
7 Supplementary

7.1 Hyper-parameters

We provide the experimental settings and hyper-
parameters for ease of reproducibility of the results.

Table 2: Classifier : Hyper-parameters

Hyper-parameter Value

Hidden Units 64
# Hidden Layers 2 (Inp-64-64-Out)
Activation ReLU
Batch-Size 64
Learning Rate 0.001
Optimizer Adam

(β1 = 0.90, β2 = 0.999)
# Epoch 20
Regularizer L2 (0.001)

Table 3: CGAN : Hyper-parameters

Hyper-parameter Value

Hidden Units 256
# Hidden Layers 2 (Inp-256-256-Out)
Activation Leaky ReLU(0.2)
Batch-Size 128
Learning Rate 1e− 4
Optimizer Adam

(β1 = 0.5, β2 = 0.9)
# Epoch 100
Noise dimension 20
Noise distribution U(−1.0, 1.0)ds

Table 4: CVAE : Hyper-parameters

Hyper-parameter Value

Hidden Units 256
# Hidden Layers 2 (Inp-256-256-Out)
Activation Leaky ReLU(0.2)
Batch-Size 128
Learning Rate 1e− 4
Optimizer Adam

(β1 = 0.5, β2 = 0.9)
# Epoch 20
Dropout 0.9
Latent dimension 20

Table 5: f-MINE : Hyper-parameters

Hyper-parameter Value

Hidden Units 64
# Hidden Layers 1 (Inp-64-Out)
Activation ReLU
Batch-Size 128 (512 for DV-MINE)
Learning Rate 1e− 4
Optimizer Adam

(β1 = 0.5, β2 = 0.999)
# Epoch 200

Table 6: AuROC : Flow-Cytometry Data (Mean ± Std.
of 5 runs.

Tester AuROC

CCIT 0.6665± 0.006
CCMI 0.7569± 0.047

7.2 Calibration Curve

Figure 6: Calibrated Classifiers : We find that our clas-
sifiers trained with L2-regularization and two hidden
layers are well-calibrated. The calibration is obtained
for MI Estimation of Correlated Gaussians with dx =
10, ρ = 0.5

While Niculescu-Mizil and Caruana (2005) showed that
neural networks for binary classification produce well-
calibrated outputs. the authors in Guo et al. (2017)
found miscalibration in deep networks with batch-
normalization and no L2 regularization. In our experi-
ments, the classifier is shallow, consisting of only 2 lay-
ers with relatively small number of hidden units. There is
no batch-normalization or dropout used. Instead, we use
L2-regularization which was shown in Guo et al. (2017)
to be favorable for calibration. Figure 6 shows that our
classifiers are well-calibrated.



(a) dx = dy = 5, N = 500, (b) dx = dy = 5, N = 5000

(c) dx = dy = 20, N = 500 (d) dx = dy = 20, N = 5000

Figure 7: The Donsker-Varadhan Representation provides a lower bound of the true MI. For each hyper-paramter
choice, the estimates lie below I∗(X;Y ). An optimal estimator would return the maximum estimate from multiple
hyper-parameter choices for a given data-set. Estimates are plotted for Correlation Gaussians introduced in Figure 1.

7.3 Choosing Optimal Hyper-parameter

The Donsker-Varadhan representation 1 is a lower bound
on the true MI estimate (which is the supremum over all
functions). So, for any classifier parameter, the plug-in
estimate value computed on the test samples will be less
than or equal to the true value I(X;Y ) with high prob-
ability (Theorem 2). We illustrate this using estimation
of MI for Correlated Gaussians in Figure 7. The esti-
mated value lies below the true values of MI. Thus, the
optimal hyper-parameter is the one that returns the max-
imum value of MI estimate on the test set.

Once we have this block that returns the maximum MI
estimate after searching over hyper-parameters, CMI es-
timate in CCMI is the difference of two MI estimates,
calling this block twice.

We also plot the AuROC curves for the two choices of
number of hidden units in flow-Cytometry data (Figure
9b) and post Non-linear noise synthetic data (Figure 9a).
When the number of samples is high, the estimates are
pretty robust to hyper-parameter choice (Figure 7 (b),
9a). But in sparse sample regime, proper choice of hyper-
parameter can improve performance (Figure 9b).

