-
tion 3 of our paper. By this principle, asymptotic results
for IV estimation in stratified experiments, such as those
in Imbens and Rubin (2015), apply asymptotically.

Recall as well that in this scenario we have a set of m
matched groups MG1, . . . MGm indexed by `, such that each
unit is only in one matched group. We denote the number
of units in matched group ` that have zi = 1 with n1

`
and

the number of units in matched group ` with zi = 0 with
n0
`
. Finally the total number of units in matched group `

is n` = n0
`
+ n1

`
.

We make all the assumptions listed in Section3 but we
must require a variant of (A3), to be used instead of it.
This assumption is:
(A3’) Pr(Zi = 1|i 2 MG`) = Pr(Zk = 1|k 2 MG`) =
n
1
`

n`
, 8i, k.

That is, if two units are in the same matched group, then
they have the same probability of receiving the instrument.
This probability will be equal to the ratio of instrument 1
units to all units in the matched group because we hold
these quantities fixed. Note that this more stringent as-
sumption holds when matches are made exactly, and is
common in variance computation for matching estimators
(see, for example, Kang et al. (2016)).

We keep our exposition concise and we do not give ex-
plicit definitions for our variance estimands. These are all
standard and can be found in Imbens and Rubin (2015).



We have to start from estimating variances of observed
potential outcomes and treatments within each matched
group. We do so with the canonical approach:
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where: ŝ2
`0 is an estimator for the variance of potential

responses for the units with instrument value 0 in matched
group `, ŝ2

`1 for the variance of potential responses for
the units with instrument value 1 in matched group `,
r̂2
`0 for the variance of potential treatments the units with

instrument value 0 in matched group `, and r̂2
`1 is an

estimator for the variance of potential treatments for the
units with instrument value 1 in matched group `. The
fact that r̂2

`0 = 0 follows from Assumption A4.

We now move to variance estimation for the two ITTs.
Conservatively biased estimators for these quantities are
given in Imbens and Rubin (2015). These estimators
are commonly used in practice and simple to compute,
hence why they are often preferred to unbiased but more
complex alternative. We repeat them below:
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To estimate the asymptotic variance of �̂ we also need
estimators for the covariance of the two ITTs both within
each matched group, and in the whole sample. Starting
with the former, we can use the standard sample covari-
ance estimator for Cov(dITTy`,dITTt`):

dCov(dITTy`,dITTt`) =
1
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The reasoning behind why we use only units with instru-
ment value 1 to estimate this covariance is given in Imbens
and Rubin (2015), and follows from A4. We can use stan-
dard techniques for covariance estimation in grouped data
to combine the estimators above into an overall estimator
for Cov(dITTy,dITTt) as follows:

dCov(dITTy,dITTt) =
mX

`=1

⇣n`

n

⌘2 dCov(dITTy`,dITTt`).

Once all these estimators are defined, we can use them
to get an estimate of the asymptotic variance of �̂. This
quantity is obtained in Imbens and Rubin (2015) with an
application of the delta method to convergence of the two
ITTs. The final estimator for the asymptotic variance of
�̂, which we denote by �2, is given by:

�̂2 =
1

dITT2
t

dV ar(dITTy) +
dITT2

y

dITT4
t

dV ar(dITTt)

� 2
dITTy
dITT3

t

dCov(dITTy,dITTt).

Using this variance, 1� ↵% asymptotic confidence inter-
vals can be computed in the standard way.



Figure 6: Running Time for FLAME-IV on large dataset.

8.3 The FLAME-IV Algorithm

We adapt the Algorithm described in Wang et al. (2019)
to the IV setting. The algorithm is ran as described in
that paper, except instrument indicator is used instead of
the treatment indicator as input to the algorithm. Here
we give a short summary of how the algorithm works and
refer to Wang et al. (2019) for an in-depth description.

