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7.1 Proof of Inequalities in Section 3.2

We first prove the inequality connecting DJS between
the state-visitation distribution and belief-visitation dis-
tribution of the agent and the expert:

DJS [ρπ(s) || ρE(s)] ≤ DJS [ρπ(b) || ρE(b)]

Proof. The proof is a simple application of the data-
processing inequality for f -divergences (Ali & Silvey,
1966), of which DJS is a type.

We denote the filtering posterior distribution over states,
given the belief, by p(s|b). Note that p(s|b) is char-
acterized by the environment, and does not depend on
the policy (agent or expert). The posterior over belief,
given the state, however, is policy-dependent and ob-
tained using Bayes rule as: pπ(b|s) = p(s|b)ρπ(b)

ρπ(s)
. Also,

ρπ(s, b) = ρπ(s)pπ(b|s) = ρπ(b)p(s|b). Analogously
definitions exist for expert E.

We write DJS [ρπ(b) || ρE(b)] in terms of the template
used for f -divergences. Let f : (0,∞) 7→ R be the
following convex function with the property f(1) = 0:
f(u) = −(u+ 1) log 1+u

2 + u log u. Then,
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Similarity, we can prove the inequality connecting DJS

between belief-visitation distribution and belief-action-
visitation distribution of the agent and the expert:

DJS [ρπ(b) || ρE(b)] ≤ DJS [ρπ(b, a) || ρE(b, a)]

Proof. Replace s 7→ b′ and b 7→ (b, a) in the previous
proof. The only required condition for that result to hold
is the non-dependence of the distribution p(s|b) on the
policy. Therefore, if it holds that p(b′|b, a) is independent
of the policy, then we have,

DJS [ρπ(b
′) || ρE(b′)] ≤ DJS [ρπ(b, a) || ρE(b, a)]

The independence holds under the trivial case of a de-
terministic mapping b′=b. This gives us the desired in-
equality.

7.2 MDP and POMDP Sensors

Figure 5: Comparison of sensor information available to the
agent in the MDP (original) and the POMDP (modified) set-
tings for Hopper-v2 from the Gym MuJoCo suite.

Description of the sensor measurements given to the
agent in the MDP and POMDP environments is pro-
vided in Table 3. As an example, for the Hopper agent
composed of 4 links connected via actuated joints (Fig-
ure 5), the MDP space is 11-dimensional, which includes
6 velocity sensors and 5 position sensors, whereas the
POMDP space is 5-dimensional, comprising of 5 po-
sition sensors. Amongst sensor categories, velocity in-
cludes translation and angular velocities of the torso, and
also the velocities for all the joints; position includes
torso position and orientation (quaternion), and the angle
of the joints. The sensors in the MDP column marked in
bold are removed in the POMDP setting.



Figure 3: Mean episode-returns vs. timesteps of environment interaction. BMIL is our proposed architecture (Figure 2); BMIL
w/o Reg excludes the various regularization terms (Section 3.4) from this design; Task-Agnostic learns the belief module separately
from the policy using a task-agnostic loss (LAR, Section 3.3). We plot the average and standard-deviation over 5 random seeds.

Figure 4: Mean episode-returns vs. timesteps of environment interaction. BMIL is our proposed architecture (Figure 2); GAIL-RF
uses a recurrent policy and a feed-forward discriminator, while in GAIL-RR, both the policy and the discriminator are recurrent.
We plot the average and standard-deviation over 5 random seeds.

Environment MDP sensors (s ∈ S) POMDP sensors (o ∈ O)
Hopper (|S|=11) velocity(6) + position(5) (|O|=5) position(5)

Half-Cheetah (|S|=17) velocity(9) + position(8) (|O|=8) position(8)
Walker2d (|S|=17) velocity(9) + position(8) (|O|=8) position(8)

Inv.DoublePend. (|S|=11) velocity(3) + position(5)
+ actuator forces(3)

(|O|=8) position(5) +
actuator forces(3)

Ant (|S|=111) velocity(14) +
position(13) + external forces(84)

(|O|=97) position(13) +
external forces(84)

Humanoid (|S|=376) velocity(23) +
center-of-mass based velocity(84)

+ position(22) + center-of-mass
based inertia(140) + actuator

forces(23) + external forces(84)

(|O|=269) position(22) +
center-of-mass based

inertia(140) + actuator
forces(23) + external

forces(84)

Table 3: MDP and POMDP sensors (MuJoCo). The sensors in
the MDP column marked in bold are removed in the POMDP
setting.

