
Appendix

A Empirical Estimates

Lemma 1. As |D| ! 1, if W1(pS , pSa) < 1 for all a, the empirical barycenter satisfies lim
P

a p̂aW1(p̂S̄ , p̂Sa) !P
a paW1(pS̄ , pSa) almost surely7.

Proof. By triangle inequality:
X

a

p̂aW1(p̂S̄ , pSa) 
X

a

p̂aW1(p̂S̄ , p̂Sa) + p̂aW1(pSa , p̂Sa) , (4)

X

a

paW1(pS̄ , p̂Sa) 
X

a

paW1(pS̄ , pSa) + paW1(pSa , p̂Sa) . (5)

Since pS̄ and p̂S̄ are the weighted barycenters of {pSa} and {p̂Sa} respectively:
X

a

paW1(pS̄ , pSa) 
X

a

paW1(p̂S̄ , pSa) , (6)

X

a

p̂aW1(p̂S̄ , p̂Sa) 
X

a

p̂aW1(pS̄ , p̂Sa) . (7)

Combining Eqs. (4) and (6), and (5) and (7):

X

a

paW1(pS̄ , pSa) 
X

a

paW1(p̂S̄ , p̂Sa) + paW1(pSa , p̂Sa)



X

a

p̂aW1(p̂S̄ , p̂Sa) + |p̂aW1(p̂S̄ , p̂Sa)� paW1(p̂S̄ , p̂Sa)|+ paW1(pSa , p̂Sa)



X

a

p̂aW1(p̂S̄ , p̂Sa) + |p̂a � pa| · |W1(p̂S̄ , p̂Sa)|+ paW1(pSa , p̂Sa)

X

a

p̂aW1(p̂S̄ , p̂Sa) 
X

a

p̂aW1(pS̄ , pSa) + p̂aW1(pSa , p̂Sa)



X

a

paW1(pS̄ , pSa) + |paW1(pS̄ , pSa)� p̂aW1(pS̄ , pSa)|+ p̂aW1(pSa , p̂Sa)



X

a

paW1(pS̄ , pSa) + |pa � p̂a| · |W1(pS̄ , pSa)|+ p̂aW1(pSa , p̂Sa) .

Therefore the following inequality holds almost surely:
���
X

a

paW1(pS̄ , pSa)�
X

a

p̂aW1(p̂S̄ , p̂Sa)
��� 

X

a

p̂aW1(pSa , p̂Sa) + |pa � p̂a| · W1(pS̄ , pSa)



X

a

W1(pSa , p̂Sa) + |pa � p̂a| · W1(pS̄ , pSa)



X

a

W1(pSa , p̂Sa) + |pa � p̂a| · W1(pS , pSa) .

Since W1(pSa , p̂Sa) ! 0 almost surely for all a (see Weed and Bach (2017)), and p̂a ! pa almost surely (by the
strong law of large numbers) and W1(pS , pSa) < 1 for all a, the result follows:

lim
X

a

p̂aW1(p̂S̄ , p̂Sa) !
X

a

paW1(pS̄ , pSa) ,

almost surely.
7See Klenke (2013) for a formal definition of almost sure convergence of random variables.



B Generalization

The following lemma addresses generalization of the Wasserstein-1 objective. Assume W1(pSa , pS̄)  L for all a 2 A.
Let PS , PSa and PS̄ be the cumulative density functions of S, Sa and S̄. Assume these random variables all have
domain ⌦ = [0, 1] and that all P 2 {PS , PS̄} [ {PSa}a2A are continuous, then:

Lemma 5. For any ✏, � > 0, if min
⇥
N̄ ,mina

⇥
Na

⇤⇤
�

16 log(2|A|/�)|A|2 max[1,L]2

✏2 , with probability 1� �:

X

a2A
paW1(pSa , pS̄) 

X

a2A
p̂aW1(p̂Sa , p̂S̄) + ✏ .

In other words, provided access to sufficient samples, a low value of
P

a p̂aW1(p̂Sa , p̂S̄) implies a low value forP
a paW1(pSa , pS̄) with high probability and therefore good performance at test time.