7.4 Additional Figures and Tables

• For Flow-Cytometry data-set, we used number of
hidden units = 64 for Classifier and trained for 10

Figure 8: Logistic Regression Fails to Classify points
from p(x1, x2) (colored red) and those from p(x1)p(x2)
(colored blue).

epochs. Table 6 shows the mean AuROC values for
two CIT testers.

• Figure 8 shows the distribution of points from
p(x1, x2) and p(x1)p(x2). Here the classifier would
return 0.5 as prediction for either class (leading to
D̂KL = 0), even though X1 and X2 are highly cor-
related (ρ = 0.99) and the mutual information is
high.



(a) Post Non-linear noise data-sets (b) Flow-Cytometry data-sets

Figure 9: Hyper-parameter Sensitivity : We observe the performance in conditional independence testing with number
of hidden units as 64 Vs 256, keeping all other hyper-parameters the same in respective cases.

8 Theoretical Properties of CCMI

In this Section, we explore some of the theoretical prop-
erties of CCMI. Let the samples xi ∼ p(x) be labeled as
l = 1 and xj ∼ q(x) be labeled as l = 0. Let Pr(l =
1) = Pr(l = 0) = 0.5. The positive label probability
for a given point x is denoted as γ(x) = Pr(l = 1|x).
When the prediction is from a classifier with parameter
θ, then it is denoted as γθ(x). The argument x of γ is
dropped when it is understood from the context.

The following assumptions are used throughout this Sec-
tion.

• Assumption (A1) : The underlying data distribu-
tions p(·) and q(·) admit densities in a compact sub-
set X ⊂ Rdx .

• Assumption (A2) : ∃ α, β > 0, such that α ≤
p(x), q(x) ≤ β ∀x.

• Assumption (A3) : We clip predictions in algorithm
such that γ(x) ∈ [τ, 1 − τ ]∀x, with 0 < τ ≤
α/(α+ β).

• Assumption (A4) : The classifier class Cθ is param-
eterized by θ in some compact domain Θ ⊂ Rh. ∃
constant K, such that ‖θ‖ ≤ K and the output of
the classifier is L-Lipschitz with respect to parame-
ters θ.

Notation and Computation Procedure

• In the case of mutual information estimation
I(U ;V ), x ∈ Rdu+dv represents the concatenated
data point (u, v). To be precise, p(x) = p(u, v) and
q(x) = p(u)p(v).

• In the proofs below, we need to compute the Lip-
schitz constant for various functions. The general

procedure for those computations are as follows.

|φ(x)− φ(y)| ≤ Lφ|x− y|

We compute Lφ using supz |φ′(z)|, z ∈
domain(φ). The functions encountered in the
proofs are continuous, differentiable and have
bounded domains.

• The binary-cross entropy loss estimated from n
samples is

BCEn(γ) = −

(
1

n

∑
i

li log γ(xi)+

(1− li) log(1− γ(xi))

)
(4)

When computed on the train samples (resp. test
samples), it is denoted as BCEERM

n (γ) (resp.
BCEn(γ)). The population mean over the joint dis-
tribution of data and labels is

BCE(γ) = − (EXLL log γ(X)+

(1− L) log(1− γ(X))) (5)

• The estimate of MI from n test samples for classifier
parameter θ̂ is given by

I
γθ̂
n =

1

n

n∑
i=1

log
γθ̂(xi)

1− γθ̂(xi)
−log

 1

n

n∑
j=1

γθ̂(xj)

1− γθ̂(xj)


The population estimate for classifier parameter θ̂ is
given by

Iγθ̂ = E
x∼p

log
γθ̂(x)

1− γθ̂(x)
− log

(
E
x∼q

γθ̂(x)

1− γθ̂(x)

)
Theorem 3 (Theorem 1 restated). Classifier-MI is con-
sistent, i.e., given ε, δ > 0,∃n ∈ N, such that with prob-
ability at least 1− δ, we have

|Iγθ̂n (U ;V )− I(U ;V )| ≤ ε



Intuition of Proof

The classifier is trained to minimize the empirical risk on
the train set and obtains the minimizer as θ̂. From gen-
eralization bound of classifier, this loss value (BCE(γθ̂))
on the test set is close to the loss obtained by the best
optimizer in the classifier family (BCE(γθ̃)), which it-
self is close to the loss from global optimizer γ∗ (viz.
BCE(γ∗)) by Universal Function Approximation Theo-
rem of neural-networks.

