Appendix

A Empirical Estimates

Lemma 1. As |D| — oo, if Wi (ps, ps, ) < oo for all a, the empirical barycenter satisfies im )", pa Wi (D3, Ps,) —

> PaW1(P5,ps,, ) almost surely’.
Proof. By triangle inequality:

> BaWi(bs:ps.) < Y DaWi(Bs: Ps,) + BaWi (DS, Bs.) -

> paWi(ps.Ps.) <D paWi(ps:0s.) + PaWi(Ps,: Ps,) -
Since pg and pg are the weighted barycenters of {pg, } and {pg,_ } respectively:
> paWi(ps.ps.) <D paWi(bs:ps.)
> BaWi(bsPs.) < D a1 (D Ps.,) -

Combining Egs. (4) and (6), and (5) and (7):

ZPQW1 (ps,ps.) < ZpaW1 (Ps.Ps.) + PaW1(ps,, Ps.,)
a a
<D aWi(bs, bs.) + 1PaWi(Bs: Bs.) — PaWi (B3, Ps. )| + PaWV1 (ps, Ps.)
a

< PaWi(bs:Ps.) + lba — Pal - Wi (Pg,Bs.)| + PaWi (Ps,. Ps..)

a

Zﬁawl(ﬁ§7ﬁsa) S Zﬁawl(p§7psa) +ZaaW1(PSa7ﬁSa)
<> paWi(ps,ps.) + [PaWi(p3.Ds.) — DaWi (D3, D5, )| + DaWV1 (D5, Bs,)

<> paWi(ps,0s.) + [pa — Dal - W1 (P35, D5, )| + DaW1 (D5, Ps.,) -

a

Therefore the following inequality holds almost surely:

‘ > paWi(ps;ps,) — Zﬁawl(ﬁ§7ﬁ5'a)‘ <D PaWi(pse:Ps.) + pa — Pal - Wi(ps, ps..)

< Zwl(pswﬁsa) + |Pa — Pa| - Wi(P5,Ps,)

a

< Zwl(pswﬁsa) + [Pa — Pal - Wi(ps, ps,,) -

a

“4)

(&)

(6)

(7

Since W1 (ps,,, Ps,) — 0 almost surely for all a (see Weed and Bach (2017)), and p, — p, almost surely (by the

strong law of large numbers) and W (ps, ps, ) < oo for all a, the result follows:

lim >~ paWi (b3, Ps.) = Y PaW1(5,Ps.)

almost surely.

"See Klenke (2013) for a formal definition of almost sure convergence of random variables.



B Generalization

The following lemma addresses generalization of the Wasserstein-1 objective. Assume Wi (ps,,pg) < L foralla € A.
Let Pg, Ps, and Pg be the cumulative density functions of .S, S, and S. Assume these random variables all have
domain 2 = [0,1] and that all P € {Pg, P5} U {Ps, }ac.4 are continuous, then:

16 log(2|.A]/8)|.A|?> max[1,L]?
> 5

Lemma 5. For any €,6 > 0, if min [N, ming [NaH , with probability 1 — §:

Z Pawl(PSaaPS) < Z ﬁawl(psaaf)g) +e.
acA acA

In other words, provided access to sufficient samples, a low value of 3, paW1(Ds, ,Dg) implies a low value for
Y aPaWi(ps,,pg) with high probability and therefore good performance at test time.

Proof. We start with the case when pg = pg. By the triangle inequality for Wasserstein-1 distances, for all a € A:
PaWi(Psa,P5) < PaWi(Ps.,Ds) + PaWVi(P5:Ps) + PaWVi(Psa:Ps.) - ®)

Let P for P € {Ps, P5} U{Ps, }ac. denote the empirical CDF of P. Since their domain is restricted to [0, 1] and are
one dimensional random variables:

1
Wi(s.ps.) = / |P(x) — P(x)|dx ©)

For S, € {S, 5} U{Sa}aca- Since P € {Ps, Pg} U {Ps, }ac. are all continuous, the Dvorestky-Kiefer-Wolfowitz
16 log(2].A|/8)|.A|? max[1,L]?

theorem (see main theorem in Massart (1990) ) and the condition min [V, ming [Ng|] >
implies that:

. € )
Pl sup |Plz)—Plx)| > - | < —
(ze[m” () - P(a)| 4> 5

Since all the random variables have domain [0, 1] this in turn implies that for all S, € {5, S} U {S4}aca:

]

P (Wips..ps.) > 7) < 21A4]

And therefore that with probability > 1 — % the following inequalities hold simultaneously for all a € A:

€

3
=~

Dat
1 (10)

ﬁawl(ﬁSWpS’) < s ﬁawl(ﬁsa7pSa) <

Summing Eq. (8) over a and applying the last observation yields

R R . €
> PaWi(ps,.ps) < D paWi(bs.bs) + 5 -
acA acA
Recall that we assume Va € A,
Wi (ps,,ps) < L.

By concentration of measure of Bernoulli random variables, with probability > 1 — g the following inequality holds

simultaneously for all @ € A:
€

S A max(L,1] an

|pa - ﬁa'
Consequently the desired result holds:

Z pawl(psaaps’) < Z ﬁawl(psaaf)s’) +e.
acA acA
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(a) Left side of Eq. (12) (b) Right side of Eq. (12)

Figure 3: Integrating | f ! — g~!| along the z axis (left) and integrating | f — g| along the y axis (right) both compute
the area of the same shaded region, thus the equality in Eq. (12).

