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Abstract

A longstanding goal of artificial intelligence
is to develop technologies that augment or as-
sist humans. Current approaches to develop-
ing agents that can assist humans focus on
adapting behavior of the assistant, and do not
consider the potential for assistants to sup-
port human learning. We argue that in many
cases, it is worthwhile to provide assistance
in a manner that also promotes task learning
or skill maintenance. We term such assis-
tance Learning-Compatible Performance Sup-
port, and present the Stochastic Q Bumpers
algorithm for greatly improving learning out-
comes while still providing high levels of per-
formance support. We demonstrate the effec-
tiveness of our approach in multiple domains
with simulated learners, including a complex
flight control task.

1 INTRODUCTION

A longstanding goal of artificial intelligence (Al) is to
develop agents can that augment or assist humans.! Us-
ing powerful tools like deep learning, researchers have
recently made great progress toward building automated
agents that can perform complex tasks at or above hu-
man ability. More limited but encouraging progress has
also been made deploying these agents as assistants, for
example, to help novice humans perform complex tasks
like flying drones (Reddy, Dragan, and Levine 2018). In
limited settings, researchers have even begun to consider
higher-order effects such as human adaptation to the as-
sistant, for the purpose of further improving the assis-
tant’s performance (Nikolaidis et al. 2017).

"While not the primary focus of this paper, one could assist
machine agents instead, e.g., as in (Torrey and Taylor 2013).
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While improving the ability of agents to assist humans
performing tasks (i.e., to provide “performance support™)
is valuable, we argue that assistants should also be capa-
ble of helping humans acquire and maintain skills rele-
vant to the task. In other words, in addition to providing
performance support, we believe assistants should offer
learning support. Education is a critical challenge in to-
day’s fast-changing world; such assistants could enable
a new form of learning on the job, where the goal of the
assistant is not only to ensure high-quality work, but also
to support task learning by the human.

In this paper, we focus on the shared autonomy setting,
which can enable high levels of initial performance. In
shared autonomy, the assistant takes the human action
as input and determines the final action (Reddy, Dra-
gan, and Levine 2018). The assistant needs to consider
the human action, since the human may have knowl-
edge unavailable to the assistant (such as a goal loca-
tion). In contrast to settings where the assistant pro-
vides advice only (Amir et al. 2016; Torrey and Taylor
2013), shared autonomy enables execution of complex
tasks beyond the human’s (initial) ability, such as flying
drones (Reddy, Dragan, and Levine 2018). Our goal is
to provide performance support that also facilitates learn-
ing, making the human less reliant on the assistant.

In this work, we formalize this goal as the design of
Learning-Compatible Performance Support (LCPS). We
first provide motivations for LCPS, and describe how
learning assumptions about humans may influence out-
comes. We then present Stochastic Q Bumpers, an al-
gorithm for sharing control between a human and assis-
tant, which significantly improves human learning (given
a certain level of performance support), or team perfor-
mance (given a desired learning level) for a natural class
of learners—and does so by (1) considering projected re-
wards over full episodes and (2) executing assistant ac-
tions in an opportunistic, randomized fashion. Finally,
we show the efficacy of Stochastic Q Bumpers compared
to state-of-the-art shared autonomy methods (Reddy,



Dragan, and Levine 2018) across multiple domains, in-
cluding a complex motor control task with deep rein-
forcement learning (RL) agents, and provide detailed be-
havior analysis for an environment with large negative
rewards. We use simulated learners, which allow us to
perform an extensive sensitivity analysis on the hyperpa-
rameters in the algorithms, in terms of their impact on
performance and learning. We release our open-source
code to facilitate future research.’

2 PRELIMINARIES & MOTIVATIONS

In this section, we briefly introduce Markov decision
process notation and outline general motivations for de-
signing assistants that provide Learning-Compatible Per-
formance Support (LCPS), as well as special considera-
tions for transition learners, the subclass of learners that
we focus on in this work.

2.1 MARKOYV DECISION PROCESS

We consider providing support for finite-length tasks oc-
curring in episodic Markov decision processes (MDPs).
An episodic MDP can be described by a set of states 5,
actions A, stochastic dynamics model p(s’ | s,a), re-
ward model r(s,a), and a discount factor v € (0,1).
At least one state is a terminal state: transitioning to
this state causes the process to reset to a (randomly se-
lected) possible initial starting state. A decision policy
7 is a mapping from states to actions. The state-action
value function of a policy 7 is denoted by Q™ (s,a) =
r(s,a) +v> . p(s | 5,a)Q™(s',7(s")), which repre-
sents the expected discounted sum of rewards of tak-
ing action a in state s and then following policy 7.
V7(s) = Q™(s,m(s)) and the optimal (highest value)
policy, V, and @) are denoted as 7*,V*, and Q* respec-
tively.