FLAME-IV takes as inputs a training dataset D =
{(xi, ti, zi, yi)}ni=1, consisting of covariates, instrument
indicator, treatment indicator, and outcome for every unit
that we wish to match on, as well as a holdout set DH

consisting of the same variables for a different set of units
that aren’t used for matching but to evaluate prediction
error and match quality. The algorithm then first checks
if any units can be matched exactly with at least one unit
with the opposite instrument indicator. If yes, all the units
that match exactly are put into their own matched group
and removed from the pool of units to be matched. After
this initial check, the algorithm starts iterating through
the matching covariates: at each iteration, Match Quality
is evaluated on the holdout set after removing each co-
variate from the set of matching covariates. The covariate
whose removal leads to the smallest reduction in MQ, is
discarded and the algorithm proceeds to look for exact
matches on all the remaining covariates. Units that can
be matched exactly on the remaining covariates are put
into matched groups, and removed from the set of units
to be matched. Note that MQis recomputed after remov-
ing each remaining covariate at each iteration because

the subset of covariates that it is evaluated on always is
always smaller after each iteration (it does not include the
covariate removed prior to this iteration). The algorithm
will proceed in this way, removing covariates one by one,
until either: a) MQ goes below a pre-defined threshold, b)
all remaining units are matched, or c) all covariates are
removed. Experimental evidence presented in Wang et al.
(2019) suggests a threshold of 5% of the prediction error
with all of the covariates. The matched groups produced
by the algorithm can then be used with the estimators
described in the paper to estimate desired treatment ef-
fects. Units left unmatched after the algorithm stops are
not used for estimation. The algorithm ensures that at
least one instrumented and one non-instrumented unit are
present in each matched groups, but has no guarantees
on treatment and control units: matched groups that do
not contain either treated or control units are not used for
estimation.

One of the strengths of FLAME-IV is that it can be im-
plemented in several ways that guarantee performance on
large datasets. An implementation leveraging bit vectors
is described in Wang et al. (2019), optimizing speed when
datasets are not too large. A native implementation of
the algorithm on any database management system that
uses SQL as a query language is also given in the same
paper: this implementation is ideal for large relational
databases as it does not require data to be exported from
the database for matching.

While FLAME-IV is a greedy solution to the AME-IV
problem, an optimal solution could be obtained by adapt-
ing the DAME (Dynamic Almost Matching Exactly) pro-
cedure described in Dieng et al. (2019) to the IV setting
by using instrument indicators as treatment indicators in
the input to the algorithm. Resulting matched groups with
no treated or control units should be discarded as we do
here. The same estimators we employ in this paper can
also be employed with the same properties for matched
groups constructed with this methodology.

8.4 More Running Time Results on Large Dataset

Figure 6 shows the results of running time for FLAME-
IV on a larger dataset. The running time is still very
short(< 2 min) on the large dataset for FLAME-IV. Full
matching can not handle a dataset of this size.



Figure 7: Performance for linear generation model with con-
founded instrument at various sample sizes. Here, 2SLS has an
advantage because the data are generated according to a 2SLS
model. FLAME-IV (either early-stopping or run-until-no-more-
matches) performs similarly to 2SLS on large datasets, with
smaller absolute bias of the median and median absolute devia-
tion. On the smaller datasets, FLAME-IV has a slightly larger
bias than 2SLS.

Figure 8: Performance for nonlinear generation model with
confounded instrument assignment and different sample sizes.
Here, the 2SLS model is misspecified. FLAME-IV (either early-
stop or run-until-no-more-matches) outperforms 2SLS on both
datasets, having smaller absolute bias of median and median
absolute deviation.

8.5 Additional Simulations with Confounded
Instrument Assignment

Here we present results from simulations similar to those
in Section 5.1, but where, in addition to treatment assign-

ment, instrument assignment is also confounded. Instru-
ment is assigned as follows:

Z 0
i
= ⇢X 0

i
(13)

Z⇤ = Median{Z 0
i
}8i (14)

Zi = I[Z0
i�Z⇤] (15)

where X 0
i

contains last two variables for unit i, and ⇢ ⇠
N(0.1, 0.01).

