A Proof of Theorem (1]

Proof. For any trajectory sampled from policy 7, if every sj, ar, € SA, then ZtT:o ytr(st, ay) = E?:o Y (se, ar).
If not, let sp41, ag+1 be the first state-action pair that is not in S.A,,. Then Z? o (st, ay) > Zf oYir(se,ar) =
S o (s, ar) + 30 ki1 V' Tu(Sabs, ar). Dividing the accumulated rewards by ST taking the limit of 7" —

t 0
oo and expectation over trajectories induced by m, we have that: Ry, > R} A, For 7", since SA,, covers all state-

action pairs reachable by 7*, so the expected return remains the same. O

B Proof of Theorem

We first state and prove an abstract result. Suppose we have a function f : R? — R which is differentiable, G-
Lipschitz and L-smooth, and f attains a finite minimum value f* := min,cra f(z). Suppose we have access to a
noisy gradient oracle which returns a vector () € R given a query point x. We say that the vector is o, B-accurate
for parameter o, B > 0 if for all z € R, the quantity §() := ((x) — V f(z) satisfies

IE[6(z) 2] < B and E[[lo()| 2] <2(0* + B?). (5)

Notice that the expectations above are only with respect to any randomness in the oracle, while holding the query
point fixed. Suppose we run the stochastic gradient descent algorithm using the oracle responses, that is we update
ZTrt+1 = xp — n¢(xk). While several results for the convergence of stochastic gradient descent to a stationary point
of a smooth, non-convex function are well-known, we could not find a result for the biased oracle assumed here and
hence we provide a result from first principles. We have the following guarantee on the convergence of the sequence
x), to an approximate stationary point of f.

Theorem 4. Suppose f is differentiable and L-smooth, and the approximate gradient oracle satisfies the conditions (3))
with parameters (o, By) at iteration k. Then stochastic gradient descent with the oracle, with an initial solution x,
and stepsize 1 = 1/ L satisfies after K iterations:

1 & 2 92 &
}ZE[HVJG(%)H] < E(f(ﬂfl) 72 op + B).
k=1 k=1

Proof. Since f is L-smooth, we have
Flonin) < F@) + (T F)z — o) + 3 lowsn = o
— Fn) ~ 1V), Glo) + 2 [
= J(w) = 0V £ 8a) + @) + 2 6@ + V()]

2 2
= o)+ VS 0I (5 = 0) = - LN F, 3(a) + 2 [5G

Here the first equality follows from our update rule while the remaining simply use the definition of § along with
algebraic manipulations. Now taking expectations of both sides, we obtain

2y [Ln? 2 20 2 2
Blf (o)) < Bl o] + BINA@II) (5 =) + 0= LGB + Lt (o} + BY),

where we have invoked the properties of the oracle to bound the last two terms. Summing over iterations & =
1,2,..., K, we obtain

K

K
E[f (@r0)] < (o) + (- n) SCEIVA)] + 0 S (CBi(1 — In) + Ln(o} + BY).
k=1

k=1

Rearranging terms, and using that f(xx41) > f*, we obtain

L iEW et < L@ = @) | 03 (GB(L ~ Ln) + Ln(of + B})
k=1

K(n—Ln?/2) K(n—Ln?/2)
Now using the choice 7 = 1/L and simplifying, we obtain the statement of the theorem. O
The theorem tells us that if we pick an iterate uniformly at random from z1, ...,z k, then it is an approximate sta-

tionary point in expectation, up to an accuracy which is determined by the bias and variance of the stochastic gradient
oracle.

Given this abstract result, we can now prove Theorem [3| by instantiating the errors in the gradient oracle as a function
of our assumptions. The proof is similar with convergence proof of stochastic gradient descent from|Ghadimi and Lan
[2013]], while they do not actually cover the case of biased errors in gradients, which is the reason a first-principles
proof was included here.