2.2 LEARNING-COMPATIBLE
PERFORMANCE SUPPORT (LCPS)

If an agent is capable of providing performance support
to the human, a natural question arises of whether it is
even important to provide learning support at all (should
performance support be “learning-compatible”?). We
outline several affirmative reasons here.

Intrinsic benefits: People may derive personal value
from being able to perform a task with decreased assis-
tance. The benefits of human skill acquisition range from
increased job opportunities and wages to personal pride

https://github.com/StanfordAI4HI/
learning-compatible-performance-support

and respect from peers. Even while receiving some per-
formance support, humans may benefit from increased
engagement and autonomy associated with learning.

Personalization: The assistant may be trained on a
slightly different task or have undesirable biases from the
perspective of the human. In this case, the human may
wish to acquire proficiency based on the assistant’s task
definition, and then improve value alignment by operat-
ing independently of the assistant.

Sub-optimal assistants: The assistant may not be capa-
ble of performing the task with the desired proficiency.
In this case, the human may first learn to perform the
task at the level of the assistant, then exceed that level.

Meta learning: Learning to perform the task may help
the human learn to perform other tasks more quickly.

Hierarchical learning: Learning to perform the task
may help the human perform other tasks reliant on the
current one.

Assistant failures: The assistant may fail, in which case
it is desirable that a human be able to perform the task.
Mechanical or software failures or limitations may cause
the assistant to stop functioning or become unavailable.
Worse, an adversary may take control of the assistant.
Finally, the assistant may fail to generalize to new situa-
tions that the human is capable of handling (e.g., a self-
driving car trained in the USA crosses over to Quebec,
Canada and is unable to read signs written in French,
while the human is bilingual).

Human deskilling: If the assistant takes responsibility
for most actions, the human may lose performance abil-
ity, due to distraction, forgetting, or distributional shift.
Unless the assistant can perform the task autonomously
in all situations, safety could suffer.

Assistant costs: Assistants may be expensive. Software
agents require computational resources, and robotic as-
sistants may be costly to purchase or rent. Human learn-
ing that reduces dependency on the assistant should re-
duce these costs. Thus, LCPS is essential for ensuring
equal access to possibly life-changing technology.

Privacy concerns: Using an assistant inherently requires
sacrificing some privacy, since the assistant requires the
details of the task in order to be helpful. Using the assis-
tant to perform a smaller number of (possibly simulated)
tasks may help to alleviate these concerns.

Task delays: Using an assistant can create delays, due to
inherent processing time by the assistant or human, the
communication time of the assistant or agent, or a com-
bination thereof. For example, for language production,
text may need to be produced by the human, communi-


https://github.com/StanfordAI4HI/learning-compatible-performance-support
https://github.com/StanfordAI4HI/learning-compatible-performance-support

cated to the assistant, revised by the assistant, and pro-
cessed by the human. Removing the assistant from the
loop (facilitated by human learning gains) would signifi-
cantly improve response times.

2.3 IMPORTANCE OF LEARNING &
PERFORMANCE SUPPORT FOR
TRANSITION LEARNERS

In a shared autonomy setting, the way that the human re-
sponds to agent control can have a significant impact on
how and whether the human learns to perform the un-
derlying task. Shared autonomy is an emerging area,
and researchers do not yet have a clear understanding
of how human learning works in this setting, and how
the type of task may modulate learning. On the one
hand, the standard learning-from-demonstration assump-
tion, where learning occurs simply from observing the
actions of another agent, may hold in some cases. For
instance, a customer support representative interacting
with a customer via a text interface may observe and
learn from automated responses entered by a virtual as-
sistant. On the other hand, educational research suggests
that human learners may learn much more effectively if
they execute actions on their own to internalize knowl-
edge and acquire mastery (Koedinger et al. 2015), rather
than simply observing the actions of others.

Humans may be unable even to make proper observa-
tions in shared autonomy settings. Consider, for exam-
ple, shared autonomy for operating a complex system
like a surgical robot arm or controlling audio production
as a “disc jockey” (DJ). Operating these systems requires
complex control of a rapid series of actions (controlling
many motors or audio elements) in a “production” setting
(e.g., surgery or a concert). It is likely that to maintain
high performance, the agent would need to assert con-
trol frequently and without warning. In such settings, it
would be difficult for the human to understand both when
and how the agent may have modified the action they
took, due to action complexity, action speed, and cogni-
tive demands for the human participating in the task.

