
Appendix

RPCD ALGORITHM

We present RpCD algorithm in Alg. 1.

Algorithm 1 RpCD [Lee and Honavar, 2016a]
Input: S relational schema, h hop threshold
1: initialize D with candidate RDs up to h hops.
2: initialize an undirected graph M0 with undirected D.
3: ` 0
4: repeat
5: for (P .Y ,VX) s.t. P .Y � VX 2M0 do
6: for every S ✓ ne(VX ;M0) \ {P .Y } s.t. |S| = ` do
7: if P .Y ?? VX | S then
8: remove {P .Y � VX , P̃ .X � VY } from M0.
9: break

10: ` `+ 1
11: until |ne(VX ;M0)|� 1 < ` for every X 2 A

12: initialize U with CUTs from M0.
13: N ;, H hA, {X � Y | P .Y � VX 2M0}i
14: for every hVX ,P .Y ,R.Zi 2 U do
15: if hX,Y ,Zi 2 N or {X,Z} \ ne(Y ;H) = ; or

{X,Z} \ ch(Y ;H) 6= ; then
16: continue
17: if exists S ✓ adj(VX ;M0) s.t. R.Z ?? VX | S then
18: if S \ P .Y = ; then orient X ! Y Z in H
19: else if X = Z then orient Y ! X in H
20: else add hX,Y ,Zi to N

21: orient edges in H with sound rules with N.

22: completes (H,N)

23: return
S

P .Y �VX2M0

(
P .Y ! VX Y ! X 2 H

P .Y � VX Y �X 2 H

RELATIONAL DATA

We randomly generated 300 relational schemas of 3
(50%), 4 (25%), and 5 (25%) entity classes with spec-
ified probabilities. Two to five relationship classes are
randomly generated to connect a pair (i.e., binary rela-
tionship) of entity classes or a triple with 75% and 25%
probability, respectively. Cardinalities are selected uni-
formly. One to three attribute classes are generated for
each entity class, and zero or one attribute class is gener-
ated for each relationship class. Finally, created relational
schemas that do not satisfy following rules are excluded:
(i) all item classes are connected and (ii) the total number
of attribute classes are less than or equal to 8.

RCMs are also generated randomly. Given a relational
schema S, max hop length h is selected uniformly be-
tween 2 to 4. The number of dependencies is determined
by b 3|A|

2 c and uniformly selected among all relational
dependencies within the given h. We limit the maximum
number of parents of a canonical relational variable by

3. We reject generated RCMs if there exists an isolated
attribute class that does not involve any relational depen-
dency. Further, if the CPRCM (a maximally-oriented
RCM representing the Markov equivalence class of a
RCM) of the generated RCM has no directed dependen-
cies, that is, the orientation of relational dependencies
is impossible in theory. We adopt a linear model with
additive Gaussian noise using average aggregators:

i.X
X

P .Y 2pa(VX ;M)

�

P .Y ,VX

|P .Y |�
i

|

X

j.Y 2P .Y |�i

j.Y

!
+ ✏

where �

P .Y ,VX = 1 + |�| where � ⇠ N
�
0, 0.12

�
for

every P .Y 2 pa (V
X

;M) for every X 2 A. ✏ ⇠
N
�
0, 0.12

�
. The set of parameters will likely yield a re-

lational data less hostile for our learning algorithm given
that � � 1 and the variance of noise is relatively small.
This fulfills our intention to assess the behavior of learn-
ing algorithm across different settings. If we wanted to
exploit the fact that the generated RCMs are based on
an average aggregator, we could incorporate this into the
choice of kernel so that R-convolution kernel is not nec-
essary but a simple RBF kernel on averaged values is
sufficient.

Random relational skeletons are generated with a user-
specified base size n. Given n, the number of relation-
ships (i.e., relationship instances or relationship items)
for each relationship class is the twice of the base size if
the cardinality is ‘many’ for every its participating entity
class and the same as base size, otherwise. The number
of entities per entity class can be computed as b1.2k · nc
where k is the number of related relationship classes with
all-‘one’ cardinalities. For each RCM, we generate 4 rela-
tional skeletons corresponding to base size from 200 to
500, increased by 100.