Proof of Theorem 3] We now instantiate the result and assumptions for the case of the off-policy policy gradient
method. First, note that the algorithm is stochastic gradient ascent for maximizing the expected return J(6) := R™.
Thus we can apply TheoremE]with f=—J,sothat f(z1) — f* < Vinax where Vi,.x is an upper bound on the value
of any policy in the MDP. f attains a finite minimum value since the expected return has a finite maximum value.
We focus on quantifying the bias B in terms of errors in the critic and propensity score computations first. We first
introduce some additional notation. Suppose wy(s) and QY (s, a) are the true propensity (in terms of state distributions,

dlog mg(als)
00

relative to p) and Q-value functions for a policy 7y. Let gg(s,a) = . Suppose we are given estimators w

and C.j for wg and QY respectively. Then our estimated and true off-policy policy gradients can be written as:
Vo] (0) = E,[wpgeQ™] and ((0) = 1ipgeQ.

Now the bias can be bounded as

IEC(8) — VI(0)16]] = |

B, [wpg0Q” — wpgoQ
< |[Eulw = @)pgo@]| + s w90 (@” — Q)
< By |(w ~ 0)pgo@°) + B, [[[ip0(@° ~ Q)|

< Ey[jw — @l llpgoll 1Q°[] + Eu[Jd] [l pge]l 1Q7 — Q]

By Assumption 2] we have that

1 Omg(als)
v(als) 00

Gmax

)
Vmin

lo(s,a)ga(s, a)| =
Then the bound on the bias simplifies to

Gmax ~ Gmax ~ N
IE[C(0) = VI O] < —Z=E, [lw —]| Q] + ==K, [[0]|Q" - Q]

min min

How we simplify further depends on the assumptions we make on the errors in w and @ As a natural assumption,

~ 2
suppose that the relative errors are bounded in MSE, that is E,, (w(s) —(s))? < 2 and E, <Q9 (s,a) — Q(s, a)) <
eé. Then by Cauchy-Shwartz inequality, we can simplify the above bias term as

IBLC(O) — TIO)611 < S0, [(QU)2] + S /B, [0

Vmin

By Assumptionwe have Q9 < Vinax for all s, a, and

E,[0%) < E,[w(s)® + (w(s) — i(s))?] < Eyw(s)?’] + E,[(w(s) —@(s))?] < o2, + b,
Then the bound on the bias further simplifies to
||E[C(9) - VJ(9)|0]|| S EwC:maux‘/max/Vrnilﬂ + EQG(max V 0-121; + E%U/Vmin
Similarly, for the variance we have

BlIG(0) - VIO 16] < 28, [0 - wipanQ’|] + 28, |[1onao(@ -)]

< 26 anax max/ymln + 25@ (0 +e)Grznax/yrznin'

Hence, the RHS of Theorem []simplifies to

T
2vaax + 10 Zk:l 6%;,]@ max IIla.X/VHlln + 5Q k(g + Ew k)Gmax/V?nin
K K ’

where €, 1, and €¢ j, are the error parameters in the propensity scores and critic at the ky, iteration of our algorithm.
Since we update these quantities online along with the policy parameters, we expect €, ; and £¢ i to decrease as k
increases. That is, assuming that v satisfies the coverage assumptions with finite upper bounds on the propensities and
the policy class is L1psch1tz continuous in its parameters, the scheme converges to an approximate stationary point
given estimators w and Q with a small average MSE across the iterations under v.

C Details for Hard Example of Off-PAC

Consider the problem instance shown in Figure |1} and the policy class describe in the paper. The true state value

function of 7, Vr, satisfies that: V™ (sg) = V7a(s1) = 22 Vma(sy) = 152 Va(s3) =1, V™ (s4) = 0. We

now study the Off-PAC gradient estimator gogpac () in an idealized setting where the critic Q™ is perfectly known.
As per Equation 5 of Degris et al.|[2012]], we have

gOffPAC(a) _ Zdﬂ'b(s) Z aﬂ—a(‘)Qﬂ'a (S a)

S

=JWa(@w&w—Qmmm0
+d™(s2) (Qﬂ“ (s2,0) = Q™ (s2, ”)
=1(1-1/2)+3(0-1/2) =0.
That is, the gradient vanishes for any policy 7., meaning that the algorithm can be arbitrarily sub-optimal at any point

during policy optimization. We note that this does not contradict the previous Off-PAC theorems as the policy class is
not fully expressive in our example, a requirement for their convergence results.