Proof. We start with the case when pS̄ = pS . By the triangle inequality for Wasserstein-1 distances, for all a 2 A:

p̂aW1(pSa , pS̄)  p̂aW1(p̂Sa , p̂S̄) + p̂aW1(p̂S̄ , pS̄) + p̂aW1(p̂Sa , pSa) . (8)

Let P̂ for P 2 {PS , PS̄} [ {PSa}a2A denote the empirical CDF of P . Since their domain is restricted to [0, 1] and are
one dimensional random variables:

W1(p̂S⇤ , pS⇤) =

Z 1

0
|P̂ (x)� P (x)|dx (9)

For S⇤ 2 {S, S̄} [ {Sa}a2A. Since P 2 {PS , PS̄} [ {PSa}a2A are all continuous, the Dvorestky-Kiefer-Wolfowitz
theorem (see main theorem in Massart (1990) ) and the condition min

⇥
N̄ ,mina

⇥
Na

⇤⇤
�

16 log(2|A|/�)|A|2 max[1,L]2

✏2

implies that:

P
 

sup
x2[0,1]

|P̂ (x)� P (x)| �
✏

4

!


�

2|A|

Since all the random variables have domain [0, 1] this in turn implies that for all S⇤ 2 {S, S̄} [ {Sa}a2A:

P
⇣
W1(p̂S⇤ , pS⇤) �

✏

4

⌘


�

2|A|

And therefore that with probability � 1� �
2 the following inequalities hold simultaneously for all a 2 A:

p̂aW1(p̂S̄ , pS̄) 
p̂a✏

4
, p̂aW1(p̂Sa , pSa) 

p̂a✏

4
. (10)

Summing Eq. (8) over a and applying the last observation yields
X

a2A
p̂aW1(pSa , pS̄) 

X

a2A
p̂aW1(p̂Sa , p̂S̄) +

✏

2
.

Recall that we assume 8a 2 A,
W1(pSa , pS̄)  L .

By concentration of measure of Bernoulli random variables, with probability � 1� �
2 the following inequality holds

simultaneously for all a 2 A:
|pa � p̂a| 

✏

4|A|max[L, 1]
. (11)

Consequently the desired result holds:
X

a2A
paW1(pSa , pS̄) 

X

a2A
p̂aW1(p̂Sa , p̂S̄) + ✏ .
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Figure 3: Integrating |f�1
� g�1

| along the x axis (left) and integrating |f � g| along the y axis (right) both compute
the area of the same shaded region, thus the equality in Eq. (12).

If pS̄ equals the weighted barycenter of the population level distributions {pSa}, then
X

a2A
paW1(pSa , pS̄) 

X

a2A
paW1(pSa , p̂S̄) .

Since p̂aW1(pSa , p̂S̄)  p̂aW1(p̂Sa , p̂S̄) + p̂aW1(p̂Sa , pSa), with probability 1� �:
X

a2A
paW1(pSa , pS̄) 

X

a2A
p̂aW1(pSa , pS̄) +

✏

2



X

a2A
p̂aW1(p̂Sa , p̂S̄) + p̂aW1(p̂Sa , pSa) +

✏

2



X

a2A
p̂aW1(p̂Sa , p̂S̄) + ✏

The first inequality follows from Eq. (11), and the third one by Eq. (10). The result follows.

C Inverse CDFs

Lemma 6. Given two differentiable and invertible cumulative distribution functions f, g over the probability space
⌦ = [0, 1], thus f, g : [0, 1] ! [0, 1], we have

Z 1

s=0
|f�1(s)� g�1(s)|ds =

Z 1

⌧=0
|f(⌧)� g(⌧)|d⌧. (12)

Intuitively, we see that the left and right side of Eq. (12) correspond to two ways of computing the same shaded area in
Figure 3. Here is a complete proof.