The BCE loss is strongly convex in γ. γ links BCE to
I(· ; ·), i.e., |BCEn(γθ̂) − BCE(γ∗)| ≤ ε′ =⇒ ‖γθ̂ −
γ∗‖1 ≤ η =⇒ |În(U ;V )− I(U ;V )| ≤ ε.
Lemma 3 (Likelihood-Ratio from Cross-Entropy Loss).
The point-wise minimizer of binary cross-entropy loss
γ∗(x) is related to the likelihood ratio as γ∗(x)

1−γ∗(x) =
p(x)
q(x) , where γ∗(x) = Pr(l = 1|x) and l is the label
of point x.

Proof. The binary cross entropy loss as a function of
gamma is defined in (5). Now,

EXLL log γ(X) =
∑
x,l

p(x, l)l log γ(x)

=
∑
x,l=1

p(x|l = 1)p(l = 1) log γ(x) + 0

=
1

2

∑
x

p(x) log γ(x)

Similarly,

EXL(1−L) log(1− γ(X)) =
1

2

∑
x

q(x) log(1− γ(x))

Using these in the expression for BCE(γ), we obtain

BCE(γ) = −1

2

(∑
x∈X

p(x) log γ(x) + q(x) log(1− γ(x))

)

The point-wise minimizer γ∗ of BCE(γ) gives
γ∗(x)

1−γ∗(x) = p(x)
q(x) .

Lemma 4 (Function Approximation). Given ε′ > 0,
∃ θ̃ ∈ Θ such that

BCE(γθ̃) ≤ BCE(γ∗) +
ε′

2

Proof. The last layer of the neural network being sig-
moid (followed by clipping to [τ, 1− τ ]) ensures that the

outputs are bounded. So by the Universal Function Ap-
proximation Theorem for multi-layer feed-forward neu-
ral networks (Hornik et al. 1989), ∃ parameter θ̃ such that
|γ∗ − γθ̃| ≤ ε′′ ∀x, where γθ̃ is the estimated classifier
prediction function with parameter θ̃. So,

|BCE(γθ̃)− BCE(γ∗)| ≤ 1

τ
ε′′

since log is Lipshitz continuous with constant 1
τ . Choose

ε′′ = ε′τ
2 to complete the proof.

Lemma 5 (Generalization). Given ε′, δ > 0, ∀n ≥
18M2

ε′2 (h log(96KL
√
d/ε′) + log(2/δ)), such that with

probability at least 1− δ, we have

BCEn(γθ̂) ≤ BCE(γθ̃) +
ε′

2

Proof. Let θ̂ ← arg min
θ

BCEERM
n (γθ).

From Hoeffding’s inequality,

Pr
(
|BCEERM

n (γθ)− BCE(γθ)| ≥ µ
)
≤ 2 exp

(
−2nµ2

M2

)
where M = log

(
1−τ
τ

)
.

Similarly, for the test samples,

Pr (|BCEn(γθ)− BCE(γθ)| ≥ µ) ≤ 2 exp

(
−2nµ2

M2

)
(6)

We want this to hold for all parameters θ ∈ Θ. This
is obtained using the covering number of the compact
domain Θ ⊂ Rh. We use small balls Br(θj) of radius
r centered at θj so that Θ ⊂ ∪jBr(θj) The covering
number κ(Θ, r) is finite as Θ is compact and is bounded
as

κ(Θ, r) ≤

(
2K
√
h

r

)h
Using the union bound on these finite hypotheses,

Pr

(
max
θ
|BCEERM

n (γθ)− BCE(γθ)| ≥ µ
)

≤ 2κ(Θ, r) exp

(
−2nµ2

M2

)
(7)

Choose r = µ
8L (Mohri et al. 2018). Solving for number

of samples nwith 2κ(Θ, r) exp
(
−2nµ2

M2

)
≤ δ, we obtain

n ≥ M2

2µ2 (h log(16KL
√
d/µ) + log(2/δ)).



So for n ≥ M2

2µ2 (h log(16KL
√
d/µ) + log(2/δ)), with

probability at least 1− δ,

BCEn(γθ̂)
(a)

≤ BCE(γθ̂) + µ
(b)

≤ BCEERM
n (γθ̂) + 2µ

(c)

≤ BCEERM
n (γθ̃) + 2µ

(d)

≤ BCE(γθ̃) + 3µ

(a) follows from (6). (b) and (d) follow from (7). (c)

is due to the fact that θ̂ is the minimizer of train loss.
Choosing µ = ε′/6 completes the proof.

