
A PROOFS

A.1 Deterministic Setting

The following proof follows nearly the same proof as the
main result in Argyros (1999) with a few minor modifi-
cations in the conclusion; we provide it here for posterity.

Proof [Proof Proposition 3] Since ‖I−ΓDω(x)‖ < 1 for
each x ∈ Br0(x∗), as stated in the proposition statement,
there exists 0 < r′ < r′′ < 1 such that ‖I−ΓDω(x)‖ ≤
r′ < r′′ < 1 for all x ∈ Br(x∗). Since

lim
x→x∗

‖R(x− x∗)‖/‖x− x∗‖ = 0,

for 0 < 1− r′′ < 1, there exists r̃ > 0 such that

‖R(x− x∗)‖ ≤ (1− r′′)‖x− x∗‖, ∀ x ∈ Br̃(x∗).

As in the proposition statement, let r be the largest, finite
such r̃. Note that for arbitrary c > 0, there exists r̃ > 0
such that the bound on ‖R(x − x∗)‖ holds; hence, we
choose c = 1 − r′′ and find the largest such r̃ for which
the bound holds. Combining the above bounds with the
definition of g, we have that

‖g(x)− g(x∗)‖ ≤ (1− δ)‖x− x∗‖, ∀ x ∈ Br∗(x∗)

where δ = r′′ − r′ and r∗ = min{r0, r}. Hence, apply-
ing the result iteratively, we have that

‖xt − x∗‖ ≤ (1− δ)t‖x0 − x∗‖, ∀ x0 ∈ Br∗(x∗).

Note that 0 < 1 − δ < 1. Using the approximation
1− δ < exp(−δ), we have that

‖xT − x∗‖ ≤ exp(−Tδ)‖x0 − x∗‖

so that xt ∈ Bε(x∗) for all t ≥ T = dδ−1 log(r∗/ε)e.

As noted in the remark, a similar result holds under the
relaxed assumption that ρ(I − ΓDω(x)) < 1 for all x ∈
Br0(x∗). To see this, we first note that ρ(I−ΓDω(x)) <
1 implies there exists c > 0 such that ρ(I − ΓDω(x)) ≤
c < 1. Hence, given any ε > 0, there is a norm on Rd
and a c > 0 such that ‖I − ΓDω‖ ≤ c + ε < 1 on
Br0(x∗) (Ortega and Rheinboldt, 1970, 2.2.8). Then, we
can apply the same argument as above using r′ = c+ ε.

A.2 Stochastic Setting

A key tool used in the finite-time two-timescale analysis
is the nonlinear variation of constants formula of Alek-
seev Alekseev (1961), Borkar and Pattathil (2018).

Theorem 1. Consider a differential equation

u̇(t) = f(t, u(t)), t ≥ 0,

and its perturbation

ṗ(t) = f(t, p(t)) + g(t, p(t)), t ≥ 0

where f, g : R × Rd → Rd, f ∈ C1, and g ∈
C. Let u(t, t0, p0) and p(t, t0, p0) denote the solutions
of the above nonlinear systems for t ≥ t0 satisfying
u(t0, t0, p0) = p(t0, t0, p0) = p0, respectively. Then,

p(t, t0, p0) = u(t, t0, p0) +

∫ t

t0

Φ(t, s, p(s, t0, p0))

· g(s, p(s, t0, p0)) ds, t ≥ t0

where Φ(t, s, u0), for u0 ∈ Rd, is the fundamental ma-
trix of the linear system

v̇(t) =
∂f

∂u
(t, u(t, s, u0))v(t), t ≥ s (1)

with Φ(s, s, u0) = Id, the d–dimensional identity matrix.