In this work, we focus on this model of learner, which
Ho, Littman, and Austerweil (2017) term transition
learners. Under this model, the human learns from ex-
perience as though all of his actions were executed, even
though the assistant may have executed different ones.
More formally, if the human executes action a}, in state
s; but the agent executes a different action a; resulting in
a transition to state sy4; and reward r;, the human will
observe (s¢,al, si11,7¢), not the true (¢, ar, Se41,7¢).
This model of learning is particularly challenging for
providing learning and performance support, because
learners can alias their wrong actions with the correct

(agent executed) actions, which can harm learning. We
believe that the transition model of learning is an impor-
tant and realistic setting, that may become increasingly
common as shared autonomy becomes feasible for many
complex tasks. The flight control task we selected for
our experiments is one example of a complex, fast-paced
task where transition learning is likely to occur. Ulti-
mately, brain control interfaces will likely enable incred-
ibly complex, fast-paced control, where distinguishing
between the human specified action and the actions taken
(such as in the supported autonomy setting described
by Downey et al. (2016)) will be very challenging.

3 STOCHASTIC Q BUMPERS
ALGORITHM

The central challenge of our work is how to provide tar-
geted performance support to transition learners in a way
that enables them to achieve good performance, while
also still enabling learning. Since under the transition
model of learning, the human may assign credit to ac-
tions taken by the human when the assistant has actually
executed a different action, the assistant must be strate-
gic about when and how it provides performance support
if it is to avoid the human learning a poor decision pol-
icy. Suppose, for example, that the assistant overrides
any action taken by the human that is not optimal, in or-
der to provide a high level of performance support. At
best, the human will be unable to discover optimal ac-
tions since all actions result in optimal transitions. At
worst, the human may learn that specific actions that lead
to bad outcomes are very good, and learn a policy that—
if executed without the assistant’s corrections—could be
significantly worse than random. Large amounts of ex-
perience executing such a policy may be very difficult
to correct in the future, as it would require “unlearning”
reinforced behaviors.

This example illustrates the problems of applying stan-
dard interactive strategies for learning with an expert
(the assistant) in the loop. Those approaches can prov-
ably speed learning (compared to standard reinforcement
learning) by first giving most control to the expert and
subsequently giving the learner increasing amounts of
control as it obtains better predictions based on the ex-
pert policy (Sun et al. 2017). This standard approach is
also attractive from a performance support perspective,
as it hopefully would transition to giving control to the
learner only once the learner has learned a policy that is
closer to the expert’s. Unfortunately, this approach will
not work for transition learners, as large amounts of ex-
pert control at the start will be difficult to overcome later.

An alternative approach that is likely to work much bet-



ter for transition learners is to enable the learner to take
as many actions on their own as possible, but prevent
large mistakes. Reddy, Dragan, and Levine (2018) pro-
vide one mechanism for sharing control with the hu-
man, by executing human actions whenever the agent’s Q
value (reward-to-go) for that action is “close” to the op-
timal reward-to-go; otherwise, the agent executes a near-
optimal action. Our approach derives from two addi-
tional insights. First, instead of considering only reward-
to-go, we seek to provide a minimum level of perfor-
mance across the entire episode. Second, we provide a
mechanism to avoid overriding the human many times in
similar locations, with the goal of enabling the human to
generalize better from a large, diverse sample of obser-
vations of the effects of executing their own actions.

We combine these insights to create the Stochastic Q
Bumpers algorithm (Algorithm 1). To provide a mini-
mum level of performance support, the algorithm takes
as input a lower bound on possible episode rewards v,y
and a parameter o € (0, 1] that controls the level of per-
formance support (smaller values give less control to the
human). It then seeks to prevent episode rewards from
falling below V*(sg) —a(V*(80) — Umin ). As a measure
of how close a human’s action would bring the expected
return to this lower value, the agent estimates

t—1
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the sum of rewards plus the expected reward-to-go of
following the agent’s policy 7*, where ~ is a discount
factor that enables fair comparison of V'(sg) and future
rewards. Now, instead of simply preventing any human
actions where G(al') < V*(s0) — a(V*(50) = Umin),
the agent overrides with probability based on the distance
to this lower value, where actions that completely elim-
inate this distance are overridden with probability 1 and
actions that remove very little of this distance are over-
ridden with probability close to 0. This stochastic over-
riding pro-actively injects high-reward actions intended
to delay or prevent the agent from reaching a situation
where most actions would fall below this lower value and
the human would have very little control for the remain-
der of the episode. Further, the hope is that by stochasti-
cally overriding, the human will rarely take actions that
are always overridden at particular states, and overrides
will be distributed across a more diverse set of states that
should interfere less with agent learning.