Lemma 6 (Convergence to minimizer). Given ε′ > 0,

∃ η
(

= (1− τ)
√

2λ(X )ε′

α

)
> 0 such that whenever

BCE(γθ)− BCE(γ∗) ≤ ε′, we have

‖ ~γθ − ~γ∗‖1 ≤ η

where ~γ = [γ(x)]x∈X and λ(X ) is the Lebesgue measure
of compact set X ⊂ Rdx .

Proof.

BCE(γ) = −1

2

(∑
x∈X

p(x) log γ(x) + q(x) log(1− γ(x))

)
is α′-strongly convex as a function of ~γ under Assump-
tion (A2), where α′ = α

(1−τ)2 . So ∀γ , ∂2BCE
∂γ(xk)∂γ(xl)

≥ α′
for k = l and 0 otherwise. Using the Taylor expansion
for strongly convex functions, we have

BCE( ~γθ) ≥ BCE( ~γ∗) + 〈∇BCE( ~γ∗), ~γθ − ~γ∗〉

+
α′

2
‖ ~γθ − ~γ∗‖22

Since ~γ∗ is the minimizer,∇BCE( ~γ∗) = 0. So,

‖ ~γ∗ − ~γθ‖2

≤ (1− τ)

√
2

α

(
BCE( ~γθ)− BCE( ~γ∗)

)
=⇒ ‖ ~γ∗ − ~γθ‖2 ≤ (1− τ)

√
2

α
ε′

From Holder’s inequality in finite measure space,

‖ ~γ∗ − ~γθ‖1 ≤
√
λ(X )‖ ~γ∗ − ~γθ‖2

≤ (1− τ)

√
2

α
λ(X )ε′ = η

Lemma 7 (Estimation from Samples). Given ε > 0, for
any classifier with parameter θ ∈ Θ, ∃n ∈ N such that
with probability 1,

|Iγθn (U ;V )− Iγθ (U ;V )| ≤ ε

2

Proof. We denote the empirical estimates as E
x∼pn

(·) and

E
x∼qn

(·) respectively. The proof essentially relies on the

empirical mean of functions of independent random vari-
ables converging to the true mean. More specifically, we
consider the functions fθ(x) = log γθ(x)

1−γθ(x) and gθ(x) =

γθ(x)
1−γθ(x) . Since γ(x) ∈ [τ, 1− τ ], both f(x) and g(x) are
bounded. (f ∈ [log τ

1−τ , log 1−τ
τ ] and g ∈ [ τ

1−τ ,
1−τ
τ ]).

Functions of independent random variables are indepen-
dent. Also, since the functions are bounded, they have
finite mean and variance. Invoking the law of large num-
bers, ∃n ≥ n′1(ε) such that with probability 1

| E
x∼pn

fθ − E
x∼p

fθ| ≤ ε

4
(8)

and ∃n ≥ n′2(ε) such that with probability 1

| E
x∼qn

gθ − E
x∼q

gθ| ≤ ετ

4(1− τ)
(9)

Then, for n ≥ max(n′1(ε), n′2(ε)), we have with proba-
bility 1

|Iγθn (U ;V )− Iγθ (U ;V )|
≤ | E

x∼pn
fθ − E

x∼p
fθ|+ | log E

x∼qn
gθ − log E

x∼q
gθ|

≤ | E
x∼pn

fθ − E
x∼p

fθ|+ 1− τ
τ
| E
x∼qn

gθ − E
x∼q

gθ|

=
ε

4
+
ε

4
=
ε

2

where in the last inequality, we use the Lipschitz constant
for log with the bounded function g as argument.

Proof of Theorem 3

Using Proposition 1, Iγ
∗
(U ;V ) = I(U ;V ), where γ∗ is

the unique global minimizer of BCE(γ).

