
7 Appendix

7.1 Proof of Proposition 1

Proof. Suppose Algorithm 1 outputs “|S| � sb2j�3
c”

but |S| < sb2j�3
c. We will show that this happens with

probability at most �. Let the iteration with m = i be
the final iteration where a break would have resulted in a
correct output, i.e., i = argmaxi0 sb2i

0�3
c  |S|. This

means that sb2i�3
c  |S| < sb2i�2

c. Also note that
i � 2 because of the floor operator. The algorithm out-
puts an incorrect bound if and only if the while-loop on
m breaks with m = j such that j � i + 1. For this
to happen, the while loop would not have been broken
in all iterations with m  i. In particular, we would
have observed

PT
t=1 w

t
� sT/2 on iteration i. How-

ever, this is an unlikely event, as we now show. Observe
that S(hi) = S \ (hi)�1(b) by definition, and

E[|S(hi)|] =
|S|

2i
<

sb2i�2
c

2i


s

4
.

This results in the inequalities

E[wt] = E
⇥
min

�
s, |S(hi)|

 ⇤

 min
�
E [s] ,E

⇥
|S(hi)|

⇤
 s/4. (2)

Since wt
2 [0, s], we can apply Hoeffding’s inequality

and use Equation 2 to obtain

Pr

"
1

T

TX

t=1

wt
�

s

2

#
 exp

✓
�
2T

s2

⇣s
2
�

s

4

⌘2◆

= exp

✓
�
T

8

◆
.

Setting T =
⌃
8 ln 1

�

⌥
, we have exp

�
�

T
8

�
 �. There-

fore, the probability of observing
PT

t=1 w
t
� sT/2 in

iteration i (making the output of Algorithm 1 incorrect)
is bounded above by �.

7.2 Proof of Proposition 2

Proof. Suppose Algorithm 2 outputs “|S| � sb2j�3
c”

but |S| < sb2j�3
c. We will show that this happens with

probability at most �. Let the iteration with m = i be
the final iteration where a break would have resulted in a
correct output, i.e., i = argmaxi0 sb2i

0�3
c  |S|. This

means that sb2i�3
c  |S| < sb2i�2

c. Also note that
i � 2 because of the floor operator.

The algorithm outputs an incorrect bound if and only if
the while-loop on m breaks with m = j such that j �
i+ 1. For this to happen, the while loop would not have
been broken in all iterations with m  i. In particular,
we would have observed

PT
t=1 w

t
� sT/2 on iteration

i. However, this is an unlikely event, as we now show.
Observe that S(hi) = S \ (hi)�1(b) by definition, and

E[|S(hi)|] =
|S|

2i
<

sb2i�2
c

2i


s

4
.

This property holds because b is chosen uniformly at ran-
dom on line 8 of Algorithm 2. Crucially, this property
holds regardless of how the matrices Am are constructed
on line 7.

This results in the inequalities

E[wk] = E
⇥
min

�
sK, |S(hj�1)|

 ⇤
 s/4

E

"
1

K

KX

k=1

wk

#
 s/4

E[wt] = E

"
min

(
s,

1

K

KX

k=1

wk

)#
 s/4 (3)

Since wt
2 [0, s], we can apply Hoeffding’s inequality

and use Equation 3 to obtain

Pr

"
1

T

TX

t=1

wt
�

s

2

#
 exp

✓
�
2T

s2

⇣s
2
�

s

4

⌘2◆

= exp

✓
�
T

8

◆
.

Setting T =
⌃
8 ln 1

�

⌥
, we have exp

�
�

T
8

�
 �. There-

fore, the probability of observing
PT

t=1 w
t
� sT/2 in

iteration i (making the output of Algorithm 1 incorrect)
is bounded above by �.

7.3 Upper Bound

Proof. Suppose Algorithm 4 outputs “|S|  s2j+1”, but
this is incorrect, and s2j+2

� |S| > s2j+1. That is, the
output is the largest invalid upper bound. We will show
that Algorithm 1 outputs this, or any other smaller invalid
bound, with probability at most �. For the algorithm to
output the smallest valid upper bound, 2j+2, the iteration
with m = j + 2 would have resulted in breaking the
while-loop on m. Thus, in every prior iteration i  j+1,
we would have observed

PT
t=1 w

t
� sT/2. We will

use the union bound to upper bound the probability of
observing

PT
t=1 w

t < sT/2 for some i  j + 1.