If pg equals the weighted barycenter of the population level distributions {pg, }, then

Z pawl(psaapg) S Z pawl(psaaﬁg) .
acA acA

Since paWi1(Ps.>Pg) < PaWi(Ps.,Ds) + DaWi(Ps, s, ), With probability 1 — 4

R €
> PaWi(ps..ps) < Y DaWi(ps..ps) + 5
acA acA

n R R “ N €
< E pawl(psa,pg)+paW1(psa,psa)+5
acA

<Y PaWi(Ps,.Ps) + €
acA

The first inequality follows from Eq. (11), and the third one by Eq. (10). The result follows.

C Inverse CDFs

Lemma 6. Given two differentiable and invertible cumulative distribution functions f, g over the probability space
Q =10,1], thus f,g:[0,1] — [0, 1], we have

/ £ (s) — g (s)]ds = / () — g(r)dr. (12)
s=0 T

=0

Intuitively, we see that the left and right side of Eq. (12) correspond to two ways of computing the same shaded area in
Figure 3. Here is a complete proof.

Proof. Invertible CDFs f, g are strictly increasing functions due to being bijective and non-decreasing. Furthermore,
we have f(0) = 0, f(1) = 1 by definition of CDFs and Q2 = [0, 1], since P(X < 0) = 0, P(X < 1) = 1 where
X is the corresponding random variable. The same holds for the function g. Given an interval (z1,z2) C [0, 1], let
y1 = f(x1),y2 = f(x2). Since f is differentiable, we have

x2 Y2
/ f(x)de + / F M (y)dy = ways — o191, (13)

=2 Y=y



The proof of Eq. (13) is the following (see also Laisant (1905)).

( () ==
= f 1( f(x)) = f(a)x (multiply both sides by f/(z))
T2
= / Yf(x)dx = / f(x)zdx (integrate both sides)
T=T1
T2
= f_1 (y)dy = / 1 (x)xdz (apply change of variable y = f(x) on the left side)
Y=vy1 r=x
' xr2 T2
= / =zf(x) - / f(z)dz (integrate by parts on the right side)
r=x T=2T1
) '
ﬁ/ y)dy +/ f(@)de = zays — 2191
=T
Define a function h := f — g on [0,1]. Then h is differentiable and thus continuous. Define the set of roots

A :={z €[0,1] | h(xz) = 0}. Define the set of open intervals on which either h > 0 or h < 0 by B := {(a,b) | b =
inf{se€ A|a<s},0<a<b<1,a€c A}. By continuity of h, for any (a,b) € B, wehave b € A, i.e. bis also a
root of h. Since there are no other roots of h in (a, b), by continuity of h, we must have either A > 0 or h < 0 on (a, b).
For any two elements (a,b), (¢, d) € B, we argue that they must be disjoint intervals. Without loss of generality, we
assume a < ¢. Since b = inf{s € A | a < s} <e¢,ie b < ¢ then (a,b) N (c,d) = 0. For any open interval (a,b) € B,
there exists a rational number g € Q such that a < g < b. We pick such a rational number and call it g(, 1. Since all
elements of B are disjoint, for any two intervals (ao, bo), (a1, b1) containing g, bo)s 4(ay,6,) € Q respectively, we must
have q(aq,b0) 7 G(ar,b,)- We define the set Qp := {q(p) € Q| (a,b) € B}. Then Qp C Q and |Qp| = |B|. Since
the set of rational numbers Q is countable, the set B must also be countable. Let B = {(a;,b;)}Y, where N € N or
N = oo. Recall that h = f — g on [0, 1], h(a;) = 0, h(b;) = 0 and either h < 0 or b > 0 on (a;, b;) for Vi > 0.

Consider the interval (a;, b;) for some ¢ > 0, by Eq.13 we have

b; f(bi)
/ f(r)dr + / S (s)ds = bif (b)) — auf(ai)
T=a; s=f(a;)

b; g(bq)
= big(bi) — asglas) = / g(r)dr + / g1 (s)ds.

T=0a; :g(ai)

b; f(bs)
/ F(r) — g(r)dr = / g7\ (s) — N (s)ds
T=a; s=f(a;)

Notice that if f > g on [a;, b;], then f~1 < g=1 on [f(a;), f(b;)]. This is due to the following. Given any y €
[F(ai), F(b:)] = lg(ai), 9(bi)], we have g™ (y) € [as,bi] and f(g7'(y)) > 99~ (v) = y = J(/7(y)). Thus
s

> f~!since f is strictly increasing. The contrary holds by the same reasoning, i.e. if f < g on [a;, b;], then
f~t > g ton|[f(a;), f(b;)]. Therefore,

b; f(bi)
/ (7 — g(r)|dr = / 197 (s) — £ 1(s)lds,

=a; :f(ab)

Thus

which holds for all intervals (a;, b;). Summing over ¢ on both sides, we have

f(b:)

é/b_ () = g(mldr = Z/ $) - F7(s)lds,

f(a@)

or equivalently,

1 1
/ 1) - s = / F(7) - g(r)ldr.

=0



