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1 APPENDIX

A. Proofs

Proposition 1 Given a DAG G(X(1),R,O,X), the
distribution p(Ri|paG(Ri))|paG(Ri)∩R=1 is identifiable
from p(R,O,X) if there exists

(i) Z ⊆ X(1) ∪R ∪O,

(ii) an equivalence relation ∼ on Z such that {Ri} ∈
Z/∼,

(iii) a set of elements X(1)

Z̃
such that X(1)

{CZ̃}
⊆ X

(1)

Z̃
⊆

X(1) for each Z̃ ∈ Z/∼,

(iv) X(1) ∩ paG(Ri) ⊆ (Z \ {Ri}) ∪X
(1)
{Ri},

(v) and a valid fixing schedule C for Z/∼ in G such that
for each Z̃ ∈ Z/∼, Z̃C {Ri}.

Moreover, p(Ri|paG(Ri))|paG(Ri)∩R=1 is equal to
q{Ri}, defined inductively as the denominator of (4) for
{Ri}, φC{Ri}

(G) and φC{Ri}
(p;G), and evaluated at

paG(Ri) ∩R = 1.

Proof. We first outline the essential argument made in
this proof. We will reformulate the process of fixing ac-
cording to a partial order in a missing data problem as
a problem of ordinary fixing based on a total order in a
causal inference problem where, previously missing vari-
ables are in fact observed. If we are able to show this, we
can invoke results from [1], that guarantee that we obtain
the desired conditional for each Ri.

Consider Z̃ ∈ Z/∼, and define X(1)

{EZ̃}
≡
⋃

Z∈{EZ̃}X
(1)
Z ,

and R{EZ̃} ≡ {Rk|X
(1)
k ∈ X

(1)

{EZ̃}
}, and similarly for

X
(1)

{CZ̃}
and R{CZ̃}.

We first note that any total ordering ≺ on {CZ̃} con-
sistent with C yields a valid fixing sequence on sets
in {CZ̃} in G(R,O,X(1),X)), where X

(1)

{CZ̃}
,R,O,X

are observed. The total ordering≺ can be refined to oper-
ate on single variables where each set Z̃ is fixed as single-
tons following a topological total order where variables
with no children in Z̃ would be fixed first. Such a total
order is also valid and follows from the validity of C and
the fact that at each step of the fixing operation in the
total order, the Markov blanket of each Z contains only
observed variables; hence no selection bias is induced on
any singleton variables {� Z̃}.
We now show, by induction on the structure of the partial
order C, that for a particular Z̃ ∈ Z/∼, qZ̃ is equal to∏

Z∈Z

∏
Z∈Z

q̃(Z|mbG̃(Z; anG̃(DZ)∩ ≺G̃ {Z},RZ)|(R∩Z)∪RZ=1,

(1)

obtained from a kernel

q̃ ≡ φ{CZ̃}(p(R,O,X
(1)

{CZ̃}
,X);G),

and CADMG

G̃ ≡ φ{CZ̃}(G(R,O,X
(1)

{CZ̃}
,X)),

where X
(1)

{CZ̃}
,R,O,X are observed.

For any C-smallest Z̃, Z̃ is independent of R{EZ̃} given

its Markov blanket; therefore treating X
(1)

{EZ̃}
as ob-

served results in the same kernel as qZ̃.

We now show that the above is also true for any Z̃ ∈
Z/∼. Assume the inductive hypothesis holds for all Ỹ ∈
{CZ̃}. Since C is valid, we obtain qZ̃ by applying

φE
Z̃
(q;G) ≡

φZ̃

(p(O,X,R \R{CZ̃},R{CZ̃} = 1)∏
Ỹ∈{CZ̃} qỸ

;φC
Z̃
(G)
)
, (2)



where qỸ are defined by the inductive hypothesis, and
φZ̃ is defined via

q(V \ ((X(1) \X(1)

{CZ̃}
) ∪RZ),RZ = 1|W)∏

Z∈Z

∏
Z∈Z

q(Z|mbG̃(Z; anG̃(DZ)∩ ≺G̃ (Z)),RZ)|(R∩Z)∪RZ=1
,

(3)

where

q(V\(X(1)\X(1)

{CZ̃}
)|W) ≡

p(O,X,R \R{CZ̃},R{CZ̃} = 1)∏
Ỹ∈{CZ̃} qỸ

.