7.3 Hyperparameters

Hyper-parameter Value
Parameters for Convolution

networks (encoding past & future
action-sequences)

Layers=2, Stride=1,
Padding=1, Kernel size=3,

Num filters = {5,5}
Belief Regularization Coefficients λ1=λ2=λ3=0.2
Rollout length (c) in Algorithm 1 5

Size of expert demonstrationsME 50 (trajectories)
Size of replay bufferR 1000 (trajectories)

Optimizer, Learning Rate RMSProp, 3e-4 (linear-decay)
γ, λ (GAE) 0.99, 0.95

7.4 Ablation Plots

Learning curves for our ablation on the components of
the belief regularization loss, and the effect of multi-step

predictions are presented in Figure 6 and Figure 7, re-
spectively. Please see Section 5.3 for the analysis.

Figure 6: Ablation on components of belief regularization.
Forward-, Inverse-, Action-only correspond to using Lf , Li,
La, respectively, in isolation, without the other two.

7.5 Predictions in Encoding-space

In our approach, we regularize with single- and multi-
step predictions in the space of raw observations. For
many high-dimensional, complex spaces (e.g. visual in-
puts), it may be more efficient to operate in a lower-
dimensional, compressed encoding-space, either pre-
trained, or learnt online (Cuccu et al., 2019).

The encoder in our architecture (yellow box in Figure 2)
pre-processes the raw observations before passing them
to the RNN for temporal integration. We now evalu-



Figure 7: Ablation on hyperparameter k in the regularization
terms. Multi-step design builds over single-step by adding pre-
dictions at different temporal offsets, k=5 and k=10.

ate BMIL with single- and multi-step predictions in the
space of this encoder output. For instance, the forward
regularization loss function is:

Lf (φ) = ER||Enc(ot+k)− g(bφt , at:t+k−1)||22

We do not pass the gradient through the target value
Enc(ot+k). The encoder is trained online as part of the
belief module. Table 4 indicates that, for the tasks con-
sidered, BMIL performance is fairly similar when pre-
dicting in observation-space vs. encoding-space.

BMIL: Predictions in
observation-space

BMIL: Predictions in
encoding-space

Invd.DoublePend. 9104 ± 134 8883 ± 448
Hopper 2665 ± 70 2700 ± 116

Ant 1832 ± 92 1784 ± 44
Walker 4038 ± 259 4043 ± 113

Humanoid 4382 ± 117 4322 ± 263
Half-cheetah 5860 ± 171 5912 ± 128

Table 4: Mean and std. of episode-returns, averaged over 5
random seeds, after 10M timesteps in POMDP MuJoCo.

7.6 Experiments in environment variants that
accentuate partial observability

To test robustness of BMIL, we evaluate it on two new
POMDP environment variants designed to make infer-
ring the true state from given sensors more challenging.
These new environments are:

• Inv.DoublePend. from velocities only - The par-
tially observable Inverted-Double-Pendulum used
in Section 5 removes the velocity sensors to achieve
partial observability, and provides as sensors only
the cart-position and sin/cos of link angles. In this
new environment, we remove the previously shown
sensors (cart-position and link angles), and instead
provide only the velocity sensors (which were re-
moved in our original environment). Note that the
motivation is to exacerbate partial observability by
restricting sensors such that inferring the true state

is more challenging (i.e. it is easier to infer velocity
from subsequent positions than to integrate position
over time from only velocity information). Indeed,
our experiments indicate this is a harder imitation
learning scenario.

• Walker from velocities only - In the same spirit as
above. We remove all position sensors and instead
provide only the velocity sensors to the agent.

We compare BMIL to GAIL-RF (the strongest baseline).

GAIL-RF BMIL
Inv.DoublePend.
(velocity only) 4988 6578

Walker
(velocity only) 1539 4199

Table 5: Mean episode-returns, averaged over 5 runs with ran-
dom seeds, after 10M timesteps.