ROBUSTIFICATION of RPCD VS. NAIVE RPCD

For the robust RpCD, we adopted features mentioned in
the main paper: order-independence for Phase-I, and split-
RBO, pair-RBO, non-RBO tests, and weak dependence
detection for Phase-II. Aggregation-based additional tests
are applied to both phases. Separating sets are sought
from the smallest size of conditionals to the largest. If a
separating set is found with size k, the algorithm checks
the existence of other separating sets of the same size,
which we call ‘minimal separating sets’. Then, the orien-
tation of relational dependencies is based on a majority
vote for the orientation of each pair of attribute classes.
At the end of the algorithm, different orientations are com-
bined to yield a partially-oriented RCM (PRCM) which
maximally satisfies obtained test results. If there are mul-
tiple candidate PRCMs matching the same number of test

Aggregation Order Ind. Base size precision recall

True False 200 97.70% 63.71%
300 97.61% 70.93%
400 98.42% 76.21%
500 98.81% 78.74%

True 200 98.64% 60.12%
300 98.99% 69.27%
400 99.00% 74.52%
500 99.04% 77.32%

False False 200 98.02% 60.39%
300 98.02% 68.40%
400 98.32% 73.77%
500 98.82% 76.29%

True 200 98.76% 56.45%
300 98.94% 66.23%
400 98.86% 71.83%
500 99.06% 75.03%

Table 5: Performance based on micro-average of Phase-I.

Base Size Aggregation Order Ind. TP FP

200 False True 4.843 0.060
False 5.143 0.090

True True 5.103 0.067
False 5.350 0.130

500 False True 6.373 0.057
False 6.493 0.093

True True 6.523 0.063
False 6.633 0.090

Table 6: Performance of Phase-I with average num-
ber of true positives (TP) and of false positives (FP)/
FPs are reduced to about two thirds by adopting order-
independence.

results, then we choose a PRCM, which has the most
common orientations with other competitors.

PHASE-I

We first report the performance of Robust RpCD for
Phase-I. Micro-averaged precision and recall for undi-
rected dependencies are reported (see Tab. 5). As the size
of data increases, more accurate RCMs are discovered
since RCI tests can better catch genuine dependencies.
We observe relatively high precision in general even with
a small-sized relational data, which implies that the main
problem of the structure learning is false negatives due to
weak dependencies.

Order-independence Fig. 4a depicts plots of perfor-
mance with and without order-independence — the aver-
age number of true and false positives without additional
aggregation-based tests. First, order-dependence can yield

200 300 400 500
base size

0

2

4

6

co
un

ts

category = true positives

200 300 400 500
base size

0.0

0.2

0.4

category = false positives

order-independent
order-dependent

(a) Performance on order-independence without aggregation

200 300 400 500
base size

0

2

4

6

co
un

ts

category = true positives

200 300 400 500
base size

0.0

0.2

0.4

category = false positives

w/ aggregation
w/o aggregation

(b) Effect of aggregation with order-independence

Figure 4: Phase-I

200 300 400 500
base size

0.0

0.1

0.2

0.3

0.4

0.5
counts

right direction
reverse direction
false positive

200 300 400 500
base size

0.0

0.2

0.4

0.6

0.8

1.0

proportions

Figure 5: RCI query saved by aggregation-based tests

a higher number of both true and false positives. We can
observe that order-independence reduces the number of
false positives (see Tab. 6).

Aggregation In Fig. 4b, aggregation-based CI tests
yield higher true positives without increasing false posi-
tives much. Since the non-aggregated test and its corre-
sponding aggregated test are correlated, doubling the test
does not significantly increase the false positive rate.

We explored which types of RCI queries are ‘saved’ by
aggregated tests, i.e., (U ?? V | W)^ (f (U) 6?? V | W)
such that U is adjacent to V at the end of Phase I. We
report three cases: i) false positive, U 62 adj (V ;M); ii)
right direction, U 2 pa (V ;M); and iii) reverse direction,
U 2 ch (V ;M). We expected that the aggregation-based
test is particularly useful when U 2 ch (V ;M) since V

affects each of item attribute in U ‘individually’. Then,
averaging values might help reducing noises. In Fig. 5,
we illustrate the average number of saved dependencies
in the three categories and their proportions. Note that, an