Consider the equivalent functional in the model where
we observe X

(1)

{CZ̃}

q†(V \ ((X(1) \X(1)

{CZ̃}
) ∪RZ),RZ = 1|W)∏

Z∈Z

∏
Z∈Z

q†(Z|mbG̃(Z; anG̃(DZ)∩ ≺G̃ (Z)),RZ)|(R∩Z)∪RZ=1
,

(4)

where

q†(V\(X(1) \X(1)

{CZ̃}
)|W) ≡

p(O,X,X
(1)

{CZ̃}
,R \ R̃{CZ̃}, R̃{CZ̃} = 1)∏
Ỹ∈{CZ̃} qỸ

,

and R̃{CZ̃} is defined as the subset of R{CZ̃} that is fixed

in {CZ̃}.

The only difference between (3) and (4) for the purposes
of the denominator is the variables in R{CZ̃} \ R̃{CZ̃}.
But the denominator is independent of these variables,
by assumption. Thus, it follows that fixing on a valid
partial order with missing data and fixing on a total order
consistent with this partial order, as in causal inference,
yield equivalent kernels.

The conclusion follows by Lemma 55 in [1].

Lemma 2 Consider a DAG G(X(1),R,O,X) such that
for every Ri ∈ R, {Rj |X(1)

j ∈ paG(Ri)} ∩ anG(Ri) =
∅. Then for every Ri ∈ R, a fixing schedule C
for {{Rj}|Rj ∈ GR∩deG(Ri)} given by the partial or-
der induced by the ancestrality relation on GR∩deG(Ri)

is valid in G(X(1),R,O,X), by taking each X
(1)

Z̃
=⋃

Z∈{EZ̃}X
(1)
Z , for every Z̃ ∈ {E{Ri}}. Thus the target

law is identified.

Proof. In order to prove that the target law is identified,
we demonstrate that conditions (i-v) in Proposition 1 are
satisfied for each Ri.

Conditions (i) and (ii) are trivially satisfied as we choose
to fix Z ⊆ R, and we choose no equivalence relation,
thus Z/∼ consists of singleton sets of Rs. Condition (iii)
is also trivial as each X

(1)

Z̃
is a union of the corresponding

sets X
(1)

Ỹ
, for Ỹ earlier in the partial order. In the pro-

posed order we never fix elements in X(1), and propose
to keep elements in X(1) ∩ paG(Rj) for every Rj ∈ Z.
In particular, this also includes Ri, satisfying condition
(iv).

Finally, we show that the proposed schedule C is valid
by showing that each Z̃ ∈ Z/∼ is fixable. There are 3
conditions for an element Z̃ to be fixable as mentioned
in section 5. We go through each of these conditions and
demonstrate each Z̃ in Z/∼ is a valid fixing in φCZ̃

(G)
where C is the proposed fixing schedule above.

In the proposed schedule each Z̃ is a singleton Rj ∈ Z/∼
that we are trying to fix in a graph φCRj

(G). Since

X
(1)
Rj

= X(1), φCRj
(G) is a CDAG. Thus, D(φCRj

(G))
is just sets of singleton vertices. In particular, DRj

=
{Rj}. Further, by definition of the schedule, it must be
that deφCRj

(G)(Rj) = {Rj}. This satisfies condition (i).

For condition (ii), we note that S ⊆ ndφCRj
(G)(Rj) else,

S contains some Rk ∈ deG(Rj) which should have been
fixed prior to Rj by the proposed partial order. Thus, it
follows that S ∩ {Rj} = ∅.

