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Abstract

Instrumental variables allow the estimation
of cause and effect relations even in pres-
ence of unobserved latent factors, thus provid-
ing a powerful tool for any science wherein
causal inference plays an important role.
More recently, the instrumental scenario has
also attracted increasing attention in quantum
physics, since it is related to the seminal Bell’s
theorem and in fact allows the detection of
even stronger quantum effects, thus enhancing
our current capabilities to process information
and becoming a valuable tool in quantum cryp-
tography. In this work, we further explore this
bridge between causality and quantum theory
and apply a technique, originally developed in
the field of quantum foundations, to express
the constraints implied by causal relations in
the language of graph theory. This new ap-
proach can be applied to any causal model con-
taining a latent variable. Here, by focusing on
the instrumental scenario, it allows us to easily
reproduce known results as well as obtain new
ones and gain new insights on the connections
and differences between the instrumental and
the Bell scenarios.

1 INTRODUCTION

Inferring whether a variable A is the cause of another
variable B is at the core of causal inference [1]. How-
ever, unless interventions are available [2], one can can-
not exclude that observed correlations between A and B
are due to a latent common factor, thus hindering any
causal conclusions. To cope with that, instrumental vari-
ables (IV) have been introduced [3, 4]. Under the as-
sumption that they are independent of any latent com-
mon factors Λ, IV can be used to put non-trivial bounds

on the causal effect between A and B. However, first,
one has to guarantee that an appropriate instrument (ful-
filling a set of causal constraints) has been employed,
which is precisely the goal of the so-called instrumen-
tal tests [3, 4, 6, 7]. Their violation, at least in classical
physics, is an unambiguous proof that some of the causal
assumptions underlying the instrumental causal structure
are not fulfilled, that is, one should identify and use an-
other instrumental variable.

Instrumental tests have firstly been introduced in econo-
metrics [5] and further explored by Pearl [3], in the
form of inequalities providing a necessary condition for
a given observed probability distribution to be compat-
ible with the instrumental causal structure. Following
that, Bonet [4] introduced a general framework also fol-
lowed in [6], showing that the instrumental correlations
define a polytope, a convex set from which the non-trivial
boundaries are precisely the instrumental inequalities.
Bonet’s framework allows for the derivation of new in-
equalities as well as proving general results, for instance,
the fact that if variable A is continuous, no instrumental
test exists. However, two main drawbacks arise. First,
the systematic derivation of new inequalities quickly be-
comes unfeasible as the variables’ cardinalities increase.
Second, as recently shown, in quantum physics, viola-
tions of the instrumental tests are possible even though
the whole process is indeed subjected to an instrumental
causal structure [8, 9]. In the quantum case, instrumen-
tality violations witness the presence of quantum entan-
glement as the latent factor and prove a stronger form
of quantum non-locality compared to the famous Bell’s
theorem [8]. As a consequence, typical bounds on the
causal influence of A into B have to be reevaluated and
reinterpreted in the presence of quantum effects.

Our aim in this paper is to provide a novel and com-
plementary framework to the analysis of instrumental
tests, which also addresses the two drawbacks mentioned
above. The proposed method is based on a graph theoret-
ical approach introduced in the foundations of quantum



Figure 1: Directed acyclic graph (DAG) representation
for a) a general Instrumental scenario, with l possible
values for the random variable X and m,n possible out-
comes for A and B respectively, and for b) the CHSH
scenario [12] where all the variables X,Y,A and B can
only take two possible values.

physics to analyze the possible correlations obtained in
quantum experiments [10, 11]. This method allow us to
reproduce the classical results by Bonet and to straight-
forwardly generalize them in the quantum scenario. It
also offers an easy and general way – valid for any causal
scenario involving a single latent variable – to check for
the incompatibility between the quantum and classical
descriptions.

The paper is organized as follows: first we provide the
necessary background for our work, describing the in-
strumental and Bell scenarios from both classical and
quantum perspectives and introducing the exclusivity
graph approach. We then show the versatily of our
framework by rederiving and generalizing known results
in the literature, obtaining new instrumental inequalities
that hardly could be found by standard means and of-
fering new insights about the similarities and differences
between instrumental and Bell inequalities.