Algorithm 1 supports several different behaviors of over-
riding when the agent decides to do so. By default,
AgentAction(s;) = argmax, Q*(st,a), where the
arg max operator selects a random best action. How-
ever, since overriding with the optimal action may make

Algorithm 1 The Stochastic Q Bumpers Algorithm

a € (0,1] + Parameter specifying amount of perfor-
mance support
Q* < Q values of the support policy
f < logistic probability transform (described in text)
Umin ¢ lower bound on episode reward
v < discount factor of Q values used in training
for t = 0 : T (where T is the end of the episode) do
al' + action selected by the human
Gy Zf;é T+ 4t Q* (s, aft)
Sample p ~ [0, 1]
if Q* (s¢,al') > Q*(s¢, AgentAction(s;)) then
ay < (1?’ R
elseifp < f((V*(s0) = Ge) /(a(V*(50) ~tmin))
then

a; <+ AgentAction(s;)
else
ay < a?
end if
Execute action a;
end for

function AgentAction(s;, SECOND = false)
if SECOND = false then
return arg max, Q*(s;, a)
else if arg min, Q*(s¢,a) = V*(s¢, a) then
return random action
else
return arg max, Q*(s;, a) s.t.
V*(st)
end if
end function

Q*(s,a) <

it difficult for transition learners to learn to execute the
best action on their own, overriding with the second-
best action may improve learning and provide a suffi-
cient level of performance support. In this case, denoted
AgentAction(s;, SECOND), we impose a constraint on
a s.t. Q*(s¢,a) < V*(st), unless all actions have equal
values (in which case it simply returns a random action).

To provide the human with increased control while G
is still close to V*(sg) and to increase the probability of
overriding when G approaches the lower value (so that G
is less likely to fall below this value), we apply a logistic
transform f to the probabilities p of allowing the human
action, as

f(p) =1/(1 +exp(k - (p —0.5))),

where k = 2log(1 — Pmaz) — 10g(Pmaz), and Diaz is
the desired probability for f(1) = ppmaz. This choice of
k determines the steepness of the logistic function on the
interval p € [0, 1], and transforms p = 0 to (1 — Ppaz)



and p = 1 t0 pyax (p = 0.5 remains unchanged).

4 EXPERIMENTS

Our experiments consist of analysis of behavior in a
simple grid world setting, followed by empirical exper-
iments in that domain and a complex motor control do-
main. We conduct all experiments by simulating human
learners using reinforcement learning agents, and release
our code for use by other researchers.> While we ulti-
mately plan to conduct additional experiments with hu-
mans, simulated learners have several advantages for the
current work from a controlled experiment standpoint.
First, we can ensure that the learners always adhere to
the learning assumptions of transition learners for the
tasks we have selected. Second, we can obtain higher
statistical power and reduce variance across learners by
using the same learning algorithm and function approx-
imation architecture for each learner. Third, simulation
enabled us to do an extensive sensitivity analysis: by us-
ing simulated learners, we could scale experiments to the
large numbers of learners required to sweep hyperparam-
eter settings (Figures 2 and 4). This allowed the crucial
comparison of how these parameter choices impact per-
formance and learning. Finally, assisting machine agents
is itself a useful end goal (Amir et al. 2016; Torrey and
Taylor 2013).

In order to find strong baselines to compare with
Stochastic Q Bumpers, we consider methods for provid-
ing performance support in shared autonomy that also
enable various levels of human autonomy. As we have
described, transition learners require autonomy to learn,
as they need to see the results of their own actions in
order to assign proper credit to actions. While previous
work on shared autonomy shares control with the human
for the purpose of improving performance rather than
learning, we would expect such control sharing meth-
ods to improve human learning for transition learners,
while also providing high levels of performance sup-
port. Reddy, Dragan, and Levine (2018) provide a sim-
ple, general method for sharing control, which we men-
tioned in the previous section and will call Local Q-
Thresholding. Local Q-Thresholding overrides the hu-
man’s action a; whenever

Q'(st,at) < (1= a)V'(se),

where Q' (s¢,a:) = Q*(s¢,a:) — ming Q*(s¢,a) and
V'(st) = max, Q' (s¢,a).