Consider a locally asymptotically stable differential
Nash equilibrium x∗ = (λ(x∗2), x∗2) ∈ X and let
Br0(x∗) be an r0 > 0 radius ball around x∗ con-
tained in the region of attraction. Stability implies that
the Jacobian JS(λ(x∗2), x∗2) is positive definite and by
the converse Lyapunov theorem (Sastry, 1999, Chap. 5)
there exists local Lyapunov functions for the dynam-
ics ẋ2(t) = −τD2f2(λ(x2(t)), x2(t)) and for the dy-
namics ẋ1(t) = −D1f1(x1(t), x2), for each fixed
x2. In particular, there exists a local Lyapunov func-
tion V ∈ C1(Rd1) with lim‖x2‖↑∞ V (x2) = ∞, and
〈∇V (x2), D2f2(λ(x2), x2)〉 < 0 for x2 6= x∗2. For
r > 0, let V r = {x ∈ dom(V ) : V (x) ≤ r}. Then,
there is also r > r0 > 0 and ε0 > 0 such that for ε < ε0,
{x2 ∈ Rd2 | ‖x2 − x∗2‖ ≤ ε} ⊆ V r0 ⊂ Nε0(V r0) ⊆
V r ⊂ dom(V ) where Nε0(V r0) = {x ∈ Rd2 | ∃x′ ∈
V r0 s.t.‖x′ − x‖ ≤ ε0}. An analogously defined Ṽ ex-
ists for the dynamics ẋ1 for each fixed x2.

For now, fix n0 sufficiently large; we specify this a bit
further down. Define the event En = {x̄1(t) ∈ V r ∀t ∈
[t̃n0

, t̃n]} where x̄1(t) = x1,k + t−t̃k
γ1,k

(x1,k+1 − x1,k)

are linear interpolates defined for t ∈ (t̃k, t̃k+1) with
t̃k+1 = t̃k + γ1,k and t̃0 = 0. The basic idea of the proof
is to leverage Alekseev’s formula (Theorem 1) to bound
the difference between the linearly interpolated trajecto-
ries (i.e., asymptotic psuedo-trajectories) and the flow of
the corresponding limiting differential equation on each
continuous time interval between each of the successive
iterates k and k + 1 by a number that decays asymptot-
ically. Then, for large enough n, a union bound is used



over all the remaining time intervals to construct a con-
centration bound. This is done first for fast player (i.e.
player 1), to show that x1,k tracks λ(x2,k), and then for
the slow player (i.e. player 2).

Following Borkar and Pattathil (2018), we can express
the linear interpolates for any n ≥ n0 as x̄1(t̃n+1) =
x̄1(t̃n0

)−
∑n
k=n0

γ1,k(D1f1(xk) + w1,k+1) where

γ1,kD1f1(xk) =
∫ t̃k+1

t̃k
D1f1(x̄1(t̃k), x2,k)

and similarly for the w1,k+1 term. Adding and subtract-

ing
∫ t̃n+1

t̃n0

D1f1(x̄1(s), x2(s), ), Alekseev’s formula can
be applied to get

x̄1(t) = x1(t) + Φ1(t, s, x̄1(t̃n0
), x2(t̃n0

))(x̄1(t̃n0
)

− x1(t̃n0
)) +

∫ t
t̃n0

Φ2(t, s, x̄1(s), x2(s))ζ1(s) ds

where x2(t) ≡ x2 is constant (since ẋ2 = 0),
x1(t) = λ(x2), ζ1(s) = −D1f1(x̄1(t̃k), x2(t̃k)) +
D1f1(x̄1(s), x2(s))+w1,k+1, and where for t ≥ s, Φ1(·)
satisfies linear system

Φ̇1(t, s, x0) = J1(x1(t), x2(t))Φ1(t, s, x0),

with initial data Φ1(t, s, x0) = I and x0 = (x1,0, x2,0)
and where J1 the Jacobian of −D1f1(·, x2).

Given that x∗ = (λ(x∗2), x∗2) is a stable differential
Nash equilibrium, J1(x∗) is positive definite. Hence,
as in (Thoppe and Borkar, 2018, Lem. 5.3), we can
find M , κ1 > 0 such that for t ≥ s, x1,0 ∈ V r,
‖Φ1(t, s, x1,0, x2,0)‖ ≤ Me−κ1(t−s); this result fol-
lows from standard results on stability of linear systems
(see, e.g., Callier and Desoer (1991, §7.2, Thm. 33))
along with a bound on

∫ t
s
‖D2

1f1(x1, x2(τ, s, x̃0)) −
D2

1f1(x∗)‖dτ for x̃0 ∈ V r (see, e.g., (Thoppe and
Borkar, 2018, Lem 5.2)).