2 INSTRUMENTAL VARIABLES,
ESTIMATION OF CAUSAL
INFLUENCES AND A NEW FORM
OF QUANTUM NON-LOCALITY

We represent causal relations via directed acyclic graphs
(DAG), where the nodes represent random variables in-
terconnected by directed edges (arrows) accounting for
their cause and effect relations [2]. A set of variables
(X1, . . . , Xn) form a Bayesian network with respect to
the graph if every variableXi can be expressed as a func-
tion of its parents PAi and potentially an unobserved
noise term Ui, such that Ui are jointly independent. This
implies that the probability distribution of such variables
should have a Markov decomposition 1

p(x1, . . . , xn) =

n∏
i=1

p(xi|pai). (1)

Importantly, a DAG typically implies non-trivial con-
straints over the probability distributions that are compat-
ible with it. That is, simply from observational data and
without the need of interventions, one can test whether
some observed correlations are incompatible with some
causal hypotheses.

Within this context, an important DAG is that corre-
sponding to the instrumental scenario (see Fig.1-a). Fol-
lowing the Markov decomposition, any empirical data
encoded in the probability distribution p(a, b|x) and
compatible with the instrumental causal structure can be
decomposed as

p(a, b|x) =
∑
λ

p(a|x, λ)p(b|a, λ)p(λ). (2)

Two causal assumptions are employed to arrive to the
above decomposition. i) The first assumption p(x, λ) =
p(x)p(λ), implies the independence of the instrument
and the common ancestor. ii) The second assumption
requests that, even though X and B can be correlated,
all these correlations are mediated by A. In other terms,
there is no direct causal influence between X and B:
p(b|x, a, λ) = p(b|a, λ).

The instrumental variables have been originally intro-
duced to estimate parameters in econometric models of
supply and demand [13] and, since then, have found
a wide range of applications in various other fields
[14, 15]. To illustrate its power, consider that variablesA
and B are related by a simple linear equation, i.e. B =
γA+ Λ, where Λ may represent a latent common factor.

1Uppercase letters label variables and lowercase label the
values taken by them, for instance, p(Xi = xi, Xj = xj) ≡
p(xi, xj).



By assumption, the instrumental variable X should be
independent of Λ, thus implying that the causal strength
can be estimated as γ = Cov(X,B)/Cov(X,A) where
Cov(X,A) is the covariance between X and A. Strik-
ingly, one can estimate the causal strength even without
any information about the latent factor Λ. More gener-
ally, and without assumptions about the functional de-
pendence among the variables, the empirical data en-
coded in the probability distribution p(a, b|x) can also be
used to bound different quantifiers of causality between
A and B [2, 16].

Clearly, however, to draw any causal conclusions, first
it is necessary to certify that one has a valid instrument.
This is achieved via instrumental inequalities, first intro-
duced by Pearl [3]. If we allow the variables X , A, B to
take the values in the range x = 1, . . . , l, a = 1, . . . ,m
and b = 1, . . . , n Pearl showed that the instrumental
causal structure implies (independently of any assump-
tion about the functional dependence among the vari-
ables) that

n∑
j=0

P (ij|k(i, j)) ≤ 1, (3)

for all i ∈ 1, . . . ,m and for all the possible functions
k(i, j) where p(i, j|k) = p(a = i, b = j|x = k).

Extending these results, Bonet [4] provided a general ge-
ometric framework for the derivation of instrumental in-
equalities. Instrumental correlations define a convex set,
a polytope described by finitely many extremal points, or
alternatively by a finite number of facets, among which,
the non-trivial are precisely the instrumental inequalities.
In particular, considering the case (l,m, n) = (3, 2, 2),
it was proven that there are two inequivalent classes of
instrumental inequalities (those not obtained from each
other by permuting the labels of i, j and k). One class
corresponding to Pearl’s inequality (3) and the other
given by

P (00|0) + P (11|0) + P (00|1)+

+ P (10|1) + P (01|2) ≤ 2. (4)

