7 Appendix

7.1 Proof of Proposition 1

Proof. Suppose Algorithm 1 outputs “|S| > s[2773)”
but |S| < s[2772]. We will show that this happens with
probability at most A. Let the iteration with m = ¢ be
the final iteration where a break would have resulted in a
correct output, i.e., i = argmaxy s|2° 3| < |S|. This
means that s[2°73] < |S| < s[2¢72|. Also note that
i > 2 because of the floor operator. The algorithm out-
puts an incorrect bound if and only if the while-loop on
m breaks with m = j such that 5 > ¢ 4+ 1. For this
to happen, the while loop would nor have been broken
in all iterations with m < 4. In particular, we would
have observed 3.7, w' > sT'/2 on iteration i. How-
ever, this is an unlikely event, as we now show. Observe
that S(h?) = S N (h*)~1(b) by definition, and

Bjs(n) = o < 22 <
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This results in the inequalities
E[w'] = E [min {s, |S(h")|}]
<min{E[s],E[|S(h)[]} < s/4. (2

Since w' € [0, s], we can apply Hoeffding’s inequality
and use Equation 2 to obtain

Setting 7' = [81n % |, we have exp (—%) < A. There-
fore, the probability of observing Zthl wt > sT/2 in

iteration ¢ (making the output of Algorithm 1 incorrect)
is bounded above by A. O

7.2 Proof of Proposition 2

Proof. Suppose Algorithm 2 outputs “|S| > s|2773)”
but |S| < s|2773]. We will show that this happens with
probability at most A. Let the iteration with m = i be
the final iteration where a break would have resulted in a
correct output, i.e., i = arg maxy s|2¢ 3| < |S|. This
means that s[2°73] < [S| < s|2i72]. Also note that
1 > 2 because of the floor operator.

The algorithm outputs an incorrect bound if and only if
the while-loop on m breaks with m = j such that j >
1 + 1. For this to happen, the while loop would not have
been broken in all iterations with m < 4. In particular,
we would have observed 23:1 w' > sT/2 on iteration

1. However, this is an unlikely event, as we now show.
Observe that S(h?) = S N (h*)~1(b) by definition, and
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This property holds because b is chosen uniformly at ran-
dom on line 8 of Algorithm 2. Crucially, this property
holds regardless of how the matrices A,,, are constructed
on line 7.

This results in the inequalities

E[wy] = E [min {sK,|S(h""")[}] < s/4

1 X
E szk] <s/4
k=1
| K
E[w'] = E min{s,K;wk}l <s/4 (3

Since w' € [0, s], we can apply Hoeffding’s inequality
and use Equation 3 to obtain

1 R 2T /s 5\2
T 221 SeXp(s2(24)>

Setting T' = [8 In %W , we have exp (f%) < A. There-
fore, the probability of observing Zle wt > sT/2 in

iteration ¢ (making the output of Algorithm 1 incorrect)
is bounded above by A. O

7.3 Upper Bound

Proof. Suppose Algorithm 4 outputs “|S| < 271, but
this is incorrect, and s2772 > |S| > s27*!, That is, the
output is the largest invalid upper bound. We will show
that Algorithm 1 outputs this, or any other smaller invalid
bound, with probability at most A. For the algorithm to
output the smallest valid upper bound, 2772, the iteration
with m = 7 + 2 would have resulted in breaking the
while-loop on m. Thus, in every prior iteration ¢ < j+1,
we would have observed Zthl wt > sT/2. We will
use the union bound to upper bound the probability of
observing 3"/, w' < sT/2 for some i < j + 1.

Fix any i < j + 1. Then, E[|S(h")|] = u; = |S|/2¢ =
2774|S|/27 > $27~+1 by our assumption. Let the vari-
ance be Var[|S(h?)|] = o?. We first observe that the
min operation with sKon line 10 of Algorithm 1 serves
only an optimization purpose, and does not alter the out-
come of the algorithm (because of the subsequent min
operation when computing w?). Thus, for the sake of




analysis, we can let wy, = |S(h*)| without loss of gener-
ality.

For brevity of notati_on, let WK = % Zszl wg. Then,
Efwk] = E[|S(h)|] > 52771 and Var[wg] <
o? /K. Applying Cantelli’s inequality:

Pr[@K < S} =Pr [EK <E [EK] — (E [EK] — S)]

o?/K
< —
~ 02/K + s2(2071H1 —1)2
o?/K
= 02K + 524
Hence, Prjwgx > s] > (712/;;4% Since- wt —
min{s, Wk }, we also have Pr[w! > s] > 02/;&%

Let y* denote a 0-1 indicator variable that is 1 when

w' > s. Then y* < w' and E[y’] > % Bya

precondition of the theorem, s247~% > uf /16 > 01.2 /K,
which implies E[y’] > 1/2, making it unlikely to ob-
serve the sum of T} such g’ variables to be smaller than
T;/2. We thus have:

Tz T‘
“m lzyt <

t=1

2 d 7\
<exp|-—= (E yt| — z)
E t=1 2
_ 2 $249 71T, T\>
X — e o s A - T —_—
PN\ G2 /K 5241 2
Ty (24970 — 02K \?
= ex _——
PN o+ o2k
co [T (1i/16 -0} /K ’
=P\ T2\ 216+ o2 /K

Ty (1-1642/K\"
=exp| -7 (——57) |

2 \1+1672/K
where the second inequality follows from Hoeffding’s in-
equality and the last inequality follows because s247~¢ >
12 /16. This expression is at most A /n because T; is set
to |2 (229%/5)* 11 2 | i Tine 4 of Algorithm 4. A
(0] W n A 1n 11me 4 o gorithm 4. Ap-
plying the union bound over all 7 < 7+ 1, the probability
of observing Zthl w! < sT;/21in any iteration i < j+1,
and thus possibly outputting an incorrect upper bound, is
bounded above by A. O

When the linear search in Algorithm 4 is replaced with
more efficient search procedures, the definition of T;; can
be modified to achieve the desired probability of correct-
ness.

Algorithm 4 Upper Bound with Variance Reduction
Inputs: K: Number of repetitions per trial

s: Solution cutoff

A Failure probability

Og: A SAT oracle

{A™}" _,: For each m € [1,n], a distribution over
parity matrices with known variance bounds that satisfy
1602, < Kp2,, where Var[|S(h™)]] < o2, and
i = E[|S(h™)]]

Output: A probabilistic upper bound on |S]|

I:m=1
2: while m < n do
5ok =i

2

m %:pgﬁ@@hﬂ}

5 fort=1,---,Tdo

6: fork=1,--- ,Kdo

7: Sample A™ ~ A™ , denote h™(x) = A™x

8: Sample b ~ Uniform(F5")

9: wy, <+ min {sK, [S N (k™)1 (b)]} { Invoke
oracle Og up to sK times to check whether
the input formula with additional constraints
A™ax = b has at least sK distinct solutions}

10: wt min{&%ZkK:l wk}
1 if Y, w' < sT/2 then
12: break

13: m=m+1
14: Output “|S| < s2m+1»