Finally, following the partial order, and under the as-
sumption stated in the lemma, R{Rj} ⊆ {CRj}. We
have also proved that S ⊆ ndφCRj

(G)(Rj). Therefore,

Rj ⊥⊥ (S∪R{Rj}) \mbφCRj
(G)(Rj)|mbφCRj

(G)(Rj).

Since each Z̃ is fixable, the proposed partial order C for
each Ri is valid. Therefore, all five conditions in Propo-
sition 1 are satisfied concluding the target law is ID.

B. An example to illustrate the algorithm

We walk the reader through identification of the target
law for the missing data DAG shown in Fig. 1(a) in order
to demonstrate the full generality of our missing ID algo-
rithm. As a reminder, the target law is identified by (2)
if we are able to identify p(Ri|paG(Ri))|R=1 for each
Ri ∈ R. The identification of these conditional densities
are shown in equations (i) through (viii). For a clearer
presentation of this example, we switch to one-column
format.
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Figure 1: (a) A complex missing data DAG used to illustrate the general techniques used in our algorithm (b-e) The
corresponding fixing schedules of Rs.

We start with {R3, R5, R6, R7}. The fixing schedules for these are empty and we obtain the following immediately
from the original distribution.

(i) p(R3|pa(R3)) = p(R3|R2, X
(1)
4 ) = p(R3|R2, X4,1R4

),

(ii) p(R5|pa(R5)) = p(R5|R1, X
(1)
6 ) = p(R5|R1, X6,1R6),

(iii) p(R6|pa(R6)) = p(R6|R1, R8, X
(1)
5 , X

(1)
7 ) = p(R6|R1, R8, X5, X7,1R5,R7),

(iv) p(R7|pa(R7)) = p(R7|R8, X
(1)
6 ) = p(R7|R8, X6,1R6).

For R1, we choose Z = {R1, R5, R6}, and no equivalence relations. Thus, Z/∼ = {{R1}, {R5}, {R6}}. The fixing
schedule C is a partial order shown in Fig. 1(b) where R5 and R6 are incompatible, and R5 ≺ R1, R6 ≺ R1. Starting
with the original G in Fig. 1(a), fixing R5 and R6 in parallel yields the following kernel.

qr1(X \ {X5, X6}, X(1)
5 , X

(1)
6 ,R \ {R5, R6}|1R5,R6) =

p(X,R = 1)

p(R5|R1, X
(1)
6 ) p(R6|R1, R8, X

(1)
5 , X

(1)
7 )|R=1

, (5)

where the propensity scores in the denominator are identified using (ii) and (iii). The CADMG corresponding to this
fixing operation is shown in Fig. 2(a).

(v) p(R1|pa(R1))|R=1 = p(R1|R2, R3, X
(1)
2 , X

(1)
4 , X

(1)
5 , X

(1)
6 )|R=1

= qr1(R1|R2, R3, X
(1)
2 , X

(1)
4 , X5, X6,1R5,R6

)|R=1

= qr1(R1|R3, X2, X
(1)
4 , X5, X6,1R2,R5,R6

)|R=1

= qr1(R1|R3, X2, X4, X5, X6,1R2,R4,R5,R6
)|R=1 (by d-sep)

where the last term can be obtained using kernel operations (conditioning+marginalization) on qr1(.|.) defined in (5).

A similar procedure is applicable to R8, where Z/∼ = {{R8}, {R7}, {R6}}; Fig. 1(d). Starting with the original G in
Fig. 1(a), fixing R6 and R7 in parallel yields the following kernel.

qr8(X \ {X6, X7}, X(1)
6 , X

(1)
7 ,R \ {R6, R7}|1R6,R7

) =
p(X,R = 1)

p(R6|R1, R8, X
(1)
5 , X

(1)
7 ) p(R7|R8, X

(1)
6 )|R=1

, (6)
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Figure 2: (a) Graph corresponding to the kernel obtained in (5) (b) Graph corresponding to the kernel obtained in (6).

where the propensity scores in the denominator are identified using (iii) and (iv). The CADMG corresponding to this
fixing operation is shown in Fig. 2(b).