All these conclusions and results, however, rely on a clas-
sical description of causal and effect relations (implic-
itly) invoking the realism assumption: the probabilities
of a given measurement have well defined values even if
such measurements are not performed. However, since
Bell’s theorem [17] we know that this do not apply to
the world governed by quantum mechanics, thus imply-
ing that standard causal models, even if augmented with
latent variables, are not enough to explain quantum phe-
nomena. Bell’s theorem relies on the causal structure
shown in Fig. 1-b, similar to the instrumental one but
with two crucial causal differences: i) variable A has no

causal influence over B and ii) B has its own instrument
Y and thus the correlations are encoded in a probability
distribution p(ab|xy). This has motivated the question
of whether many of the cornerstones in causal inference
have to be re-evaluated or reinterpreted in the presence of
quantum effects [18, 19, 20, 21, 22]. Indeed, as recently
shown [8], violations of the instrumental tests are pos-
sible even though the causal constraints underlying the
instrumental scenario are fulfilled. As shown in the ex-
perimental implementation of the instrumental test [8],
this is possible due to the presence of quantum entan-
glement that precludes the explanation of the data via
a latent common factor. Interestingly, every probability
distribution violating the simplest possible Bell inequal-
ity, known as Clauser-Horne-Shimony-Holt (CHSH) in-
equality [12], can after some post-processing also vio-
late Bonet’s inequality [9]. As we will see, the graph-
theoretical approach will allow us a more systematic un-
derstanding of the similarities and differences between
the Bell and instrumental scenarios.

Altogether, this shows the necessity of a new unifying
framework, not only considering what are the classical
instrumental correlations but as well the ones achievable
if the underlying latent factor might have a quantum ori-
gin. In the following we will achieve that by proposing
a graph-theoretical approach to analyze the instrumental
inequalities.

3 THE EXCLUSIVITY GRAPH
APPROACH

The graph-theoretical approach we propose here, was
initially developed for the study of non-contextual in-
equalities [10] as well as Bell non-locality scenarios [23].
The purpose of this method is to easily obtain constraints
on the probability distribution, in the same spirit of the
Pearl’s and Bonet’s inequalities, for classical and quan-
tum systems. In the following we will have a set of ran-
dom variables A1, . . . , AN representing the outcomes of
measurements performed on our physical system, and
another set X1, . . . , XM , a number of measurement set-
tings that can be chosen by the experimenter, which
serve the same purpose of the instrument in the IV sce-
nario. In the exclusivity graph formalism, every possible
event, i.e. every possible set of measurement outcomes
a1, . . . , aN corresponding to given measurement settings
x1, . . . , xM , is associated to a vertex in a (undirected)
graph G = (V,E). Two vertices u, v ∈ V are connected
by an edge (u, v) ∈ E if and only if they are exclusive,
i.e., if there is a measurement/instrument that can distin-
guish between them. Intuitively, two events are exclusive
when they cannot happen simultaneously in the same run
of the experiment. For example, in the Bell scenario de-



picted in Fig. 1-b, events where we get a = 0 or a = 1,
while setting x = 0 for both, are exclusive, since only
one of them can happen in a single run of the experi-
ment. On the contrary, if the setting x is different (for
example x = 1 for a = 0 and x = 0 for a = 1), the
events will not be exclusive since a single experimental
test cannot distinguish between them. In the next section
we will provide a precise definition of exclusivity which
will allow us to extend this concept to a wide range of
causal models.

Any linear constraint (like the instrumental inequalities)
can be expressed by a linear function

Iw(p) =
∑

a1,...,an
x1,...,xn

wa,xp(a1, . . . , an|x1, . . . , xn), (5)

on the probabilities of possible events. This linear func-
tion can be embedded in an exclusivity graph by weight-
ing the vertices in G with the {wa,x}, so that it can be
written as a function of G = (V,E) and its weights as

I(G,w) =
∑
v∈V

wvp(v). (6)

Nicely, as it will be discussed below, bounds for the max-
imum values of Iw(p), achievable both in the classical
and quantum cases, can be related to two well-known
graph invariants [10]: the independence number α(G,w)
and the Lovász theta θ(G,w), respectively. In the fol-
lowing, we will briefly introduce these concepts and their
interconnections, a more extensive and detailed account
can be found in [10, 11, 23]

Consider a graph G(V,E) with vertex weights w, and
|V | = n. We call a characteristic labelling for U ⊆ V
a vector xv ∈ {0, 1}n such that xv = 1 if v ∈ U and
xv = 0 otherwise. An independent set or stable set is a
set S ⊂ V such that (u, v) /∈ E for all u, v ∈ S. The in-
dependence number α(G,w) is defined as the maximum
number of vertices (weighted with w) of an independent
set of G. In the case of exclusivity graphs, any char-
acteristic labelling of a stable set, also called a stable la-
belling, represents a possible deterministic assignment of
probabilities which respects the exclusivity constraints,
i.e. such that no exclusive events can be assigned proba-
bility one at the same time. It is also customary to define
the set STAB(G) as the convex hull of all the character-
istic labelings of stable sets, such that