Results for a linear outcome model, same as in Equation
(9) are displayed in Figure 7, and results for a nonlinear
outcome model as in Eq: (10) are displayed in Figure
8. Results are largely similar to those obtained when
instrument assignment is unconfounded. This suggests
that our method performs equally well when instrument
assignment is confounded.

8.6 Sample Matched Groups

Sample matched groups are given in Table 3. These
groups were produced by FLAME-IVon the data from
Pons (2018), introduced in Section 6. The algorithm was
ran on all of the covariates collected in the original study
except for territory. Here we report some selected co-
variates for the groups. The first group is comprised of
electoral districts in which previous turnout was relatively
good but PS vote share was low. This suggest that existing
partisan splits are being taken into account by FLAME-
IVfor matching. Municipalities in the second group have
slightly lower turnout at the previous election but a much
larger vote share for PS. Note also that treatment adoption
is very high in the second group, while low in the first:
this suggest that the instrument is weak in Group 1 and
strong in Group 2.



Territory Last Election Last Election Population Share Male Share Treated Instrumented
PS Vote Share Turnout (in thousands) Unemployed

Matched Group 1

Plouguenast et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 1
Lorrez-le-Bocage-Préaux et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 1
La Ferté-Macé et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 1
Mundolsheim et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 1 1
Paris, 7e arrondissement (0.01, 0.05] (0.77, 0.88] (1,800, 2,250] (0.47, 0.57] (0.1, 0.2] 0 1
Sainte-Geneviève et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 0
Cranves-Sales et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 0
Hem et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 1
Legé et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 1
Moûtiers et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 0
Paris, 7e arrondissement (0.01, 0.05] (0.77, 0.88] (1,800, 2,250] (0.47, 0.57] (0.1, 0.2] 0 1
Craponne-sur-Arzon et environs (0.01, 0.05] (0.77, 0.88] (0, 450] (0.47, 0.57] (0, 0.1] 0 0

Matched Group 2

Nantes (0.19, 0.22] (0.66, 0.77] (0, 450] (0.47, 0.57] (0.1, 0.2] 1 1
Alès (0.19, 0.22] (0.66, 0.77] (0, 450] (0.37, 0.47] (0.2, 0.3] 1 1
Sin-le-Noble (0.19, 0.22] (0.66, 0.77] (0, 450] (0.47, 0.57] (0.2, 0.3] 1 1
Grand-Couronne et environs (0.19, 0.22] (0.66, 0.77] (0, 450] (0.47, 0.57] (0.1, 0.2] 1 1
Dreux (0.19, 0.22] (0.66, 0.77] (0, 450] (0.47, 0.57] (0.2, 0.3] 1 1
Vosges (0.19, 0.22] (0.77, 0.88] (0, 450] (0.47, 0.57] (0.1, 0.2] 0 0
Arras et environs (0.19, 0.22] (0.66, 0.77] (0, 450] (0.37, 0.47] (0.1, 0.2] 1 1
Montargis et environs (0.19, 0.22] (0.66, 0.77] (0, 450] (0.37, 0.47] (0.2, 0.3] 1 1
Marseille, 3e arrondissement (0.19, 0.22] (0.66, 0.77] (450, 900] (0.47, 0.57] (0.1, 0.2] 1 1
Nantes (0.19, 0.22] (0.66, 0.77] (0, 450] (0.47, 0.57] (0.1, 0.2] 1 1
Mâcon et environs (0.19, 0.22] (0.66, 0.77] (0, 450] (0.37, 0.47] (0.1, 0.2] 1 1

Table 3: Two sample matched groups generated by FLAME on the application data described in Section 6. The columns are a subset
of the covariates used for matching. Territory was not used for matching. Original covariates are continuous and were coarsened into
5 bins. Last election PS vote share was coarsened into 10 bins. Labels in the cells represent lower and upper bounds of the covariate
bin each unit belongs to. The two groups have relatively good match quality overall.