(vi) p(R8|pa(R8))|R=1 = p(R8|R4, X
(1)
6 , X

(1)
7 )|R=1

= qr8(R8|R4, X
(1)
6 , X

(1)
7 ,1R6,R7

)|R=1

= qr8(R8|R4, X6, X7,1R6,R7
)|R=1

where the last term can be obtained using kernel operations (conditioning+marginalization) on qr8(.|.) defined in (6).

For R2, we choose Z = {R1, R2, R3, R5, R6}, and no equivalence relations. Thus, Z/∼ =
{{R1}, {R2}, {R3}, {R5}, {R6}}. The fixing schedule C is a partial order where R3, R5, R6 are incompatible and
R5, R6 ≺ R1 ≺ R2 and R3 ≺ R2 as shown in Fig. 1(c). In addition, the portion of the fixing schedule involving R1,
R5, and R6 is executed in a latent projection ADMG where we treat X(1)

2 as being hidden as shown in Fig. 3(a), while
the portion of the fixing schedule involving R3 is executed in the original graph, Fig. 1(a).

(vii) p(R2|R4, X
(1)
1 ) = qr2(R2|R4, X

(1)
1 ,1R1,R3), (7)

where qr2 corresponds to the kernel obtained by following the partial order of fixing R3 and R1, separately. That is,

qr2(.|1R1,R3) =
p(X,R = 1)

q1r2(R1|R2, R3, X2, X5, X6, X
(1)
3 , X

(1)
8 ,1R5,R6) p(R3|R2, X

(1)
4 )

. (8)

The propensity score for R3 is obtained from (i) and q1r2 is the kernel obtained by fixing R5 and R6 in parallel in a
graph where X(1)

2 is treated as hidden, as shown in Figures 3(a) and (b). That is,

q1r2(X \ {X5, X6}, X(1)
5 , X

(1)
6 ,R \ {R5, R6}|1R5,R6) =

p(X,R = 1)

p(R5|R1, X
(1)
6 ) p(R6|R1, R8, X

(1)
5 , X

(1)
7 )|R=1

.

The propensity scores in the denominator above are identified using (ii) and (iii). For clarity, the CADMGs corre-
sponding to fixing R1 and R3 are illustrated in Figures 3(c) and (d).

Finally, for R4, we choose Z = {R} and equivalence relation R1 ∼ R3. Thus, Z/∼ =
{{R1, R3}, {R2}, {R4}, {R5}, {R6}, {R7}, {R8}}. The fixing schedule C is a partial order where R5, R6 ≺
{R1, R3} ≺ R2 ≺ R4 and R6, R7 ≺ R8 ≺ R4 as shown in Fig. 1(e). In addition, the portion of the fixing schedule
involvingR5, R6, {R1, R3}, andR2 is executed in a latent projection ADMG where we treatX(1)

2 andX(1)
4 as hidden

variables, shown in Fig. 4(b), while the portion of the fixing schedule involving R6, R7, and R8 is executed in the
original graph, Fig. 1(a).