STAB(G) = Conv({x :

x is a stable labelling of G}). (7)

Since stable labellings represent all the possible deter-
ministic strategies respecting the exclusivity relations,

then STAB(G) effectively includes all the possible prob-
ability assignments compatible with those constraints.
Now we can define the independence number as

α(G,w) = max{w · x : x ∈ STAB(G)}. (8)

Thus, α(G,w) must correspond to the classical bound
of the inequality, since it is exactly the maximum over
the convex set defined by all the deterministic strategies
respecting the exclusivity constraints. Classical models
are those described precisely by such convex set, thus
implying that

I(G,w) ≤ α(G,w). (9)

Moreover, the bound is tight since it is saturated by
any deterministic assignment corresponding to a maxi-
mal stable set.

In associating the set STAB(G) with the space of the
possible probability distributions for our graph G, we
have made the implicit assumption that there exists a
joint probability distribution for all of our events, i.e.,
that even when certain settings are not chosen by the ex-
perimenter, we can still assign (counterfactually) a value
to their probabilities. This is the realism assumption
mentioned above that, as implied by Bell’s theorem, can-
not hold true togheter with locality for quantum systems.
In the following, we briefly introduce the probabilistic
framework used in quantum mechanics, the interested
reader can refer to classic texts such as [24]. In quantum
mechanics the state of the system, which plays a simi-
lar role as the probability distribution for classical sys-
tems, is represented by a vector Ψ in a complex Hilbert
space H, normalized such that |Ψ|2 = 1. Likewise,
measurements are associated to a set to an orthonormal
basis {Φ1, . . . ,Φd} in the same space H, each associ-
ated to a possible measurement outcome 2. It is also
costumary to represent measurements using projection
operators Ei = Φi(Φi)

T , so that EiEj = 0∀i, j and∑
iEi = I . The probability associated to each outcome

is defined by the Born’s rule:

pi = ΨTEiΨ = |Ψ · Φi|2 . (10)

It is known that such framework allows for a set of prob-
ability distributions which is in general larger than the
classical one. Exclusivity relations between events (mea-
surement outcomes) in the quantum framework translate
into orthogonality between projectors. A quantum real-
ization of an exclusivity graph G(V,E) then consists in
a set projectors Ei for each vertex i ∈ V , such that Ei
and Ej are orthogonal each time i and j are connected
by an edge. This corresponds to what in graph theory is

2This actually describes a particular class of measurements
called projective measurements.



known as an orthonormal labelling of G. An orthonor-
mal labelling of dimension d is a map av : V → Rd such
that av · au = 0 for all (u, v) ∈ E and |av|2 = 1. Using
that notion we can define the set TH(G) as

TH(G) = {x : xv = (av)1 where av is an
orthonormal labelling of G}. (11)

It can be proved that this set includes all correlations per-
mitted by quantum theory but in general is larger as it
contains correlations beyond those achievable by quan-
tum mechanics [25]. Maximizing over TH(G) led to the
Lovász theta given by

θ(G,w) = max{w · x : x ∈ TH(G)}, (12)

which upper-bounds the maximum quantum value of
I(G,w) in equation (6). Despite not being a tight bound
for quantum system in general, θ(G,w) is known to be
efficiently computable, by a semi-definite program.

This also provide a useful condition to check if a given
graphG (or any of its induced subgraphs) admits a quan-
tum violation. Indeed using a known result of graph the-
ory we know TH(G) = STAB(G) if and only if G does
not contain a cycleCn with n ≥ 5 and odd, or its comple-
ment as induced subgraphs. This follows directly from
the so called sandwich theorem [27, 28] and the strong
perfect graph theorem [31]. The first one states that the
number θ(G) is always greater or equal the independence
number of the graph α(G).

α(G) ≤ θ(G) (13)

When equality holds in equation (13) for a graph G and
all its induced subgraphs, G is called perfect. For perfect
graphs, we can exclude the existence of a quantum viola-
tion, since α(G) = θ(G). The second theorem then gives
a useful condition to check if a graph is perfect or not. In
particular it affirms that a graph G is perfect if and only
if it does not contain a n-cycle graph with n ≥ 5 and odd
or its complement as an induced subgraph. Besides sig-
naling the presence of a possible quantum violation of a
classical constraint, induced cycle subgraphs are also in-
teresting because they give the simplest inequalities (in
terms of number of probabilities to estimate), to test this
violation.