Without Detection Mechanisms

20
0

30
0

40
0

50
0

base size

0

2

4

6

8

no
rm

al
te

st
s

RBO

20
0

30
0

40
0

50
0

base size

non-RBO

wrong collider
correct collider
wrong non-collider
correct non-collider

With Detection Mechanisms

0

2

4

6

8

de
te

ct
io

n
ca

se
s

RBO non-RBO

normal test case
wrong collider
correct collider
wrong non-collider
correct non-collider
weak

20
0

30
0

40
0

50
0

base size

0

2

4

6

8

no
rm

al
te

st
s

20
0

30
0

40
0

50
0

base size

wrong collider-fail
correct collider-fail
wrong collider
correct collider
wrong non-collider
correct non-collider

Figure 6: Effect of detection mechanism

adjacency P .X � V
Y

, which is also P̃ .Y � V
X

, can be
counted twice. We can first observe that the total number
of saved relational dependencies decreases as data size
increases since the original (i.e., non-aggregation-based)
test will catch weak dependencies better. RCI tests in a
reverse direction, e.g., U 2 ch (V ;M), are mostly saved
by aggregation. The use of aggregation will become more
useful as the relationships in a relational skeleton become
more complicated.

PHASE-II

We first overview how each feature affects the perfor-
mance of orientation in terms of precision and recall as-
suming perfect Phase-I, which allows us to judge better
how different features work. More specifically, ‘correctly
directed’ relational dependencies lie in the intersection
of oriented relational dependencies through Phase-II and
true relational dependencies. Then, precision and recall
are the proportion of correctly directed relational depen-
dencies among directed relational dependencies through
Phase-II, and among directed relational dependencies in
the corresponding CPRCM, respectively.

Size Precision Recall F-measure

200 65.8 61.0 63.3
300 74.2 67.8 70.8
400 71.9 66.6 69.1
500 75.3 69.7 72.4

Table 7: Orientation performance of a naive approach
with CUT-based RCI tests.

Agg. Size Detection Prec. Recall F

False 200 False 79.0 64.5 71.0
300 84.7 68.7 75.8
400 88.1 72.8 79.7
500 87.8 73.6 80.1

False 200 True 88.6 69.4 77.8
300 92.4 73.0 81.5
400 94.2 76.2 84.2
500 93.6 75.9 83.8

True 200 True 88.3 70.1 78.2
300 91.5 73.6 81.6
400 93.8 76.6 84.3
500 93.5 75.4 83.5

Table 8: Orientation performance with our proposed ap-
proach using RCI tests.

We report micro-average for precision and recall in Tabs. 7
and 8 for a naive approach (i.e., CUT-based RCI tests with
a majority vote rule and a simple sequential strategy to
resolve conflicts among orientations.) and our approach
(i.e., the proposed RCI tests with the weak dependence de-
tection mechanism, the majority vote rule and a maximal
non-conflicting orientations strategy), respectively. The
differences in both precision and recall between the two
approaches are due to the effectiveness of our proposed
RCI tests (as shown in the main text) and the fact that
finding a maximally non-conflicting orientations works
as a majority vote rule for final orientations of relational
dependencies.

DETECTING CONFLICTS FOR RBO AND NON-
RBO We investigate how weak dependency detection
mechanisms for RBO and non-RBO work. In Fig. 6, we
illustrate the average number of RCI tests which turned
out to be colliders or non-colliders, and whether the RCI
test results were right or wrong.

Without detection (the top row), we observe that there ex-
ists a non-negligible amount of wrong collider test results.
This implies that a set of conditionals without blocking
P̃ .Y (or Q̃.Y) yields wrong independence. This, again,
suggests how false negatives dominate the performance
of the learning algorithm.

With the detection mechanism enabled, the middle row

in the figure shows the average orientation results only
when an empty set as a separating set is considered. Black
bars represent cases where a pair of tests turned out to
be dependent, that is, an orientation was not determined.
Gray bars (nearly invisible) show cases where both tests
returned independence. We can clearly see that the mech-
anism catches colliders better than without it.

The last row in the figure illustrates orientation results for
the undetermined in the previous case (black bars). Note
that, since the algorithm seeks for more than one separat-
ing set, the lengths of bars in the last row are longer than
the lengths of black bars in the middle row. Collider-fail
represents a condition where the detection mechanism re-
jects a collider since both tests yield independence. More
than a half of cases, the mechanism correctly rejected
false colliders, yielding a relatively low false collider
rate.

