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Abstract

Weighted model counting (WMC) is a state-
of-the-art technique for probabilistic inference
in discrete domains. WMC has recently been
extended towards weighted model integration
(WMI) in order to handle discrete and contin-
uous distributions alike. While a number of
WMI solvers have been introduced, their re-
lationships, strengths and weaknesses are not
yet well understood. WMI solving consists of
two sub-problems: 1) finding convex polytopes;
and 2) integrating over them efficiently. We for-
malize the first step as λ-SMT and discuss what
strategies solvers apply to solve both the λ-SMT
and the integration problem. This formalization
allows us to compare state-of-the-art solvers
and their behaviour across different types of
WMI problems. Moreover, we identify factor-
izability of WMI problems as a key property
that emerges in the context of probabilistic pro-
gramming. Problems that can be factorized can
be solved more efficiently. However, current
solvers exploiting this property restrict them-
selves to WMI problems with univariate con-
ditions and fully factorizable weight functions.
We introduce a new algorithm, F-XSDD, that
lifts these restrictions and can exploit factoriz-
ability in WMI problems with multivariate con-
ditions and partially factorizable weight func-
tions. Through an empirical evaluation, we
show the effectiveness of our approach.

1 INTRODUCTION

Weighted model integration (WMI) [Belle et al., 2015]
is the extension of the better known weighted model

∗ These authors contributed equally to this work.

counting (WMC) task [Chavira and Darwiche, 2008]
from probabilistic inference in the discrete domain to
the continuous domain. While WMC relies on the
formalism of Boolean satisfiability (SAT), WMI re-
lies on the formalism of satisfiability modulo (Lin-
ear) Real Arithmetic (SMT(LRA)). Both prob-
lems are #P-complete in the general setting. How-
ever, following the introduction of WMI, a num-
ber of solvers [Morettin et al., 2017, Kolb et al., 2018,
Zuidberg Dos Martires et al., 2019] have emerged that
are able to exploit structure in WMI problems to solve
them more efficiently.

Contrary to solvers for WMC, the relative advantages
and drawbacks of the different WMI solvers are not
yet well understood. Understanding these solvers and
their differences requires a clear separation of the model
counting and the integration component. The existing
attempts [Belle et al., 2015, Morettin et al., 2017] to sep-
arate these two components are all tied to specific solving
paradigms. To decouple the formulation in a general way,
we, as a first contribution, introduce λ-SMT, the prob-
lem of rewriting a generic WMI problem into a sum of
integrals over convex polytopes. This allows us to for-
mally disentangle the model counting (solving λ-SMT)
and integration steps (computing integrals). As a sec-
ond contribution, we discuss the main paradigms used
to solve the λ-SMT step – DPLL search and knowledge
compilation – and the integration step – numeric and sym-
bolic integration1. This allows us to compare different
state-of-the-art solvers and understand how their design
choices affect the kind of WMI problems they are able to
solve efficiently. Finally, we observe that fully factoriz-
able WMI problems have given rise to efficient solvers for
subsets of WMI [Belle et al., 2016, Molina et al., 2018].
While factorizability naturally emerges in probabilistic

1We understand a numeric integration method as a method
that outputs the value of a definite integral (not necessarily
obtained through numeric approximations) and symbolic inte-
gration as the problem of finding the anti-derivative



programming, the strong conditions imposed by full fac-
torizability – no multivariate conditions and fully factor-
izable weight functions – fail to cover most applications.
Therefore, as a third contribution, we present a novel
algorithm to solve generic WMI problems that can auto-
matically exploit factorizability in the problem structure.
We experimentally validate that our solver is able to re-
cover factorizability of WMI problems in and can lead to
exponential-to-linear speed-ups.

2 PRELIMINARIES

2.1 Satisfiability Modulo Theories (SMT)

SMT formulas generalize traditional propositional logic
formulas by additionally allowing the use of expressions
formulated in a background theory. More formally, fol-
lowing [Morettin et al., 2017]:
Definition 1. (SMT(LRA) (linear real arithmetics)) Let
b be a set of M Boolean and x a set of N real variables. An
atomic formula is an expression of the form

∑
i ci · xi./c,

where the xi ∈ x and ci, c ∈ Q, and ./∈{=,,,≥,≤, >, <}.
We then define SMT(LRA) theories as Boolean com-
binations (by means of the standard Boolean operators
{¬,∧,∨,→,↔}) of Boolean variables bi ∈ b and of
atomic formulas over x.

Generalizations of this definition to (non-linear) real arith-
metics are given in [Zuidberg Dos Martires et al., 2019],
where also interpretations of SMT formulas are defined:
Definition 2. (Satisfying Interpretation of SMT formula)
Let j and k be two disjoint sets of variables and φ be an
SMT formula over j and k. The set of total interpretations
(or total assignments) that satisfy φ is the set of assign-
ments to the elements in j and k that satisfy ∃j,k: φ(j,k).
We denote the set of total satisfying interpretations (or
models) by Ij,k(φ). The set of partial interpretations is
denoted by Ij(φ), which is the set of assignments to j
that satisfy ∃k : φ(j,k). The set of total assignments to a
partially interpreted formula is denoted by Ij(φk), which
denotes the set of assignments to the elements in j that
satisfy φ(j,kI), with kI ∈ Ik(φ).

