
1 SUPPLEMENTAL MATERIAL

1.1 Proofs

Theorem 1. Under C1, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .

Proof. For a given conditioning object P ′ with k child
objects, p(x1, y1, x2, y2, . . . , xk, yk)

=

∫
z

k∏
i=1

px,y|z(xi, yi|z)pz(z) dz

=

∫
z

k∏
i=1

px|z(xi|z)py|z(yi|z)pz(z) dz

=

∫
z

(
k∏
i=1

px|z(xi|z)

)(
k∏
i=1

py|z(yi|z)

)
pz(z) dz

=

∫
z

(
k∏
i=1

px|z(xi|z)

)(
k∏
i=1

py|z(yπy(i)|z)

)
p(z) dz

=

∫
z

(
k∏
i=1

px|z(xπx(i)|z)

)(
k∏
i=1

py|z(yπy(i)|z)

)
p(z) dz

In which the last statement proves exchangeability. That
is, no xi provides special information about the value of
the corresponding yi, thus values of X are exchangeable
and values of Y are exchangeable. However, any value
xi provides information about z which, in turn, provides
information about yj , thusX and Y are not conditionally
independent given the object P . In contrast,X and Y are
conditionally independent given the variable Z.

Next, consider a version of the generative process in
which Z is a mediator (abbreviated as C2 and illustrated
in Figure ??b). We prove that object conditioning on P
produces exchangeability among values ofX and among
values of Y within the set of child objects of each in-
stance of P .

Theorem 2. Under C2, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .

Proof. For a given conditioning object P ′ with k child
objects, the k values ofX are i.i.d. by definition, and thus
exchangeable. To prove that values of Y are exchange-
able, we can proceed as in Theorem 1. This time, we
assume that the xi are i.i.d. and we have a permutation

πy(·). Then, p(x1, y1, x2, y2, . . . , xk, yk)

=

(
k∏
i=1

px(xi)

)∫
z

k∏
i=1

py|z(yi|z)pz|~x(z|x1, . . . , xk) dz

=

(
k∏
i=1

px(xi)

)∫
z

k∏
i=1

py|z(yπy(i)|z)pz|~x(z|x1, . . . , xk) dz

Which again shows the exchangeability property. Again,
any value xi provides information about z which, in turn,
provides information about yj , thusX and Y are not con-
ditionally independent given the object P . In contrast,X
and Y are conditionally independent given the variable
Z.

Finally, we consider a version of the generative process
in whichZ is a collider (abbreviated as C3 and illustrated
in Figure ??c). Once again, we prove that object condi-
tioning on P produces exchangeability among values of
X and among values of Y within the set of child objects
of each instance of P .

Theorem 3. Under C3, object conditioning on P pro-
duces exchangeability among values of X and among
values of Y .

Proof. Given the generative model,
p(x1, y1, x2, y2, . . . , xk, yk)

=

(
k∏
i=1

px,y(xi, yi)

)

=

(
k∏
i=1

px(xi)py(yi)

)

=

(
k∏
i=1

px(xi)

)(
k∏
i=1

py(yi)

)

=

(
k∏
i=1

px(xπx(i))

)(
k∏
i=1

py(yπy(i))

)

Which again shows exchangeability and is a direct con-
sequence of both X and Y being i.i.d. Here, X and Y
are marginally independent and remain independent even
when conditioned on the object P . In contrast, X and
Y are not conditionally independent given the variable
Z.

1.2 Relative prevalence of literature on different
methods

This analysis used Google Scholar to estimate the ap-
proximate number of articles corresponding to specific
boolean queries. The queries and number of results are
shown below.



Table 1: Number of returned query results in Google
Scholar for different causal modeling methods

Number
Query of results
”within subjects design” 40,300
”multilevel model” AND ”regression” 33,500
”interrupted time series” 27,100
”difference-in-differences” 32,400
(DAG OR ”directed graphical model”) 54,700
AND (causal OR causality)

1.3 Grounding example

For readers unfamiliar with groundings of plate models,
Figure 1 provides three examples of how a plate model
is “grounded” (produces instances corresponding to its
specified structure).

1.4 Pseudo-code for generative processes

Below are pseudo-code versions of example generative
processes to further clarify the cases examined in section
??, including a case in which X and Y are causally un-
related (C4).

#C1
def generate_subgraphs_with_confounder(N):

subgraphs = make_vector(N)
for i in range(N):

k = uniform(5,15)
s = make_child(k)
s.a.z = poisson(θz)
for j in range(k):

s.b[j].x = poisson(s.a.z)
s.b[j].y = poisson(s.a.z)

subgraphs[i] = s
return subgraphs

#C2
def generate_subgraphs_with_mediator(N):

subgraphs = make_vector(N)
for i in range(N):

k = uniform(5,15)
s = make_struct(k)
for j in range(k):

s.b[j].x = poisson(θx)
s.a.z = poisson(2 * sum(s.b.x))
for j in range(k):

s.b[j].y = poisson(s.a.z)
subgraphs[i] = s

return subgraphs

#C3
def generate_subgraphs_with_collider(N):

subgraphs = make_vector(N)
for i in range(N):

k = uniform(5,15)
s = make_struct(k)
for j in range(k):

s.b[j].x = poisson(θx)
s.b[j].y = poisson(θy)

s.a.z = poisson(sum(s.b.x * s.b.y))
subgraphs[i] = s

return subgraphs

#C4
def generate_subgraphs_with_independence(N):

subgraphs = make_vector(N)
for i in range(N):

k = uniform(5,15)
s = make_struct(k)
for j in range(k):

s.b[j].x = poisson(θx)
s.b[j].y = poisson(θy)

subgraphs[i] = s
return subgraphs



Figure 1: Example groundings of three different plate models