(viii) p(R4|X(1)
1 ) = qr4(R4|X(1)

1 ,1R2,R8
), (9)
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Figure 3: Execution of the fixing schedule to obtain the propensity score for R1 (a) Latent projection ADMG obtained
by projecting out X(1)

2 (b) Fixing R5 and R6 in G1 (c) Fixing R1 in G2 (d) Fixing R3 in the original graph.

where qr4 corresponds to the kernel obtained by following the partial order of fixing R2 and R8, separately. That is,

qr4(.|1R2,R8) =
p(X,R = 1)

q1r4(R2|R4, X2) q2r4(R8|R4, X6, X7)
. (10)

q1r4 is the kernel obtained by fixing the set {R1, R3} in graph G2 shown in Fig. 4(c). That is,

q1r4(.|1R1,R3,R5,R6) =
q3r4(.|1R5,R6

)

q3r4(R1, R3|R2, R4, X2, X
(1)
3 , X4)

=
q3r4(.|1R5,R6

)

q3r4(R1|R2, R4, X2, X3, X4,1R3
) q3r4(R3|R2, R4, X2, X4)

q3r4 is the kernel obtained by fixing R5 and R6 in parallel in the graph G1 shown in Fig. 4(b). That is,

q3r4(.|1R5,R6
) =

p(X,R = 1)

p(R5|R1, X
(1)
6 ) p(R6|R1, R8, X

(1)
5 , X

(1)
7 )|R=1

.

The propensity scores in the denominator above are identified using (ii) and (iii).

Finally, q2r4 is the kernel obtained by fixing R6 and R7 in parallel in the original graph G, shown in Fig. 1(a). That is,

q2r4(.|1R6,R7
) =

p(X,R = 1)

p(R6|R1, R8, X
(1)
5 , X

(1)
7 ) p(R7|R8, X

(1)
6 )|R=1

.

The propensity scores in the denominator above are identified using (iii) and (iv). For clarity, the CADMG corre-
sponding to fixing R8 is illustrated in Figures 4(a).
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Figure 4: Execution of the fixing schedule to obtain the propensity score for R4 (a) CADMG obtained by following
the schedule to get the propensity score for R8 (b) Latent projection ADMG obtained by projecting out X(1)

2 and X(1)
4

(c) Fixing R5 and R6 in G1 (d) Fixing R1 in G2.

C. Table for Lemma 1

X
(1)
1 X

(1)
2

R1 R2

X1 X2

R1 p(R1)
0 a
1 1− a

X
(1)
1 p(X

(1)
1 )

0 b
1 1− b

X
(1)
2 p(X

(1)
2 )

0 c
1 1− c

R2 R1 X
(1)
1 p(R2|R1, X

(1)
1 )

0 0 0 d
1 0 0 1− d
0 1 0 e
1 1 0 1− e
0 0 1 f
1 0 1 1− f
0 1 1 g
1 1 1 1− g

R1 R2 X
(1)
1 X

(1)
2 p(Full Law) X1 X2 p(Observed Law)

0 0

0 0 abcd

? ? a
[
db+ f(1− b))

]1 0 a(1− b)cf
0 1 ab(1− c)d
1 1 a(1− b)(1− c)f

1 0

0 0 (1− a)ebc
0

?
(1− a)eb1 0 (1− a)g(1− b)c

0 1 (1− a)eb(1− c)
1 (1− a)g(1− b)1 1 (1− a)g(1− b)(1− c)

0 1

0 0 abc(1− d)

?
0 ac

[
1−

(
db+ f(1− b)

)]
1 0 a(1− b)c(1− f)
0 1 ab(1− c)(1− d)

1 a(1− c)
[
1−

(
db+ f(1− b)

)]
1 1 a(1− b)(1− c)(1− f)

1 1

0 0 (1− a)(1− e)bc 0 0 (1− a)(1− e)bc
1 0 (1− a)(1− g)(1− b)c 1 0 (1− a)(1− g)(1− b)c
0 1 (1− a)(1− e)b(1− c) 0 0 (1− a)(1− e)b(1− c)
1 1 (1− a)(1− g)(1− b)(1− c) 1 1 (1− a)(1− g)(1− b)(1− c)

Any pair of {d, f} would lead to different full laws. However, as long as db+ f(1− b) stays constant, the observe law
would agree across all different full laws (which include infinitely many models). This is a general characterization of
non-identifiable models with two binary random variables.
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