Following again [Zuidberg Dos Martires et al., 2019], we
also introduce the notion of formula abstraction.
Definition 3. (Atomic formula abstraction) Let c(X) be
an atomic formula (cf. Definition 1), absc(X) is then called
the atomic formula abstraction of c, given that (absc(X) ↔

∃X.c(X)) holds.

2.2 Model Counting and Knowledge Compilation

State-of-the-art techniques for solving model count-
ing problems, also called #SAT, are based on exhaus-

tive DPLL algorithms [Birnbaum and Lozinskii, 1999],
which count the number of satisfying assignments to a
formula2. These solvers can be divided into two classes:
the ones that build up a trace of the DPLL search, and
the ones that do not. The latter return immediately the
model count. The former build up a diagrammatic repre-
sentation of the propositional formula over which the
model count can be obtained efficiently. By keeping
a trace, such #SAT solvers [Huang and Darwiche, 2005,
Oztok and Darwiche, 2018] constitute, in fact, top-down
knowledge compilation schemes.

KC [Darwiche and Marquis, 2002] has emerged as the
go-to technique for dealing with the computational
intractability of propositional reasoning (#P-complete
[Valiant, 1979]). The key idea is to split up inference
on logical formulas into an off-line and an on-line step.
In the off-line step, a propositional formula is com-
piled from its source representation into a target rep-
resentation (e.g SDDs [Choi et al., 2013]), in which re-
peated poly-time inference is available. As such, knowl-
edge compilation has also been shown to be benefi-
cial in probabilistic inference in the discrete domain
[Chavira and Darwiche, 2008, Fierens et al., 2015].

#SAT can also be performed by compiling for-
mulas bottom-up [Choi and Darwiche, 2013]. How-
ever, it has been shown [Huang and Darwiche, 2005,
Oztok and Darwiche, 2018] that top-down compilation,
i.e. knowledge compilation through exhaustive DPLL
search, outperforms bottom-up compilers.

2.3 Weighted Model Counting and Integration

Weighted model counting generalizes #SAT. Instead of
simply counting the number of satisfying assignments,
one performs a weighted sum over models.
Definition 4. (WMC) Given a set b of M Boolean vari-
ables, a weight function w : BM → R≥0, and a proposi-
tional formula φ (called support) over b, the weighted
model count is

WMC(φ,w|b) =
∑

bI∈Ib(φ) w(bI) (1)

Ib(φ) is the set of interpretations that satisfy φ (cf. Defi-
nition 2).

Traditionally, WMC is used when the weight func-
tion w factorizes as product of weights of liter-
als: WMC(φ,w|b)=

∑
bI∈Ib(φ)

∏
bi∈bI w(bi). When per-

forming probabilistic inference, we take 0≤w(bi)≤1
and w(bi)+w(¬bi)=1. The resulting sum over prod-
ucts is then a computation in the probability semir-
ing [Kimmig et al., 2017].

2Note that solvers can use partial assignments to avoid ex-
plicitly enumerating all assignments.



Weighted model integration further generalizes WMC
from propositional logical formulas to SMT formulas.
Following the formulation of [Morettin et al., 2017] we
give its definition:

Definition 5. (WMI) Given a set b of M Boolean vari-
ables, x of N real variables, a weight function w :
BM × RN → R≥0, and a support φ, in the form of an
SMT formula, over b∪x, the weighted model integral is

WMI(φ,w|x,b) =
∑

bI∈Ib(φ)

∫
Ix(φbI ) w(x,bI)dx (2)

Weighted model integration problems can be canonically
encoded as an abstract syntax tree (AST) in the language
used by PySMT [Gario and Micheli, 2015]. These take
the form of nested if-then-else (ite) statements. A prim-
itive ite expression ite(φ, f , 0) encodes the case function
{θ : f ,¬θ : 0}, where φ is an SMT formula and f a real-
valued function. Primitive ite’s are combined through
addition and multiplication, building up a richer language.

2.4 Decision Diagrams

Decision diagrams (DD) are data structures that com-
pactly represent Boolean formulas. DDs are obtained by
compiling Boolean formulas (cf. Subsection 2.2) into
directed acyclic graphs. Although traditionally developed
for propositional logical formulas, the idea of compil-
ing logical formulas into a more succinct representation
has also found its way into the hybrid domain, where
a prominent example are XADDs [Sanner et al., 2011,
Kolb et al., 2018], a language based on binary decision
diagrams [Bryant, 1986]. Recently, the more succinct tar-
get representation of sentential decision diagrams (SDD)
[Choi et al., 2013] has also been extended towards the
hybrid domain [Zuidberg Dos Martires et al., 2019]. We
will refer to these hybrid analogues of SDDs as XSDDs.
Like SDDs, XSDDs represent logical formulas as nested
conjunctions and disjunctions where conjuncts do not
share (Boolean) variables and disjuncts are pairwise logi-
cally inconsistent. Contrary to traditional SDDs, XSDDs
allow for SMT(LRA) literals as leaves. In practice, XS-
DDs are implemented using traditional SDD software and
additional book-keeping for the non-Boolean literals.