D Details for Experiments
In this section we will show some important details and hyper-parameter settings of our algorithm in experiments.

D.1 Simulation Domains

For the first domain cart pole control problem, the state space is continuous and describes the position and velocity of
cart and pole. The action space consists of applying a unit force to two directions. The horizon is fixed to 200. If the

trajectory ends in less than 200 steps, we pad the episode by continuing to sample actions and repeating the last state.
We use a uniformly random policy to collect n = 500 trajectories as off-policy data. We use neural networks with a
32-unit hidden layer to fit the stationary distribution ratio, actor and critic.

The second domain is an HIV treatment simulation described in Ernst et al.|[2006]. The transition dynamics are mod-
eled by an ODE system in |Ernst et al.|[2006]. The reward consists of a small negative reward for deploying each type
of drug, and a positive reward based on the HIV-specific cytotoxic T-cells which will increase with a proper treatment
schedule. To maximize the total reward in this simulator, algorithms need to do structured treatment interruption (STI),
which aim to achieve a balance between treatment and the adverse effect of abusing drugs. Each trajectory simulates
a treatment period for one patient in 1000 days and each step corresponds to a 5-day interval in the ODE system. We
represent the state by taking logarithm of state features and divide the reward by 108 to ensure they are in a reasonable
range to fit the neural network models. We use neural networks with three 16-unit hidden layers to fit the actor and
state distribution ratio, and a neural network with four 32-unit hidden layers for the critic.

D.2 Hyper-parameters

We use three separate neural networks, one for each of actor, critic, and the state distribution ratio model w. We use
the Adam optimizer for all of them. We also use a entropy regularization for the actor. We warm start the actor by
maximizing the log-likelihood of actor on the collected dataset. For critic, we use the same critic algorithm as we used
in Algorithm [I]except that there is no importance sampling ratio (as it is on-policy for the warm start). For the warm
start of w, we just fit the w for several iterations using the warm start policy found for the actor. Warm start uses the
same learning rates as normal training. For critic and w, we also keep the state of optimizer to be the same when we
start normal training.

Hyper-parameters cart pole HIV
~y 1.0 0.98
A 0. 0.
entropy coefficient 0.01 0.03
learning rate (actor) le-3 5e-6
learning rate (critic) le-3 le-3
learning rate (w) le-3 3e-4
batch size (actor) 5000 5000
batch size (critic) 5000 5000
batch size (w) 200 200
number of iterations (critic) 10 10
number of iterations (w) 50 50
weight decay (w) le-5 le-5
behavior cloning number of iterations 2000 2000
warm start number of iterations (crtic) 500 2500
warm start number of iterations (w) 500 2500

Table 1: Hyper-parameters in experiments

In the Table[T|we show some hyper-parameters setting we used in both domain. We also follow the details in Algorithm

1 and Algorithm 2 of [Liu et al.|[2018a] to learn w. We scale the inputs to w so that the whole off-policy dataset has
zero mean and standard deviation of 1 along each dimension in state space. We use the RBF kernel to compute the
loss function for w. For the cart pole simulator, the kernel bandwidth is set to be the median of state distance. If
computing this median state distance over the whole off-policy dataset is computationally too expensive, it can be
approximated using a mini-batch. In the HIV domain the bandwidth is set to be 1. When we compute the loss of w,
we need to sample two mini-batch independently to get an unbiased estimates of the quadratic loss. The loss in each
pair of mini-batch is normalized by the sum of kernel matrix elements computed from them.