4 EXCLUSIVITY GRAPH METHOD
APPLIED TO CAUSAL MODELS

In this section we show how the techniques presented
in the previous section can be employed to analyze a
broad class of causal models. Consider the DAG de-
picted in Fig 2, withN observable variablesA1, . . . , AN

with arbitrary causal arrows among them,M instruments
X1, . . . , XM , and a single unobservable latent variable Λ
acting as a potential common factor for all Ais (but not
for the Xjs).

Figure 2: Represetantion of the class of causal structures
to which our method can be applied, which are those with
k observable variables, l instruments and a single latent
variable.

An exclusivity graph can be associated with such a DAG
as follows:

• Nodes are associated to events like a|x, where a =
(a1, . . . , aN ) and x = (x1, . . . , xM ).

• Two nodes a|x, and a′|x′ are linked by an edge if
there is at least a variable Ai for which does not
exists any function fi such that:

fi(pai) = ai and fi(pa′i) = a′i. (14)

where pai and pa′i represent the values taken by the
parents of Ai in the two events.

For example, referring to the Bell scenario of Fig. 1-b
any two events a, b, x, y and a′, b′, x′, y′ where x = x′

and a 6= a′ (or y = y′ and b 6= b′) are exclusive, since
we would need f(x) 6= f(x′) even if x = x′ (or sim-
ilarly g(y) 6= g(y′) when y = y′). As we will show
next, considering the particular case of the instrumen-
tal scenario [3, 4], one can apply the graph-theoretical
methods delineated before to its corresponding exclusiv-
ity graph, G, and its induced subgraphs. This allows
to obtain instrumental inequalities and their respective
quantum and classical bounds. To do that, we proceed
as follows: First we try to determine if the graph is per-
fect using the strong perfect graph theorem, i.e. looking
for odd cycles and anticycles with more than 5 vertices
among the induced subgraphs of G. If the graph is per-
fect, then we know immediately that no quantum viola-
tion is possible. If the graph is not perfect, then we must
have found some odd cycle or anticycle Cn. These kinds



Figure 3: The exclusivity graph for the instrumental sce-
nario with m = n = 2 and l = 2, 3, 4, 5 respectively
from top left to bottom right. To simplify the represen-
tation cliques are represented with the bold lines in the
figure.

of induced subgraphs represent our minimal candidates
for a quantum violation, cause we already know that for
them α(Cn) < θ(Cn), in particular:

α(Cn) = bn/2c

θ(Cn) =
n cos(π/n)

1 + cos(π/n)

(15)

Other candidates can be found among the induced sub-
graphs of G, possibily with non-unitary weights w,
which contain at least one of those cycles/anticycles.
So any weighted subgraph S that satisfies α(G,w) <
θ(G,w) in the end must contain at least a unitary
weighted subgraph with this same property. For this rea-
son in the following analysis we focus on cycles or on
unitary weighted graphs only.

4.1 THE INSTRUMENTAL EXCLUSIVITY
GRAPH

As a first application we will restrict our attention to the
instrumental scenario in the case of dichotomic measure-
ments (n = m = 2). We denote the probability of hav-
ing outcomes a and b with the instrument assuming the
value x as p(ab|x) with a, b ∈ A = B = {0, 1} and
x ∈ X = {0, . . . , l}. As explained above, the exclu-
sivity graph for the instrumental scenario is obtained by
connecting two events a, b, x and a′, b′, x′ with an edge
if we cannot find a function f : X → A such that:

a = f(x) and a′ = f(x′) (16)

or a function g : A → B such that:

b = g(a) and b′ = g(a′) (17)

Using these rules we construct the exclusivity graphs
Gl = (Vl, El) for various l, some of which are shown
in Fig. 3, and use the methods described in the previous
sections to obtain the classical and quantum bounds for
several inequalities in the instrumental scenario.