We also compare to the natural extremes, where the agent
provides no support (which we expect to be good for

*https://github.com/StanfordAI4HI/
learning-compatible-performance-support
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Figure 1: The Cliff Walking environment. S, C, and G
denote the starting state, cliff, and goal, respectively. The
orange dot denotes the agent / human’s current location.

eventual learning, but bad for initial performance) and
where the agent provides maximal support (which we
expect to be good for performance but bad for learn-
ing). Conveniently, these baselines correspond to Local
Q-Thresholding with « = 1 and @ = 0, respectively.
Note that & = 0 corresponds to maximal agent control
only for AgentAction with SECOND = false.

For clarity of our experiments, which are focused on the
tradeoff between performance and learning support, we
focus our evaluation on settings where the agent has al-
ready learned a good policy for the task. thus, we do
not augment s; with the human action a’}l, as was done
in (Reddy, Dragan, and Levine 2018). Further, when the
agent takes control, we assume the agent executes the op-
timal action 7*(s;) rather than an action that is “closest”
to the human’s action, as our primary goal is to improve
learning and not engagement.

4.1 CONTROL SHARING TRADEOFFS WITH
LARGE NEGATIVE REWARDS

In order to better understand the differences between
Stochastic Q Bumpers and Local Q-Thresholding, we
first study the Cliff Walking grid world domain (Sutton
and Barto 2018, p. 132). In this domain, every action
(left, right, up, and down) incurs a reward of —1, except
for moving off the cliff (e.g., by pressing down at the
agent’s location in Figure 1), which incurs a reward of
—100 and resets the current location to the starting state.
We add an additional +100 bonus for reaching the goal.
Attempting to move off the grid results in —1 reward and
no movement. The maximum episode length is 100.

We observe the choice of o for Local Q-Thresholding
necessarily involves trading off between the level of sup-
port provided in the presence of very bad actions and
the level of support provided when actions are relatively
similar. For example, at the location of the agent / hu-
man in Figure 1 (2, 6), the Q values of the optimal pol-
icy are —13, 94, 92, 92 for down, right, up, left actions,
respectively. In order to prevent the human from mov-
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ing away from the goal (up or left), one would need to
set v < (94 — 92)/(94 — (—13)) = .019 for Local Q-
Thresholding. One position up, at (1, 6), the optimal Q
values are 93, 93, 91, 91 for the same actions, respec-
tively. Here, any value of & < 1 will result in always
overriding those actions. In fact, any value of a@ < 0.5
will not allow the human to take any suboptimal actions
locations that are not alongside the cliff.

We can see that two incompatible choices are possible.
Setting a very close to 0 will prevent the human from
moving backwards along the cliff toward the start state,
but will not allow the human to take any other paths
or sub-optimal actions away from the cliff, even if they
cause very little harm and help learning. On the other
hand, setting o > 0.5 will allow the human to have better
learning but can harm performance by letting the human
undo all the progress they have made toward the goal.

Our Stochastic Q Bumpers method does not suffer from
the same weaknesses, since it does not relying on local
thresholding. Instead, it overrides when it is important
to do so in the context of the suboptimality of the entire
trajectory. If overall, the human has not taken many bad
actions, they have more freedom (e.g., to move left along
the cliff). If instead they have already taken many sub-
optimal actions, they are prevented from moving too far
from the goal.

4.2 CLIFF WALKING DOMAIN

We now present empirical results for the Cliff Walking
domain described in Section 4.1. We conducted exper-
iments using the OpenAl Gym (Brockman et al. 2016)
environment interface, which we modified to include
4100 reward at the goal. In this domain, we found that
the second-best version of AgentAction works best, so
we report results using that method for both Stochastic
Q Bumpers and Local Q-Thresholding. For Local Q-
Thresholding, we ran all values of « that result in dif-
ferent overriding behavior (o« € {1, 0.5, 0.1, 0.0197,
0.0195, 0.0193, 0.0191, 0.0189, 0.0187, 0.0186, 0.0184,
0.0182, 0.0181, 0 }). For Stochastic Q Bumpers, we ran
a € (0,1.0] in 0.1 increments. Here and in all experi-
ments, we set v,,;, = 0 for the lower bound on returns
and ppuq, = 0.999 to determine the steepness of the lo-
gistic probability transform.*