Proof. Invertible CDFs f, g are strictly increasing functions due to being bijective and non-decreasing. Furthermore,
we have f(0) = 0, f(1) = 1 by definition of CDFs and ⌦ = [0, 1], since P (X  0) = 0, P (X  1) = 1 where
X is the corresponding random variable. The same holds for the function g. Given an interval (x1, x2) ⇢ [0, 1], let
y1 = f(x1), y2 = f(x2). Since f is differentiable, we have

Z x2

x=x1

f(x)dx+

Z y2

y=y1

f�1(y)dy = x2y2 � x1y1. (13)



The proof of Eq. (13) is the following (see also Laisant (1905)).

f�1(f(x)) = x

=)f 0(x)f�1(f(x)) = f 0(x)x (multiply both sides by f 0(x))

=)

Z x2

x=x1

f 0(x)f�1(f(x))dx =

Z x2

x=x1

f 0(x)xdx (integrate both sides)

=)

Z y2

y=y1

f�1(y)dy =

Z x2

x=x1

f 0(x)xdx (apply change of variable y = f(x) on the left side)

=)

Z y2

y=y1

f�1(y)dy = xf(x)

����
x2

x=x1

�

Z x2

x=x1

f(x)dx (integrate by parts on the right side)

=)

Z y2

y=y1

f�1(y)dy +

Z x2

x=x1

f(x)dx = x2y2 � x1y1.

Define a function h := f � g on [0, 1]. Then h is differentiable and thus continuous. Define the set of roots
A := {x 2 [0, 1] | h(x) = 0}. Define the set of open intervals on which either h > 0 or h < 0 by B := {(a, b) | b =
inf{s 2 A | a < s}, 0  a < b  1, a 2 A}. By continuity of h, for any (a, b) 2 B, we have b 2 A, i.e. b is also a
root of h. Since there are no other roots of h in (a, b), by continuity of h, we must have either h > 0 or h < 0 on (a, b).
For any two elements (a, b), (c, d) 2 B, we argue that they must be disjoint intervals. Without loss of generality, we
assume a < c. Since b = inf{s 2 A | a < s}  c, i.e. b  c, then (a, b)\ (c, d) = ;. For any open interval (a, b) 2 B,
there exists a rational number q 2 Q such that a < q < b. We pick such a rational number and call it q(a,b). Since all
elements of B are disjoint, for any two intervals (a0, b0), (a1, b1) containing q(a0,b0), q(a1,b1) 2 Q respectively, we must
have q(a0,b0) 6= q(a1,b1). We define the set QB := {q(a,b) 2 Q | (a, b) 2 B}. Then QB ⇢ Q and |QB | = |B|. Since
the set of rational numbers Q is countable, the set B must also be countable. Let B = {(ai, bi)}Ni=0 where N 2 N or
N = 1. Recall that h = f � g on [0, 1], h(ai) = 0, h(bi) = 0 and either h < 0 or h > 0 on (ai, bi) for 8i > 0.

Consider the interval (ai, bi) for some i > 0, by Eq.13 we have
Z bi

⌧=ai

f(⌧)d⌧ +

Z f(bi)

s=f(ai)
f�1(s)ds = bif(bi)� aif(ai)

= big(bi)� aig(ai) =

Z bi

⌧=ai

g(⌧)d⌧ +

Z g(bi)

s=g(ai)
g�1(s)ds.

Thus Z bi

⌧=ai

f(⌧)� g(⌧)d⌧ =

Z f(bi)

s=f(ai)
g�1(s)� f�1(s)ds.

Notice that if f > g on [ai, bi], then f�1 < g�1 on [f(ai), f(bi)]. This is due to the following. Given any y 2

[f(ai), f(bi)] = [g(ai), g(bi)], we have g�1(y) 2 [ai, bi] and f(g�1(y)) > g(g�1(y)) = y = f(f�1(y)). Thus
g�1 > f�1 since f is strictly increasing. The contrary holds by the same reasoning, i.e. if f < g on [ai, bi], then
f�1 > g�1 on [f(ai), f(bi)]. Therefore,

Z bi

⌧=ai

|f(⌧)� g(⌧)|d⌧ =

Z f(bi)

s=f(ai)
|g�1(s)� f�1(s)|ds,

which holds for all intervals (ai, bi). Summing over i on both sides, we have

NX

i=0

Z bi

⌧=ai

|f(⌧)� g(⌧)|d⌧ =
NX

i=0

Z f(bi)

s=f(ai)
|g�1(s)� f�1(s)|ds,

or equivalently, Z 1

s=0
|f�1(s)� g�1(s)|ds =

Z 1

⌧=0
|f(⌧)� g(⌧)|d⌧.