First, consider the case l = 2, depicted in Fig. 3 top-left,
for which Pearl’s inequality (3) defines the only instru-
mental inequality. It has been shown that this inequality
does not have a quantum violation [29]. For that, general
probabilistic Bayesian networks, including classical and
quantum causal models as particular cases, had to be in-
troduced. In contrast, in our method it is straightforward
not only to derive the classical bound to Pearl’s inequal-
ity but also show that there is no quantum violation of the
inequality. In the case of l = 2 inequalities (3) becomes:

P (a0|x) + P (a1|x′) ≤ 1∀a, x, x′ ∈ {0, 1} (18)

which are just the classical constraint given by the exclu-
sivity conditions represented by the edges of the graph
(see Fig. 3). Indeed considering the trivial induced sub-
graphs Se formed by only two vertices e = (v1, v2) ∈
E2, we simply have α(Se) = 1 from which using equa-
tion (9), we obtain contraints in (18). The fact that no
quantum violation is allowed follows immediately from
the fact that the corresponding exclusivity graph (and its
complement) does not contain any odd cycle or anticy-
cle with more than 5 vertices, which makes it a perfect
graph, i.e. TH(G) = STAB(G). This can be easily
proved in the case l = 2 for any number of outputs n,m
as shown in the supplemental materials. In this way we
can exclude the presence of any quantum violation for
any scenario where the instrument can only take two pos-
sible values (l = 2) and an arbitrary number of outputs
for A,B.

Going to higher number of outcomes for the instrument
X we see that there might be a quantum violation, since
the associated graph Gl has as a C5 cyclic graph as in-
duced subgraph for l ≥ 3. The graph C5, depicted
in Fig. 4, represents an instance of Bonet’s inequal-
ity (4), and indeed from equation (15) we get the ex-
pected classical bound α(C5) = 2. The quantum limit,
as already mentioned, in general does not saturate the
bound given by θ(G), which in this case is (from (15))
θ(Cn) =

√
(5). To find a tighter bound we can apply

the technique described in [11], which is in turn based
on the so called NPA method (from M. Navascués, S.
Pironio, A. Acı́n) described in [26]. This is a method
commonly employed in quantum information to perform
optimizations constrained in the set of quantum correla-
tions. Since, in general, there are no known methods to



Figure 4: The exclusivity graph of the bonet inequality as
an induced subgraph of complete one of the (l,m, n) =
(4, 2, 2) instrumental scenario. To simplify the represen-
tation, cliques are represented with the bold lines in the
figure.

impose this exact optimization condition, the technique
works by relaxing the problem to a, virtually infinite, hi-
erarchy of semi-definite programs of increasing dimen-
sion, which approximate the restriction to quantum cor-
relations. Applying it to Bonet inequality we are able ob-
tain the known result for the maximum quantum bound,
i.e (3 +

√
2)/2 ≈ 2.2071 (more details can be found in

the supplemental materials).

As shown in the supplemental material, no other odd cy-
cle besides C5 is present for any l, that is, if we increase
the cardinality of the instrumental variable. The first 7-
cycle appears as soon as we get to n = m = 3 and l = 4.
An instance of this Bonet-like inequality for the instru-
mental scenario can be written as:

P (00|2) + P (02|3) + P (00|0) + P (12|0)+

+ P (10|1) + P (21|1) + P (22|2) ≤ 3 (19)

Applying the method cited above for this inequality gives
a quantum upper bound of q = 3.2990 at the second or-
der of the hierarchy, which indicates the possibility of a
quantum violation. Similarly, numerical analysis shows
that odd cycle subgraphs with higher number of vertices
appear only if we increase the number of possible set-

Figure 5: Exclusivity graphs for the the inequality (21)
in the Bell scenario (in red) and inequality (20) in the
instrumental scenario (in green).

tings l while also increasing m, so for example 9-cycles
start to appear for l = 6,m = 3 and 11-cycles for
l = 7,m = 4.

While cycles are the simplest inequalities showing quan-
tum violation, our method can also be employed for the
analysis of different inequalities, that can be devised by
other choices of vertices. For example in the instrumen-
tal scenario (l,m, n) = (4, 2, 2) we can find by inspec-
tion the inequality:

P (01|2) + P (11|2) + P (10|3) + P (01|3)+

+ P (00|0) + P (10|0) + P (11|1) + P (00|1) ≤ 3
(20)

This inequality is interesting, since it is represented by
the same exclusivity graph of the notorious CHSH in-
equality [12] for the Bell scenario (see Fig. 5):

P (00|00) + P (11|00) + P (00|01) + P (11|01)+

+P (01|10) +P (10|10) +P (00|11) +P (11|11) ≤ 3
(21)