Consider zk = λ(x2,k)—i.e., where D1f1(x1,k, x2,k) =
0. Then, using a Taylor expansion of the implicitly de-
fined λ, we get

zk+1 = zk +Dλ(x2,k)(x2,k+1 − x2,k) + δk+1 (2)

where ‖δk+1‖ ≤ Lr‖x2,k+1 − x2,k‖2 is the error from
the remainder terms. Plugging in x2,k+1,

zk+1 = zk + γ1,k(−D1f1(zk, x2,k) + τkλ(x2,k)

· (w2,k+1 −D2f2(x1,k, x2,k)) + γ−11,kδk+1)

The terms after −D1f1 are o(1), and hence asymptoti-
cally negligible, so that this z sequence tracks dynamics
as x1,k. We show that with high probability, they asymp-
totically contract to one another.

Now, let us bound the normed difference between x1,k
and zk.

Define constantHn0
= (‖x̄1(t̃n0

−x1(t̃n0
)‖+‖z̄(t̃n0

)−
x1(t̃n0)‖) and

S1,n =
∑n−1
k=n0

( ∫ t̃k+1

t̃k
Φ1(t̃n, s, x̄1(t̃k), x2(t̃k))ds)

· w2,k+1.

Let τk = γ2,k/γ1,k.
Lemma 1. For any n ≥ n0, there existsK > 0 such that

‖x1,n − zn‖ ≤ K
(
‖S1,n‖+ e−κ1(t̃n−t̃n0

)Hn0

+ supn0≤k≤n−1 γ1,k + supn0≤k≤n−1 γ1,k‖w1,k+1‖2

+ supn0≤k≤n−1 τk + supn0≤k≤n−1 τk‖w2,k+1‖2
)

conditioned on En.

In order to construct a high-probability bound for x2,k,
we need a similar bound as in Lemma 1 can be con-
structed for x2,k.

Define the event Ên = {x̄2(t) ∈ V r ∀t ∈ [t̂n0
, t̂n]}

where x̄2(t) = x2,k + t−t̂k
γ2,k

(x2,k+1 − x2,k) is the linear

interpolated points between the samples {x2,k}, t̂k+1 =
t̂k+γ1,k, and t̂0 = 0. Then as above, Alekseev’s formula
can again be applied to get

x̄2(t) = x2(t, t̂n0 , x2(t̂n0)) + Φ2(t, t̂n0 , x̄2(t̂n0))

· (x̄2(t̂n0
)− x2(t̂n0

)) +
∫ t
t̂n0

Φ2(t, s, x̄2(s))ζ1(s) ds

where x2(t) ≡ x∗2,

ζ1(s) = D2f2(λ(x2,k), x2,k)−D2f2(λ(x̄2(s)), x̄2(s))

+D2f2(xk)−D2f2(λ(x2,k), x2,k) + w2,k+1,

and Φ2 is the solution to a linear system with dynam-
ics J2(λ(x∗2), x∗2), the Jacobian of −D2f2(λ(·), ·), and
with initial data Φ2(s, s, x2,0) = I . This linear system,
as above, has bound ‖Φ2(t, s, x2,0)‖ ≤ M2e

κ2(t−1) for
some M2, κ2 > 0. Define

S2,n =
∑n−1
k=n0

∫ t̂k+1

t̂k
Φ2(t̂n, s, x̄2(t̂k))ds

· w2,k+1.

Lemma 2. For any n ≥ n0, there exists K̄ > 0 such that

‖x̄2(t̂n)− x2(t̂n)‖ ≤ K̄
(
‖S2,n‖+ supn0≤k≤n−1 ‖S1,k‖

+ supn0≤k≤n−1 γ1,k + supn0≤k≤n−1 γ1,k‖w1,k+1‖2

+ supn0≤k≤n−1 τk + supn0≤k≤n−1 τk‖w2,k+1‖2

+ eκ2(t̂n−t̂n0 )‖x̄2(t̂n0
)− x2(t̂n0

)‖
+ supn0≤k≤n−1 τkHn0

)
conditioned on Ẽn.