D.3 Choice of Algorithm with Discounted Reward

In discounted reward settings, the state distribution is also defined with respect to the discount factor v, and |Liu et al.
[2018a] introduce an algorithm to learn state distribution ratio in this setting. However, we notice that in on-policy
policy learning cases, though the policy gradient theorem [Sutton et al., |2000] requires samples from the stationary
state distribution defined using the discount factor, it is common to directly use the collected samples to compute policy
gradient without re-sampling/re-weighting (s, a, r, s')’s according to the discounted stationary distribution. This might
be driven by sample efficiency concerns, as samples at later time-steps in the discounted stationary distribution will
receive exponentially small probability, meaning they are not leveraged as effectively by the algorithm. Given this,
we compare three different variants of our algorithm in HIV experiment with discounted reward. The first (OPPOSD
average) variant uses the algorithm for the average reward setting, but evaluates its discounted reward. The second
learns the state distribution ratio w(s) in the discounted case (Algorithm 2 in [Liu et al., [2018a]), but still samples
from the undiscounted distribution to compute the gradient (OPPOSD disc w). The third learns the state distribution

ratio w(s) in the discounted case and also re-samples the samples according to d™(s) = Tlim ﬁ ZtT:O YT (s)
— 00 t=0

(OPPOSD). In the main body of paper, we select the third one as it is the most natural way from the definition of
problem and policy gradient theorem. Results of these three methods are demonstrated in Figure @] and they do not
have significant differences in this experiment.

1e8 HIV treatment
3.0
—— Off-PAC
2.5 OPPOSD average
—&— OPPOSD disc w
2.01 — OPPOSD
o —— ACER
215 — sac AW Vi
> Behavior Policy
1.0 d
051 /—m
00{ = =
0 1000 2000 3000 4000 5000

Number of policy gradient step

Figure 4: Episodic scores over length 200 episodes in HIV treatment simulator.

E Discussion on Related Off-Policy Learning Algorithms

There are also many different algorithms which have been built using Off-PAC [Degris et al., 2012]] and improve Off-
PAC in different directions, such as DDPG [Lillicrap et al., 2015], ACER [Wang et al., 2016]], etc. They are orthogonal
to our work and our state distribution correction techniques are composable with these further improvements in the
Off-PAC framework. For understanding the impact of correcting the stationary distribution, in the experiment section
of this work we therefore focus on ablation comparison with Off-PAC. It would be interesting to combine our work
with the additional contributions of DDPG, ACER etc. to derive improved variants of each of those algorithms.

We also wish to clarify that some previous off-policy policy gradient algorithms such as DDPG, SAC [Haarnoja et al.,
2018|] and ACER focus on a different setting with this paper — they consider online off policy where data is collected
every iteration using the current policy with potentially noise, and the off policy nature comes from when updating to

a new policy, the algorithms use all the data collected across previous iterations. In contrast our focus and experiments
are on batch off policy learning, where data is collected in advance from a behavior policy and a new policy is
computed using only that batch dataset. The difference between the online off-policy and batch off-policy settings is
important since algorithms that receive periodic access to new samples gathered using the current policy may benefit
significantly. To illustrate the difference in the two settings, we ran SAC and related ACER in our batch off-policy
setting in the experimental section. SAC is proposed for continuous actions setting in their paper and available code,
and we re-derive the policy gradient updates for discrete actions.

We separate out discussion of SBEED [Dai et al., [2018]] since its theoretical results are derived for a similar batch off
policy RL setting as our approach. However, it has not been experimentally evaluated in a batch off-policy setting
(their empirical results were for off policy RL as described above where more data is collected). SBEED advances
over a number of prior theoretical results on sample complexity for value function approaches for batch off policy
learning [Antos et al., 2008]]. In contrast, in policy gradient methods there has not even existed a statistically consistent
procedure for batch off-policy learning, and this is the fundamental contribution of our work. In many domains policy
optimization techniques are the methods of choice, and policy improvement from a reasonable policy is often more
natural in safety critical applications. Since these are the types of applications where off-policy carries the most
appeal, we focus on the class of policy optimization algorithms that can work in a batch off-policy setting. We can
possibly leverage similar techniques in value function learning too, and we view that development along with a detailed
evaluation against other value function learning methods as future work.

	Proof of Theorem 1
	Proof of Theorem 3
	Details for Hard Example of Off-PAC
	Details for Experiments
	Simulation Domains
	Hyper-parameters
	Choice of Algorithm with Discounted Reward

	Discussion on Related Off-Policy Learning Algorithms