Example 1. Consider the following SMT formula:

[(x>0) ∧ (x<1)]∧
[
(y<1) ∨ ((x>y) ∧ (y>1/2))

]
(3)

The weight function is 2xy. Compiling this formula into
an XADD or XSDD, see Figure 1, enables to compute
the weighted model integral:∫

(x>0)∧(x<1)∧(y<1)∧(x≥y) 2xydxdy+∫
(x>0)∧(x<1)∧(y>1/2)∧(x>y) 2xydxdy

We see that the atomic formulas in the SMT(LRA) for-
mula in Equation 3 become the integration bounds over
which to integrate the weight function.

2xy

AND

x>0 x<1

x>y

NOT y<1 y>1/2

AND OR

AND AND

x > 0

x < 1

0

x < y

y > 1/2 y < 1

2xy

Figure 1: The expression φ for weight 2xy from Example 1 can
be compiled into an equivalent XSDD (left) or XADD (right).
The internal nodes in XSDDs correspond to conjunctions or
disjunctions, and leaf nodes correspond to literals. In XADDs,
the internal nodes are tests on literals (with solid and dashed
edges for true and false branches, respectively), while the leaf
nodes are polynomials. XADDs with multiple non-zero leaves
can be represented by a set of (SDD, polynomial) pairs.

3 λ-SMT

In the weighted model integration literature the weight
function w of a WMI problem WMI(φ,w|x,b) over
SMT(LRA) formulas and polynomial weight func-
tions is expressed as an AST with LRA atoms and
polynomials (cf. Section 2.3). The class of func-
tions expressible by these ASTs is equivalent to the
class of piecewise-polynomial case functions, as shown
in [Kolb et al., 2018]. A piecewise-polynomial case func-
tion f = {φ1: ω1, · · · , φn: ωn} consists of tuples 〈φi, ωi〉,
where φi is a conjunction of SMT(LRA) literals and ωi

is a polynomial over x. The world-supports φi form a par-
tition of the space spanned by the Cartesian product x×b,
i.e., they are mutually exclusive (disjoint) and exhaustive
(covering the whole space). Note that, as we consider
only LRA atomic formulas, every φi corresponds to a
convex polytope in the real space (contrary to the given
support φ). All assignments to the variables in x, b that
satisfy φi are weighted with the polynomial world-weight
ωi, which no longer relies on b.

Example 2. Consider the weight function w({x, y}, {a}) =

ite(a, 2x+y, x2y)× ite((y < 5), 3, 0), where x and y are real
variables, and a is a Boolean variable. Moreover, consider
the SMT(LRA) formula φ=((a ∧ (x < 5)) ∨ (x>y)) ∧
bounds, with bounds = (x<10)∧ (x>2)∧ (y<10)∧ (y>2).
We can then partition the space with the following case



functions: {
(y < 5) ∧ (x < 5) ∧ bounds ∧ a : 6x + 3y,

(y < 5) ∧ (x ≥ 5) ∧ (x > y) ∧ bounds ∧ a : 6x + 3y,

(y < 5) ∧ (x > y) ∧ bounds ∧ ¬a : 3x2y
}

(4)

we omitted the cases where the polynomial weight is 0.

By using the notion of case functions, the weighted model
integral (Eq. 2) can be rewritten as a sum of integrations of
polynomials over convex polytopes. In order to show this,
we first write the definite sum and integral as an indefinite
sum and integral of indicator functions multiplied by the
weight function w. For the indicator function we use the
commonly used Iverson bracket notation J·K.

WMI(φ,w|x,b) =
∑

bI∈Ib(φ)

∫
Ix(φbI ) w(x,bI)dx

=
∑

b
∫
Jφ(x,b)Kw(x,b)dx (5)

We continue manipulating this expression by 1) rewrit-
ing Jφ(x,b)Kw(x,b) as a case-function f (x,b) with tu-
ples W f = {〈φi, ωi〉}, 2) exploiting the mutual ex-
clusivity of the world-supports to rewrite f (x,b) =∑
〈φi,ωi〉∈W f

Jφi(x,b)Kωi(x), and 3) reordering the summa-
tions: ∑

b
∫

f (x,b)dx (6)

=
∑

b
∫ ∑

〈φi,ωi〉∈W f
Jφi(x,b)Kωi(x)dx (7)

=
∑
〈φi,ωi〉∈W f

∑
b
∫
Jφi(x,b)Kωi(x)dx (8)

Finally, we push the Iverson brackets back into the index
and the bound of the summation and integral, respectively.∑

〈φi,ωi〉∈W f

∑
bI∈Ib(φi)

∫
IX (φ

bI
i ) ωi(x)dx (9)

In accordance to the terms world-support and world-
weight, we define the world-volume vol w.r.t. to a tu-
ple 〈φi, ωi〉 as:

vol(φi, ωi|x,b) =
∑

bI∈Ib(φi)

∫
Ix(φ

bI
i ) ωi(x)dx (10)

Solving any WMI problem can thus be reduced to a
two step procedure: 1) rewriting the problem into a sum
over tuples 〈φi, ωi〉 of disjoint world-supports and world-
weights (i.e., convex polytopes and polynomials), and
2) integrating every world-weight ωi over the correspond-
ing world-support φi. We formally define the first step of
this procedure as λ-SMT:

Definition 6. (λ-SMT) Given a WMI problem
WMI(φ,w|x,b), find a set W of pairwise logically in-
consistent world-supports φi (i.e., their conjunction is
unsatisfiable) and world-weights ωi such that the sum

over their world-volumes is equal to the weighted model
integral:∑

〈φi,ωi〉∈W
vol(φi, ωi|x,b) = WMI(φ,w|x,b) (11)

We call a tuple 〈φi, ωi〉 ∈ W redundant if φi is not sat-
isfiable (i.e., logically inconsistent) or ωi = 0, since in-
tegrating over them yields 0. Further, we call a λ-SMT
solutionW∗ reduced, if no element inW∗ is redundant.