Using this lemma, we can get the desired guarantees on
x1,k.



A.3 Uniform Learning Rates

Before concluding, we specialize to the case in which
agents have the same learning rate sequence γi,k = γk
for each i ∈ I.

Theorem 2. Suppose that x∗ is a stable differential Nash
equilibrium of the game (f1, . . . , fn). and that Assump-
tion 2 holds (excluding A2b.iii). For each n, let n0 ≥
0 and ζn = maxn0≤k≤n−1

(
exp(−λ

∑n−1
`=k+1 γ`

)
γk.

Given any ε > 0 such that Bε(x∗) ⊂ Br(x
∗) ⊂ V ,

there exists constants C1, C2 > 0 and functions h1(ε) =
O(log(1/ε)) and h2(ε) = O(1/ε) so that whenever T ≥
h1(ε) and n0 ≥ N , where N is such that 1/γn ≥ h2(ε)
for all n ≥ N , the samples generated by the gradient-
based learning rule satisfy

Pr (x̄(t) ∈ Bε(x∗) ∀t ≥ tn0
+ T + 1| x̄(tn0

) ∈ Br(x∗))

≥ 1−
∑∞
n=n0

(
C1 exp(−C2ε

1/2/γ
1/2
n )

+ C1 exp(−C2 min{ε, ε2}/ζn)
)

where the constants depend only on parameters λ, r, τL
and the dimension d =

∑
i di. Then stochastic gradient-

based learning in games obtains an ε–stable differential
Nash x∗ in finite time with high probability.

The above theorem implies that xk ∈ Bε(x∗) for all k ≥
n0+dlog(4K̃/ε)λ−1e+1 with high probability for some
constant K̃ that depends only on λ, r, τL, and d.

Proof Since x∗ is a stable differential Nash equi-
librium, J(x∗) is positive definite and D2

i fi(x
∗) is

positive definite for each i ∈ I. Thus x∗ is a locally
asymptotically stable hyperbolic equilibrium point of
ẋ = −ω(x). Hence, the assumptions of Theorem
1.1 Thoppe and Borkar (2018) are satisfied so that we
can invoke the result which gives us the high probability
bound for stochastic gradient-based learning in games.

B ADDITIONAL EXAMPLES

In this section, we provide additional numerical exam-
ples.

B.1 Matching pennies

This example is a classic bimatrix game—matching
pennies—where agents have zero-sum costs associated
with the matrices (A,B) below. We parameterize agents
with a “soft” arg max policy where they play smoothed
best-response. This game has been well studied in the
game theory literature and we use this example illustrate
the warping of agent’s vector field under non-uniform
learning rates.
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Figure 1: Gradient dynamics of the matching pennies game
where agents learning have different learning rates. The vec-
tor field of the gradient dynamics are stretched along the faster
agent’s coordinate.

Consider the zero-sum bimatrix game with

A =

[
1 −1
−1 1

]
, B =

[
−1 1
1 −1

]
where each agent’s costs are f1(x, y) = π(y)TAπ(x)
and f2(x, y) = π(x)TBπ(y), and soft max policy as

π(z) =

[
e10z

e10z + e10(1−z)
,

e10(1−z)

e10z + e10(1−z)

]
.

The mixed Nash equilibrium for this game is (x∗, y∗) =
(0.5, 0.5), but the Jacobian of the gradient dynamics at
this fixed point is

J(x∗, y∗) =

[
0 100
−100 0

]
and has purely imaginary eigenvalues ±100i, therefore
admits a limit cycle. Regardless, we can visualize the
effects of non-uniform learning rates to the gradient dy-
namics in Figure 1. We notice that the gradient flow
stretches along the axes of the faster agent (the agent with
a larger learning rate). However, the fixed point of these
dynamics does not change.
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