We report mean results from 100 trials of 100 episodes
each, using different random seeds for each trial. All tri-
als used a tabular Q learner, with an epsilon-greedy ex-
ploration policy, where € decays linearly from 1 to 0.02
over the first 10% of episodes, then remains at 0.02 (fol-
lowing the same DQN settings used in (Reddy, Dragan,

“We did not tune the value of Pmaz 1N OUT eXperiments.
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Figure 2: Average performance (unassisted vs. assisted)
for the Cliff Walking domain. Fixing the assisted per-
formance at the values obtained in the cluster of Lo-
cal Q-Thresholding values (between 51 and 52 on the
x-axis) and comparing to the best learning (unassisted)
performance (top left, with no assistance), Stochastic Q
Bumpers has 51% lower average regret than the best Lo-
cal Q-Thresholding value. Similarly, when fixing learn-
ing (unassisted) performance and measuring assisted per-
formance comparing to maximal assistance, Stochastic
Q Bumpers has 43% lower regret than the best Local Q-
Thresholding method.

and Levine 2018)). The learning rate decays according to
the same schedule. We provided all assistant agents with
the same optimal Q* values, obtained using our tabular Q
learning code run over a larger number of episodes. Af-
ter each episode, we ran the learner with no exploration
(e = 0) to measure its unassisted (learned) performance.

Figure 2 shows the mean unassisted performance vs. as-
sisted performance (averaged over the entire trial), or
learning support as a function of performance support.
The plot shows the macro-averages across trials, with
95% confidence intervals based on standard error of the
mean. In the top left, Local Q-Thresholding with a@ =
1.0 corresponds to no assistance at all. As expected, as-
sisted performance suffers but the learning performance
is quite good. For comparison, we also include a point
corresponding to always overriding sub-optimal values,
regardless of whether the override value is second best
(indicated in the bottom right of the figure as Maximal
Assistance). As expected, learning suffers with maximal
assistance (but assisted performance is very good).

Stochastic Q Bumpers strongly dominates Local Q-
Thresholding in the top right. All Local Q-Thresholding
points except &« = 1.0 have a value between 51 and
52 in terms of performance support (x-axis). However,



Figure 3: The Lunar Lander domain. Here, a Stochastic
Q Bumpers (a = 0.2) agent controlling the lander (the
purple object with two protruding landing legs) is just
beginning to override most actions of a random human
learner by firing the main thruster (which emits red parti-
cles) to attempt to land successfully at the goal (between
the yellow flags) and avoid a crash.

Stochastic Q Bumpers has a point (o« = 0.7) that is very
similar in terms of performance support (53.9) yet ob-
tains significantly better learning performance (—222.6
vs. —486.5 for the best Local Q-Thresholding value
of a = 0.0195.) Compared to the best learning per-
formance value of —26.6 (Local Q-Thresholding with
a = 1.0), this is a reduction in regret of 51%. Simi-
larly, if we fix a measure of learning performance on the
y-axis, say —465.6 for Stochastic Q Bumpers (o = 0.2)
and —486.9 for Local Q-Thresholding (o« = 0.0191),
Stochastic Q Bumpers has assisted performance of 66.6
compared to 51.3 for Local Q-Thresholding. Compared
to the best assisted performance value of 87, this reduces
regret by 43%.

4.3 LUNAR LANDER DOMAIN

Next, we present results for a more complex task: the Lu-
nar Lander Atari game (Figure 3), which is a simulated
flight control task that was tested by Reddy, Dragan, and
Levine (2018). The goal of this task is to execute a series
of actions (NOOP, fire left engine, fire main engine, fire
right engine) that results in landing successfully at the
goal (which results in +100 reward). Crashing or flying
out of bounds results in —100, firing the engine results in
small negative reward, and moving closer to the goal re-
sults in a positive shaping reward. The maximum episode
length is 1000 timesteps. We again use the OpenAl Gym
domain implementation. To better simulate a single task
setting, we modified the Lunar Lander game to use the
same initial random seed each episode.

To obtain optimal Q* values, we trained an agent using
Double DQN (van Hasselt, Guez, and Silver 2016) with
the same architecture as in (Reddy, Dragan, and Levine
2018) (using a Multi-Layer Perceptron with 2 hidden
layers of 64 units each to approximate the Q function).
We followed the same hyperparameter settings, includ-
ing setting v = 0.99 for training, which we also use
for computing G(s;) in Stochastic Q Bumpers. To give
the agent a wider range of experience, we also initialized
each episode of training with 50 random actions.