The λ-SMT problem lies at the heart of all WMI solvers,
and it is easy to see that such sets W always exist, as
any WMI problem can be written as a case-function (see
above and [Kolb et al., 2018]) and enumerating all cases
yields a solution to the λ-SMT problem. In order to obtain
a reduced solution, we can discard all redundant cases –
doing this efficiently is a key part of WMI-solving.

Conceptually similar 2-step decompositions of WMI solv-
ing can be found in prior works. In [Morettin et al., 2017,
Definition 5], the authors separate the steps of
finding truth assignments to the Boolean variables
and solving non-Boolean WMI problems (WMInb).
In [Kolb et al., 2018, Section 3], a case function repre-
sentation is built by compiling the WMI problem to an
XADD. We continue this discussion in Section 5.

4 ANATOMY OF A SOLVER

With the formal definition of λ-SMT we can now study
how different solvers handle this problem and how the
representation of the solution to the λ-SMT problem influ-
ences strategies to solve the subsequent integration step.
Even though the λ-SMT and the integration steps can
be intertwined, there are broadly two ways to tackle the
λ-SMT step, and two ways to tackle integration.

4.1 λ-SMT: Search vs Compilation

λ-SMT concerns the analysis of the structure of the
WMI problem, finding a way to rewrite the prob-
lem into disjoint, convex polytopes with purely poly-
nomial weight functions. The techniques used to
solve this part of the problem relate closely to
techniques used for WMC and #SAT. On the one
hand, solvers such as PA [Morettin et al., 2017] and
PRAiSE [De Salvo Braz et al., 2016] use variants of
DPLL search to enumerate the conditions of the poly-
topes over which to integrate. On the other hand, XADD-
based solvers [Sanner et al., 2011, Kolb et al., 2018] and
SDD-based Symbo [Zuidberg Dos Martires et al., 2019]
use knowledge compilation to compile the problem struc-
ture into a compilation language in which the solutions to
the λ-SMT problem are efficiently represented.



A key aspect to solving λ-SMT efficiently is detecting
redundant tuples 〈φ, ω〉 early in the solving process. For
many solvers, the support φ of a WMI problem plays
a crucial role in avoiding the enumeration of redundant
tuples by restricting their search to the feasible space
described by the support.

Solvers relying on compilation aim to find small rep-
resentations for λ-SMT solutions. By checking for re-
dundant tuples during or after the compilation, they
try to find reduced λ-SMT solutions. Additionally,
they often compress the representation of an λ-SMT so-
lution by grouping tuples 〈φ1, ω〉, ..., 〈φn, ω〉 that have
the same world-weight ω as 〈

∨
i φi, ω〉 (e.g., by using

DAGs [Kolb et al., 2018]).

The setW can be further compressed when a solver sup-
ports the concept of a labeling function. The labeling
function originates from the WMC literature, where a
labeling function α maps literals to real-valued weights.
This allows them to factorize the weight function over
the Boolean variables: w =

∏
b∈b αb(b). The Symbo

solver [Zuidberg Dos Martires et al., 2019] reuses the no-
tion of a labeling functions to partially factorize the
weight function w as w(x,b) = w′(x,b) ·

∏
b∈b αb(b) or

w′(x,b) ·
∏

b∈b αb(x, b). Consider two tuples 〈φ1, ω1〉

and 〈φ2, ω2〉 of a λ-SMT solution, where φ1 = φs ∧ b
and φ2 = φs ∧ ¬b and b ∈ b. If, then, ω1 = ωs · αb(true)
and ω2 = ωs · αb(false), we can group these cases
as 〈φs, ωs · αb(b)〉. Labeling functions over multiple liter-
als can thus allow a number of tuples exponential in the
number of literals to be grouped together (e.g., within a
single SDD [Zuidberg Dos Martires et al., 2019]). Note,
that we now have to relax the fact that the world weight
does not depend on b. We can reintroduce this depen-
dency on b as long as for any Boolean instantiation, the
world-weight will be polynomial.

4.2 Numeric vs Symbolic Integration

With respect to integration, WMI solvers fall into two
categories: those using numeric integration, and those
using symbolic integration. Given the function w and the
set of free variables x to integrate, numeric integration
approaches directly compute the result as a real number.
Symbolic integration approaches will instead integrate
out the variables one-by-one, obtaining symbolic interme-
diate results (i.e., repeated variable elimination). Integrat-
ing out a variable that has multiple symbolic lower- or
upper-bounds causes these expressions to grow quickly.
Therefore, numeric integration procedures are usually
more efficient at performing individual integrations.