Fix any i  j + 1. Then, E[|S(hi)|] = µi = |S|/2i =
2j�i

|S|/2j > s2j�i+1 by our assumption. Let the vari-
ance be Var[|S(hi)|] = �2

i . We first observe that the
min operation with sKon line 10 of Algorithm 1 serves
only an optimization purpose, and does not alter the out-
come of the algorithm (because of the subsequent min
operation when computing wt). Thus, for the sake of

analysis, we can let wk = |S(hi)| without loss of gener-
ality.

For brevity of notation, let wK = 1
K

PK
k=1 wk. Then,

E[wK] = E[|S(hi)|] > s2j�i+1 and Var[wK] 
�2
i /K. Applying Cantelli’s inequality:

Pr[wK  s] = Pr
⇥
wK  E [wK]� (E [wK]� s)

⇤


�2
i /K

�2
i /K + s2(2j�i+1 � 1)2


�2
i /K

�2
i /K + s24j�i

Hence, Pr[wK � s] � s24j�i

�2
i /K+s24j�i . Since wt =

min{s, wK}, we also have Pr[wt
� s] � s24j�i

�2
i /K+s24j�i .

Let yt denote a 0-1 indicator variable that is 1 when
wt
� s. Then yt  wt and E[yt] � s24j�i

�2
i /K+s24j�i . By a

precondition of the theorem, s24j�i
� µ2

i /16 > �2
i /K,

which implies E[yt] > 1/2, making it unlikely to ob-
serve the sum of Ti such yt variables to be smaller than
Ti/2. We thus have:

Pr

"
TiX

t=1

wt <
sTi

2

#
 Pr

"
TiX

t=1

yt <
Ti

2

#

 exp

0

@� 2

Ti

E

"
TiX

t=1

yt
#
�

Ti

2

!2
1

A

 exp

�

2

Ti

✓
s24j�iTi

�2
i /K + s24j�i

�
Ti

2

◆2
!

= exp

�
Ti

2

✓
s24j�i

� �2
i /K

s24j�i + �2
i /K

◆2
!

 exp

�
Ti

2

✓
µ2
i /16� �2

i /K

µ2
i /16 + �2

i /K

◆2
!

= exp

�
Ti

2

✓
1� 16�2

i /K

1 + 16�2
i /K

◆2
!
,

where the second inequality follows from Hoeffding’s in-
equality and the last inequality follows because s24j�i

�

µ2
i /16. This expression is at most �/n because Ti is set

to
⇠
2
⇣

1+16�2
i /K

1�16�2
i /K

⌘2
ln n

�

⇡
in line 4 of Algorithm 4. Ap-

plying the union bound over all i  j+1, the probability
of observing

PTi

t=1 w
t < sTi/2 in any iteration i  j+1,

and thus possibly outputting an incorrect upper bound, is
bounded above by �.

When the linear search in Algorithm 4 is replaced with
more efficient search procedures, the definition of Ti can
be modified to achieve the desired probability of correct-
ness.

Algorithm 4 Upper Bound with Variance Reduction
Inputs: K: Number of repetitions per trial
s: Solution cutoff
�: Failure probability
OS : A SAT oracle
{A

m
}
n
m=1: For each m 2 [1, n], a distribution over

parity matrices with known variance bounds that satisfy
16�2

m < Kµ2
m, where Var[|S(hm)|]  �2

m and
µm = E[|S(hm)|]

Output: A probabilistic upper bound on |S|

1: m = 1
2: while m  n do
3: �2

m = �2
m/µ2

m

4: Tm =

⇠
2
⇣

1+16�2
m/K

1�16�2
m/K

⌘2
ln n

�

⇡

5: for t = 1, · · · , T do
6: for k = 1, · · · ,K do
7: Sample Am

⇠ A
m , denote hm(x) = Amx

8: Sample b ⇠ Uniform(Fm
2)

9: wk min
�
sK, |S \ (hm)�1(b)|

{ Invoke

oracle OS up to sK times to check whether
the input formula with additional constraints
Amx = b has at least sK distinct solutions}

10: wt
 min

n
s, 1

K

PK
k=1 wk

o

11: if
PT

t=1 w
t < sT/2 then

12: break
13: m = m+ 1
14: Output “|S|  s2m+1”