For simulated human learners, we used the same DQN-
based learner architecture that was used to obtain optimal
Q@* values. Like in Cliff Walking, we decayed the value
of € for epsilon-greedy exploration over the first 10% of
the episodes from 1 to 0.02, where it remains for the last
90% of episodes (following (Reddy, Dragan, and Levine
2018)). We then ran Stochastic Q Bumpers and Local Q-
Thresholding using the same learned Q values, sweeping
« parameter settings in [0, 1] in 0.1 increments. For each
value of o, we ran 10 trials over 2000 episodes, using dif-
ferent random seeds.> Since this task requires high preci-
sion to accurately land, we found that AgentAction with
SECOND = true does not provide a sufficient level of
performance support; we present results with this flag set
to false.

Figure 4 shows our results for Lunar Lander. Again,
we plot macro averages with 95% confidence intervals
based on standard error of the mean. Overall, Stochas-
tic Q Bumpers results are above and to the right of Lo-
cal Q-Thresholding, indicating improved learning sup-
port (given a certain level of performance support) and
performance support (given a certain level of learning
support). Notably, Stochastic Q Bumpers results in lev-
els of learning support close to the best observed learning
(no assistance, Local Q-Thresholding with @ = 1) for
large increases in performance. These large gains in as-
sisted performance with high levels of learning can also
be seen in high unassisted success rates (Figure 4b) and
low unassisted crash rates (Figure 4c). We were unable
to find any settings of a for Local Q-Thresholding (other
than completely unassisted o = 1) that had learning sup-
port values close to these values. In an attempt to locate
points with higher learning support close to the unas-
sisted human, we drilled down on 9 additional evenly-
spaced values of o between 0.9 and 1 and another 9 be-
tween 0.99 and 1. However, these efforts failed to pro-
duce any major gains; the resulting values (with low lev-
els of learning support) are shown in the cluster of unla-
beled Local Q-Thresholding points.

SWe selected 2000 episodes as the minimum number of
episodes that enabled an unassisted learner to “solve” the task
(obtain average reward above 200).
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Figure 4: On the Lunar Lander task, Stochastic Q Bumpers significantly outperforms Local Q-Thresholding, both in
terms of performance support given a learning objective (fixing a point on the y-axis, Stochastic Q Bumpers is higher
on the x-axis), and in terms of learning support given a performance objective (fixing a point on the x-axis, Stochastic
Q Bumpers is higher on the y-axis). Measures of learning (unassisted) vs. performance (assisted) are shown in terms
of (a) episode rewards, (b) success rate (landing at the goal), and (c) crash rate (crashing the lander). (c) shows inverse
learning and performance values. Values of o« are annotated for both methods (the dense unlabeled cluster at the
bottom left are 18 values of o € (0.9, 1.0) for Local Q-Thresholding that fail to improve learning).

S DISCUSSION

Interestingly, only Stochastic Q Bumpers appears capa-
ble of increasing performance support without sacrificing
large amounts of learning. Across both domains, even
small amounts of performance support based on Local
Q-Thresholding appear to have very negative effects on
learning (as seen by the large gap learning gap between
the unassisted agent and Local Q-Thresholding with val-
ues of a < 1). In the Cliff Walking domain, there is sim-
ply no way to set a for Local Q-Thresholding to close
this gap and achieve higher levels of learning (we plotted
all possible settings). In the Lunar Lander domain, too,
extensive drilling down on « values close to 1 also does
not result in large learning gains.

As the amount of performance support approaches the
maximum level (o« = 0), both methods show poor learn-
ing performance, due to the large amount of misinforma-
tion provided to the learner. In the Lunar Lander domain,
there is a large phase transition in the amount of support
required to successfully land the lander (avoid the —100
penalty) and further to land the lander at the goal (and
receive the +100 reward). Achieving each of these ob-
jectives is difficult and requires careful maneuvering, and
failing both of them results in a net loss of 200 reward.
Thus, it is not surprising that given the high amount of
support required from the agent, little learning is possi-
ble in the right half of Figures 4a and 4b (and left half of
Figure 4c).