There are, however, two key advantages of symbolic in-
tegration, as demonstrated in [Kolb et al., 2018]. First,

symbolic integration can be used to solve structured
problems by reusing intermediate results across differ-
ent vol(φi, ωi) computations. In doing so, it aims to avoid
having to compute a potentially exponential number of
individual integrations. This reuse resembles caching in
traditional DPLL search and exploits the compression
of the λ-SMT models discussed in the previous section.
Secondly, when computing the probabilities of multiple
queries Q over a small subset of variables xQ, the result r
of integrating out all variables except those in xQ can
be computed symbolically and then reused to quickly
compute query probabilities, integrating out xQ from
r · q,∀q ∈ Q [Kolb et al., 2018]. Note that this inference
scheme is similar to the compile once, query multiple
times knowledge compilation approach.

5 EXISTING SOLVERS

In this section we categorize current solvers by analyzing
how they handle both the λ-SMT problem and integration.

Predicate Abstraction [Morettin et al., 2017] (PA)
The PA solver uses the MathSAT [Cimatti et al., 2013]
SMT solver to solve WMI problems. First, it solves the λ-
SMT problem by introducing fresh Boolean variables for
the SMT conditions in the weight function and perform-
ing a two-step DPLL search. In the first step, it finds truth
assignments to the original and fresh Boolean variables.
Such an assignment defines a setWi of world-supports
(defined by the original variables) with a common world-
weight (defined by the fresh variables). If, after using
the SMT solver to remove redundant tuples from Wi,
Wi contains more than one world-support, the second
step enumerates them by finding truth assignments to the
LRA atoms in the support. The PA solver avoids enumer-
ating sets of equivalent world-supports by using partial as-
signments. Second, for every world-support φi, it uses nu-
meric integration to integrate the polynomial over the con-
vex polytope specified by φi. For the integration it relies
on the Latte integration software [De Loera et al., 2013].

Bound Resolution [Kolb et al., 2018] (BR)
The BR solver tackles a WMI problem by first compiling
it to an equivalent XADD, which represents a solution to
the λ-SMT problem. Compilation is performed through
a bottom-up compilation scheme3, using recursive apply
operations. Pruning unsatisfiable paths within XADDs
can be done using an LP or SMT oracle. While it is an ex-
pensive operation, it is crucial to keep the XADDs small
and efficient. Paths in the XADD correspond to tuples
inW and the DAG structure of the XADD compresses

3The authors refer to their compilation as top-down, how-
ever, within the knowledge compilation literature, this type of
recursive compilation is commonly referred to as bottom-up.



paths with the same world-weight. Instead of perform-
ing integration separately for every path and summing
the results (which could be done using symbolic or total
integration), the BR algorithm exploits overlapping paths
using symbolic integration. The algorithm recursively
integrates every variable, tracking only one pair of upper-
and lower-bound at a time, and building the result of the
integration dynamically as a new XADD (integration is a
closed operation for polynomial case functions with linear
conditions).

Symbo [Zuidberg Dos Martires et al., 2019]
The Symbo solver first computes a compressed represen-
tation of an λ-SMT solutionW in the form of pairs of
XSDDs (representing

∨
i φi) and distinct world-weights ω.

XSDD compilation is performed bottom-up and, as cur-
rent SDD software is strictly discrete, fresh Boolean vari-
ables are introduced as abstractions for atomic SMT for-
mulas. Currently, pruning redundant tuples within the cir-
cuit is not supported, instead, unfeasible world-supports
are detected only later, at the integration stage. Symbo
supports labeling functions (see Section 4.1), which en-
ables a more compressed representation ofW. Solving
and integrating requires a bottom-up pass over the cir-
cuit that reassembles the tuplesW, checking for redun-
dancy during the assembly and, finally, integrating the
different (weighted) tuples using a symbolic integration
engine. Both inconsistency checking and symbolic inte-
grations are performed using the computer algebra system
PSI [Gehr et al., 2016].

PRAiSE [De Salvo Braz et al., 2016]
Another DPLL based solver is PRAiSE, which, contrary
to PA, performs symbolic integration, representing in-
termediate results as symbolic expression trees. These
expression trees can be seen as tree-based alternatives to
XADDs. They represent a compiled version of the prob-
lem after (symbolic) integration. However, as PRAiSE
does not keep a trace of its DPLL search, it is foremost a
search based approach.

Other solvers
As mentioned in the section on PA, other DPLL
based methods exist, however we consider them su-
perseded by PA. A functionally different solver is CC
solver [Belle et al., 2016], which also performs DPLL
search over abstractions of SMT formulas but introduces
component caching to compute solutions more efficiently.
However, the solver is restricted to a subset of WMI, re-
quiring axis-aligned (univariate) LRA atoms in the real
space and weight functions that factorize over all Boolean
and real variables [Belle et al., 2016, Proof Theorem 6].

We also introduce a solver denoted as XSDD(Latte).
XSDD(Latte) follows the same strategy as Symbo to solve
the λ-SMT problem using SDD compilation, but it then

Figure 2: We test the performance of several solvers on a set
of random WMI problems generated using the PA benchmark
generator. For problems that have little structure and dense in-
equalities, solvers using numeric integration (full lines) perform
better than solvers using symbolic integration (dashed lines).
Since the problems are relatively shallow, the differences in
solving the λ-SMT problem are secondary (runtimes include
compilation).

Table 1: Overview of the solvers discussed and their properties.