The empirical risk minimizer of BCE loss is θ̂. For a rich
enough class Θ and large enough samples n, Lemma 5
and Lemma 4 combine to give BCEn(γθ̂)−BCE(γ∗) ≤

ε′. Applying Lemma 6 with ε′ = α
8λ(X )

(
η

β(1−τ

)2
, we

have ‖ ~γ∗ − ~γθ̂‖1 ≤
η
2β . This further implies that

E
x∼p
|γ∗ − γ̂θ̂| ≤

η

2
(10)

and
E
x∼q
|γ∗ − γ̂θ̂| ≤

η

2
(11)

We now compute the Lipschitz constant for f = log γ
1−γ

as a function of γ, which links the classifier predictions



to Donsker-Varadhan representation.

|f∗ − f̂ θ̂| = | log
γ∗

1− γ∗
− log

γ̂θ̂
1− γ̂θ̂

| ≤ 1

τ2
|γ∗ − γ̂θ̂|

and

|ef
∗
− ef̂

θ̂

| = | γ∗

1− γ∗
−

γ̂θ̂
1− γ̂θ̂

| ≤ 1

τ2
|γ∗ − γ̂θ̂|

For γ ∈ [τ, 1− τ ], the function f ∈ [log τ
1−τ , log 1−τ

τ ] is
continuous and bounded with Lipschitz constant 1

τ2 . So,
using (10) and (11),

E
x∼p
|f∗ − f̂ θ̂| ≤ 1

τ2
η

2
and E

x∼q
|ef
∗
− ef̂

θ̂

| ≤ 1

τ2
η

2

Finally, from the Donsker-Varadhan representation 1,

|I(U ;V )− Iγθ̂ (U ;V )| ≤ | E
x∼p

f∗ − E
x∼p

f̂ θ̂|+

| log E
x∼q

ef
∗
− log E

x∼q
ef̂

θ̂

|

≤ E
x∼p
|f∗ − f̂ θ̂|+ E

x∼q
|ef
∗
− ef̂

θ̂

|

=
η

2τ2
+

η

2τ2
=

η

τ2
(12)

where we use the inequality log(t) ≤ t− 1 coupled with
the fact that E

x∼q
ef
∗

= 1. Given ε > 0, we choose η =

τ2 ε2 .

To complete the proof, we combine the above result (12)
with Lemma 7 using Triangle Inequality,

|Iγθ̂n (U ;V )− I(U ;V )|
≤|Iγθ̂n (U ;V )− Iγθ̂ (U ;V )|+ |Iγθ̂ (U ;V )− I(U ;V )|
ε

2
+
ε

2
= ε

Corollary 1. CCMI is consistent.

Proof. For each individual MI estimation, we can ob-
tain the classifier parameter θ1(resp. θ2) ∈ Θ such that
Theorem 1 holds with approximation accuracy ε/2. So,
∃n ≥ n1(ε/2) such that with probability at least 1− δ

|Îγθ1n (X;Y Z)− I(X;Y Z)| ≤ ε

2

and n ≥ n2(ε/2) such that with probability at least 1− δ

|Îγθ2n (X;Z)− I(X;Z)| ≤ ε

2

Using Triangle inequality, for n ≥ max(n1, n2), with
probability at least 1− δ, we have

|În(X;Y |Z)− I(X;Y |Z)|
= |Îγθ1n (X;Y,Z)− Îγθ2n (X;Z)− I(X;Y, Z) + I(X;Z)|
≤ |Îγθ1n (X;Y,Z)− I(X;Y,Z)|+ |Îγθ2n (X;Z)− I(X;Z)|

≤ ε

2
+
ε

2
= ε

Theorem 4 (Theorem 2 restated). The finite sample esti-
mate from Classifier-MI is a lower bound on the true MI
value with high probability, i.e., given n test samples and
the trained classifier parameter θ̂, we have for ε > 0

Pr(I(U ;V ) + ε ≥ Iγθ̂n (U ;V )) ≥ 1− 2 exp(−Cn)

where C is some constant independent of n and the di-
mension of the data.

Proof.

I(U ;V ) = max
γ

Iγ(U ;V )) ≥ max
θ
Iγθ (U ;V )) ≥ Iγθ̂ (U ;V ))

We apply one-sided Hoeffding’s inequality to (8) and (9)
with given ε > 0,

Pr( E
x∼pn

f θ̂ − E
x∼p

f θ̂ ≤ ε

2
)

≥ 1− exp

(
− nε2

8(log((1− τ)/τ))2

)
= 1− exp(−C1nε

2)

Pr

(
E
x∼p

gθ̂ − E
x∼pn

gθ̂ ≤ ετ

2(1− τ)

)
≥ 1−exp

(
−nε

2

2

(
τ

1− τ

)4
)

= 1−exp(−C2nε
2)

Pr
(
I
γθ̂
n (U ;V )) ≤ Iγθ̂ (U ;V )) + ε

)
≥ 1− 2 exp(−Cn)

where C = ε2 min(C1, C2).