Stochastic Q Bumpers successfully improves perfor-
mance without sacrificing large amounts of learning in
spite of notable challenges we faced in obtaining ac-
curate value estimates for Lunar Lander. Stochastic Q

Bumpers in particular relies on accurate Q value esti-
mates in order to compute accurate estimated returns G
and avoid outcomes that fall below the lower value target
determined by v,,,;,, and a. Unfortunately, we observed
that Q values sometimes severely overestimated returns.
For example, one timestep before crashing and receiv-
ing —100 reward, the Q values are positive. Even with
using Double DQN, which is intended to produce less
biased value estimates, and trying several other ways of
gathering more training samples from the final policy to
improve estimates, we were unable to produce more ac-
curate Q values. Stochastic Q Bumpers may benefit fur-
ther from advances in reinforcement learning that pro-
duce more accurate Q values, but it is promising to us
that Stochastic Q Bumpers achieves major benefits de-
spite having inaccurate Q values.

In our experiments, we assumed that the assistant (agent)
is able to obtain a good policy for the task. In many cases,
this will be possible, as agents can learn to perform many
tasks, e.g. via simulation or imitation learning even in
zero-shot settings (Liu et al. 2018). In other cases, agents
may lack important information possessed only by hu-
mans, such as the location of a goal (Reddy, Dragan, and
Levine 2018). Even in these situations, we are encour-
aged by the results of Reddy, Dragan, and Levine (2018),
which suggest that training Q values with a state space
that is augmented with the human action a!, can enable
the agent learn to decode information from the human’s
action and take good actions. We are optimistic that these
augmented () values will enable Stochastic Q Bumpers
to achieve high levels of performance and learning sup-
port even on tasks with goals unknown to the agent.



6 RELATED WORK

In contrast to this work, current approaches to assist-
ing humans seek exclusively to optimize either current
performance (“performance support™) or future perfor-
mance (“learning support”).

In terms of performance support, prior work has sug-
gested methods that take actions close to a human’s,
while also ensuring safe, high-reward outcomes (Broad,
Murphey, and Argall 2017; Reddy, Dragan, and Levine
2018; Schwarting et al. 2017). Fern et al. (2014) model
the problem of selecting optimal assistant actions as a
partially observable Markov decision process (POMDP),
where the human’s goal is unknown. Reddy, Dragan,
and Levine (2018) provide a particularly general formu-
lation, which does not make assumptions about knowl-
edge of dynamics or the goal, and which uses model-free
methods that do not rely on optimal control. While their
method improved task success rates, we demonstrate in
this paper that it can be sub-optimal for also supporting
human learning. Crucially, this body of work assumes
that the human’s policy is fixed and therefore does not
seek to provide learning support. Other work considers
human adaptation to the assistant (Nikolaidis et al. 2017),
but not learning of the underlying task (as in this work).

There is a large body of work on Al and machine learn-
ing methods that solely focus on helping humans learn,
including intelligent tutoring systems and machine teach-
ing methods (Brown and Niekum 2019; Cakmak and
Lopes 2012). We are unaware of any prior Al research
that considers the objective of learning support in addi-
tion to performance support.

7 CONCLUSION AND FUTURE WORK

In this paper, we have argued for the design of as-
sistive agents that provide Learning-Compatible Perfor-
mance Support (LCPS), and presented the Stochastic Q
Bumpers algorithm, which significantly improves per-
formance without sacrificing much learning (and vice
versa). We demonstrated the effectiveness of the al-
gorithm over a state-of-the-art shared autonomy algo-
rithm (Reddy, Dragan, and Levine 2018) for a natural
class of learners (those that learn from their own ac-
tions (Ho, Littman, and Austerweil 2017)), across two
domains, including a complex flight control domain. We
provided detailed analysis demonstrating limitations of
Local Q-Thresholding in the presence of large negative
rewards; reductions in regret by Stochastic Q Bumpers in
terms of learning and performance of 51% and 43%, re-
spectively, in the Cliff Walking domain; and major ben-
efits to learning and task success rates (Figure 4) in the
Lunar Lander domain.

Much work remains to be done in this nascent area.
While we conducted our experiments with simulated
humans, we are excited to conduct experiments assist-
ing real people next. Our current method is agnos-
tic to the particular human learning model, but we be-
lieve that given accurate models of human learning and
task deskilling, one can design algorithms to exploit that
knowledge for further gains. We also believe that in-
corporating other teaching strategies (e.g., undoing (Ho,
Littman, and Austerweil 2017)) can make further learn-
ing improvement possible. Further, we encourage re-
searchers to investigate which of the several possible
shared control learning interpretations (including those
outlined in (Ho, Littman, and Austerweil 2017)) are most
accurate for humans on a variety of tasks. These findings
will help to inform the design of future assistants that
provide Learning-Compatible Performance Support.
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