PA BR Symbo PRAiSE
λ-SMT
DPLL X X

Compilation XADD XSDD
Integration

Numeric Latte
Symbolic XADD PSI (Tree) Exp. Tree

builds a list of all convex polytopes by doing a bottom-up
evaluation of the circuit and evaluates them using numeric
integration with Latte.

Discussion
The solver design choices (see Table 1 for an overview),
search vs compilation, and numeric vs symbolic integra-
tion, as well as how to implement them have a big influ-
ence on what problems the solver will be able to solve
efficiently. On the one hand, solving the λ-SMT problem
through DPLL avoids a potentially expensive compila-
tion step and is less sensitive to the problem formulation.
This allows the PA solver to efficiently tackle problems
like their road-network problem [Morettin et al., 2017].
On the other hand, compiling a circuit representation
of λ-SMT can avoid recomputing λ-SMT solutions as
the circuit can be efficiently combined with other cir-
cuits (representing, e.g., queries for conditional inference).
Moreover, solving structured problems in which many
world-supports share a common (base) world-weight, for
example, problems using mutual exclusivity constraints
over terms, and computing multiple query probabilities
benefit from knowledge compilation and symbolic in-
tegration [Kolb et al., 2018]. Caching in DPLL-based
approaches is used in a similar spirit, however, no cur-
rent DPLL-based WMI solver exploits caching for WMI
problems with non-axis aligned LRA atoms. When in-
tegration steps are not reusable, numeric integration ap-



proaches will fare better than symbolic integration for
single WMI queries (see Fig. 2).

6 FACTORIZABLE WMI PROBLEMS

There is an additional type of structure that has been
exploited in the WMI literature to speed up infer-
ence: factorizable WMI problems, which is a subset
of WMI [Belle et al., 2016, Molina et al., 2018]. How-
ever, it is usually subjected to the strong constraints
of using only axis-aligned LRA atoms and fully fac-
torizable weight functions. In this subset of WMI
problems, the computation of vol(φ, ω) for any tu-
ple 〈φi, ωi〉 = 〈

∧
x∈x φx(x),

∏
x∈x ωx(x)〉 can be rewritten

as vol(φ, ω) =
∫ ∏

x∈xJφx(x)Kωx(x)dx. This formulation
allows the integrations to be pushed inwards for any
partition of the variables x into disjoint sets x1 and x2:∫ ∏

x∈x1
Jφx(x)Kωx(x)

[∫ ∏
y∈x2

Jφy(y)Kωy(y)dx2

]
dx1.

Factorization is less straight-forward in the case of gen-
eral WMI (which includes non-axis aligned LRA atoms).
However, many problems, especially those coming from
a probabilistic programming context, are partially fac-
torizable [Gehr et al., 2016]. Therefore, we introduce F-
XSDD, a new solver that exploits factorized solving for
WMI problems with multivariate inequalities and weight
functions that might not factorize completely. Our method
F-XSDD compiles a WMI problem into a set of XSDDs,
performs a static circuit analysis and structures WMI as
factorized, symbolic integration over the XSDDs.

6.1 Factorized Solving

After compiling a λ-SMT solutionW for a WMI prob-
lem WMI(φ,w|x,b), every set of tuples 〈φi, ω〉 sharing
the same world-weight ω is grouped as 〈

∨
i φi, ω〉. Each

disjunction of world-supports (
∨

i φi) is represented as
an XSDD D4. Computing WMI(φ,w|x,b) now con-
sists of summing over all 〈D, ω〉 pairs and comput-
ing

∑
φi

vol(φi, ω) for every pair. Instead of integrating ev-
ery 〈φi, ω〉 tuple separately, however, we first reconsider
jointly integrating ω over D =

∨
i φi. Using indefinite

sums and integrals, and Iverson brackets (like in Eq. 5),
we can rewrite:∑

φi
vol(φi, ω) =

∑
φi

∑
b
∫
Jφi(x,b)Kω(x)dx (12)

=
∑

b
∫
J
∨

i φi(x,b)Kω(x)dx (φi are disjoint) (13)

=
∑

b
∫
JD(x,b)Kω(x)dx (

∨
i φi as XSDD D) (14)

By representing the disjunction as an XSDD, we can use
its nested representation to push integrations inside, i.e.,

4XSDD compilation follows the XADD compilation scheme
described in [Kolb et al., 2018] using tuples 〈D, ω〉 of SDDs and
polynomials to represent case-functions.

Algorithm 1 Factorized Integration

1: world-weight ω
2: procedure vol(XSDD D, vars x)
3: if x = ∅ then
4: return JDK
5: else if D is terminal then
6: return

∫
JDK

∏
x∈x ωx(x)dx

7: else if D =
∨

c Dc then
8: return

∑
c vol(Dc, x)

9: else if D = D1 ∧ D2 then
10: xs = x ∩ vars(D1) ∩ vars(D2)
11: x∗1, x

∗
2 = vars(D1) \ xs, vars(D2) \ xs

12: r1 = vol(D1, x∗1 ∩ x)
13: r2 = vol(D2, x∗2 ∩ x)
14: return

∫
r1 · r2 ·

∏
x∈xs

ωx(x)dxs

towards the leaves of the SDD. The intuition is that if
the expression D contains disjoint sub-expressions over
independent sets of variables, those sub-expressions can
be integrated separately and the results can be reused if
those sub-expressions occur multiple times (we give an
example in the supplementary material).

Consider, first, the case of a fully factorizable world-
weight ω(x) =

∏
x∈x ωx(x), an assumption we will revisit

later. Using the corresponding XSDD D, we can decom-
pose the integral recursively into smaller sub-problems.

OR Node
If D corresponds to an OR node, i.e., D =

∨
Dc

Dc where
all Dc (again SDDs) are mutually exclusive, we obtain:∑

b
∫
J
∨

Dc
Dc(x,b)Kω(x)dx (15)

=
∑

b
∫

(
∑

Dc
JDc(x,b)K)ω(x)dx (16)

=
∑

Dc

∑
b
∫
JDc(x,b)Kω(x)dx (17)

AND node
If φ(x) corresponds to an AND node, i.e., D(x,b) =

D1(x1,b) ∧ D2(x2,b), and we denote xs = x1 ∩ x2, x∗1 =

x1 \ xs, x∗2 = x2 \ xs, ωx =
∏

x∈x ωx(x), D1 = D1(x1,b),
D2 = D2(x2,b), we obtain:∑

b
∫
JD1 ∧ D2Kωxdx = (18)∑

b
∫
JD1KJD2Kωx∗1ωx∗2ωxs dx = (19)∑

b
∫ [ ∫

JD1Kωx∗1 dx∗1
][ ∫

JD2Kωx∗2 dx∗2
]
ωxs dxs = (20)∫ [∑

b1

∫
JD1Kωx∗1 dx∗1

][∑
b2

∫
JD2Kωx∗2 dx∗2

]
ωxs dxs (21)

This decomposition allows us to compute weighted model
integrals using a recursive symbolic integration algo-
rithm (Alg. 1). Given the world-weight ω, XSDD D
and variables to integrate x, the algorithm computes∑

b
∫
JD(x,b)Kω(x)dx. If the set of variables to integrate



over is empty, the algorithm returns JDK (the integrations
will occur higher in the circuit). If D is a literal (leaf of
the XSDD), the integral over JDK is computed for the
variables x. If D is an OR node, the variables x are re-
cursively integrated from the child nodes and the results
are summed (line 8). Finally, if D is an AND node, the
subsets of x that only occur in one of the child nodes are
recursively integrated out and multiplied (rp · rs), and the
remaining subset xs ⊆ x that occur in both children are
integrated out from the resulting expression (line 14). The
vars values (lines 10 and 11) are precomputed using static
circuit analysis.

Let us briefly explain why the outer sum over the Boolean
variables b does not occur in the algorithm. Conjuncts of
conjunctions in SDDs do not share Boolean variables and
disjuncts of disjunctions in SDDs are pairwise logically
inconsistent. We further assume that the algorithm is
applied to a smoothed circuit, i.e., logically irrelevant
Boolean variables are not dropped from the circuit. The
sum over the truth values of a Boolean can be pushed
into the integration (cf. Equations 21) until it reaches a
disjunction (cf. Equations 17) for which every disjunct is
logically consistent only for one of the truth values, which
eliminates the sum over that Boolean. For non-smoothed
circuits such a disjunction does not necessarily exist.

In order to avoid traversing the SDD multiple times unnec-
essarily, intermediate results are cached using the tuple
〈SDD D, variables x〉 as key. Nodes will only be revisited
if different variables need to be integrated out from them.
If a node is visited multiple times with different sets of in-
tegration variables, the common subset of variables could
be detected using circuit analysis and integrated out first.
The result can then be cached and reused.

Generic weight functions We describe three mecha-
nisms to relax the condition that world-weight functions
have to factorize as expressions over single variables.
First, any polynomial can be rewritten into sums of prod-
ucts over powers of single variables. Integration can then
be performed separately – each product fully factorizes
into expressions over single variables – and the results can
be summed to obtain the final result. Second, if the world-
weight function factorizes into several products of expres-
sions over non-overlapping sets of variables, we can group
these sets of variables together, treating them as insepara-
ble units (and substituting each inseparable unit by a sin-
gle “set-variable” in the algorithm). If this factorization is
not readily apparent, i.e., it is not a product of expressions
that do not share real variables, the world-weight could be
analyzed upfront to find a suitable decomposition. Third,
F-XSDDs, like Symbo, support labeling functions (see
Section 4.1) which occur frequently in the context of
probabilistic programming [Kimmig et al., 2011]. To use

a labeling function α, the factorized integration algorithm
requires two changes: 1) for any Boolean literal l over
a Boolean variable b, the evaluation of JlK has to be re-
placed by the label assigned to that literal αb(l); and 2) if
labels are polynomials, vars(D) has to include the real
variables occurring in the labels of Boolean literals in D
(to prevent integrating out those real variables too early).

Circuit ordering and redundancy To what extent a
WMI problem can be exploited by factorized solving de-
pends on the problem itself, the structure of the XSDD and
the ordering of the literals in the XSDD. Currently, com-
pilation procedures for XSDDs do not take into account
that some of the literals are abstractions of inequalities,
and, therefore, they do not use information about the real
variables and their occurrences in inequalities and labels.

6.2 Experimental Evaluation

In this section we want to answer three research questions.
Q1 Can the F-XSDD solver exploit factorizability in WMI
problems? Q2 What is the influence of the symbolic in-
tegration back-end on F-XSDD solver (F-XSDD(PSI) vs
F-XSDD(BR)? Q3 How does F-XSDD perform com-
pared to state-of-the-art solvers?

In our experimental evaluation we compare the state-
of-the-art solvers described in Section 5 to a variety of
XSDD based solvers. F-XSDD(PSI) and F-XSDD(BR)
are both implementations of our factorized integration
algorithm. F-XSDD(PSI) uses PSI as its symbolic
integration back-end, while F-XSDD(BR) relies on
XADDs to represent symbolic intermediate results and
uses the BR (bound-resolution) algorithm to perform
symbolic integration (on the XADDs). Using the BR
algorithm within the F-XSDD solving scheme allows
for having different variable integration orderings in
different subdiagrams and to use labeling functions
in combinataion with XADDs. When a problem
does not factorize, F-XSDD(BR) reduces to BR with
the overhead of performing a static circuit analysis.
XSDD(PSI) and XSDD(BR) are implementations of
F-XSDD(PSI) and F-XSDD(BR) where we turned
off the factorization. XSDD(PSI) is a reimplementa-
tion of Symbo [Zuidberg Dos Martires et al., 2019].
XSDD(Sampling) is functionally equivalent to
XSDD(Latte) (cf. Section 5, Other Solvers), us-
ing a simple rejection-sampling based backend for Monte
Carlo integration (105 samples per integration).5

We test the solvers on four WMI problem-templates,
whose size can be controlled by a parameter (n). The
click-graph problem is a probabilistic program and part

5All experimentally evaluated solvers are part of the pywmi
library [Kolb et al., 2019] (http://pywmi.org).

http://pywmi.org


Figure 3: On the click-graph (far-left) and pairwise-factorizable dual-mutex (middle-left) problems, F-XSDD outperforms all exact
state-of-the-art solvers, while on the highly structured xor (middle-right) and mutually-exclusive (far right) problems, it achieves
performance on par with BR when using XADDs and bound-resolution as integration back-end (runtimes include compilation).

of the benchmark used to compare Symbo and PSI
[Zuidberg Dos Martires et al., 2019], and is the problem
both solvers struggled with most. We encoded the prob-
lem as a WMI problem template. We introduce a syn-
thetic problem, dual-mutex, that is both structured and
factorizable with φ = (

∨
i(xi0 ≤ xi1)) ∧

∧
i, j,i ¬(xi0 ≤

xi1) ∨ ¬(x j0 ≤ x j1) and w = 1. Additionally, we encoded
the highly-structured mutually-exclusive and xor prob-
lems from [Kolb et al., 2018]. Our experimental results
are shown in Figure 3.

We can answer Q1 affirmatively, as the performance of
both F-XSDD solvers on click-graph and dual-mutex
demonstrates that it can succesfully exploit the high de-
gree of factorizability of those problems.

For Q2, we can observe that the BR solver and the
corresponding XADD structure is required to solve the
highly structured mutually-exclusive and xor problems.
While both back-ends perform similarly on dual, only
F-XSDD(BR) can achieve an exponential-to-linear in re-
duction time for the click-graph problem by combining
factorizable solving with XADDs with BR. We can see
the effect of using DAGs to compactly represent inter-
mediate symbolic results and exploiting the overlapping
paths using bound resolution. However, the results also
clearly show that the BR solver is unable to efficiently
solve these problems without factorized solving.

With respect to Q3 we can clearly see that F-XSDD(BR)
consistently delivers best-in-class results across these
benchmark problems. The F-XSDD solvers outperform
the numeric solvers PA and XSDD(Latte) on these struc-
tured problems. On the click-graph, mutually-exclusive
and xor problems we see that F-XSDD(PSI), like PRAiSE,
suffers from its tree-based representation for intermediate
symbolic results. The performance of XSDD(Sampling)
indicates that the number of tuples in the solutions of
the λ-SMT problem of dual-mutex and mutually-exclusive
grows polynomially, while for the click-graph and xor
problems, they exhibit exponential growth. This demon-

strates the need for symbolic integration and the ability to
reuse symbolic integration steps in these cases.

6.3 Beyond Piecewise-Polynomial WMI

Our implementation of factorized solving focuses on
WMI problems with SMT(LRA) atoms and piece-
wise polynomial densities. This puts us on even foot-
ing with most of the WMI literature [Belle et al., 2015,
Morettin et al., 2017, Kolb et al., 2018]. However, fac-
torized solving does not require piecewise polynomial
densities, the expressiveness depends on the back-end
that is used for symbolic computations. As a matter of
fact, by using PSI as a back-end for symbolic expression
manipulation, our factorized solving implementation can
already deal with common probability distributions such
as Gaussians out of the box.

7 CONCLUSIONS

We introduced the problem of λ-SMT, which allowed
us to dissect in detail different state-of-the-art solvers.
Moreover, we introduced F-XSDD, a novel solver that
exploits factorizable weight functions through static cir-
cuit analysis and that outperforms or is on par with the
state-of-the-art.

A promising road for future research would be to realise
an XSDD implementation that treats LRA literals as
first-class citizens, e.g., through a top-down knowledge
compiler for SMT formulas, combining the strengths of
DPLL search and knowledge compilation.
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