A well known generalization of the CHSH inequality are
the so called CGLMP (Collins, Gisin, Linden, Massar
and Popescu) inequalities, introduced in [30], which are
defined for any Bell scenario with 2 settings for X and



Y and d outcomes for A and B, and can be written as:

ICGLMP
d =

d−1∑
k=0

(d− 1− k)Sdk ≤ 3(d− 1) (22)

where

Sdk =
∑
b

(P (b+ k, b|00) + P (b+ k, b|11))+ (23)

+
∑
a

(P (a, a+ k + 1|10) + P (a, a+ k|01))

where the sums a + k, a + k + 1 and b + k are modulo
d. Using the exclusivity graph method we can find that
each of the Sdk is classically constrained by:

• α(Gdk) = 4 if k and d satisfy 4k+1 = nd, for some
integer n.

• α(Gdk) = 3 in the other cases.

Indeed the graphs Gdk relative to the k all share the same
structure: there are four cliques, one for each setting
x, y ∈ {0, 1}, and any vertex in each clique is connected
to every other vertex in the adjacent clique, except for
one. For example P (b + k, b|00) is connected to any
node belonging to the (0, 1) and the (1, 0) cliques, ex-
cept for P (a, a+ k|01) and P (a′, a′ + k + 1|10) where
b+ k = a and a′ + k + 1 = b. Clearly a maximal inde-
pendent set cannot contain more than 4 vertices (one for
each clique). Moreover to be an independent set, a set
of four nodes {P (b+k, b|00), P (b′+k, b′|11), P (a, a+
k|01), P (a′, a; +k + 1|01)} must satisfy the conditions:

b+ k = a

a+ k = b′

b′ + k = a′

a′ + k + 1 = b

(24)

where the sums are all modulo d. From this follows di-
rectly that 4k + 1 = 0.

To obtain the quantum bounds we can apply the same
method discussed above. The results for some Sk in-
equalities are shown in Table 1.

Interestingly, except for the case (l,m, n) = (4, 2, 2),
inequalities with the same structure do not seem to arise
in the instrumental case, which suggests that the apparent
similarity noticed in [9] between the two scenarios, Bell
and the instrumental, only appears for specific number of
inputs and outputs.

5 DISCUSSION

In this paper, we have proposed an unifying formalism
to analyze classical and quantum correlations arising in

d k α(Gdk) θ(Gdk) NPA

3 0 3 3.464 3.333
3 1 3 3.464 3.333
4 0 3 3.414 3.307
4 1 3 3.414 3.307
5 0 3 3.431 3.294
5 1 4 3.999 3.999

Table 1: Considering the inequality Sdk for different val-
ues of k and d, the table above shows the independence
number α(Gdk), the Lovász theta θ(Gdk) and the NPA
bound computed up to the second order of the hierarchy.

a broad class of causal structures. It is based on a graph-
theoretical formalism originally introduced in the field of
quantum information [10, 11, 23]. In particular, we con-
sider the application of this formalism to analyze instru-
mental tests [3]. As we show, the probabilities arising in
such experiments can be encoded in a exclusivity graph
and from there it follows that the classical and quantum
bounds respected by instrumental inequalities are related
to two graphs invariants: the independence number, α,
and Lovász θ, respectively.

Apart from the fundamental relevance of bridging the
fields of quantum information and causal inference, our
approach is also shown to be of practical use. We not
only re-derived, in an easy manner, previous results in
the literature, we also manage to generalize them. For
instance, we prove the inequalities associated with an in-
strument assuming only two possible values do not have
a quantum violation (irrespectively of the number of out-
comes), thus generalizing the results in [29]. As well,
we prove that if the number of outcomes is fixed to two
(the instrument now assuming any cardinality), there are
no other inequalities other than the original Bonet’s in-
equality [4] arising from a n-cycle graph. Following that,
we have shown how new instrumental inequalities asso-
ciated with n-cycles of increasing n can be obtained by
increasing the possible values of both the instrument and
the outcomes.

The graph approach also constitutes a valuable tool to
study similarities among different scenarios and inspect
whether, in the quantum realm, they could be able to de-
tect stronger forms of non-locality. For example, from
the graph perspective, the instrumental scenario and the
well-known Bell scenario shows similarities only for
specific number of inputs/outputs. For example, the
CHSH scenario [12] and the (l,m, n) = (4, 2, 2) in-
strumental scenario are graph equivalent, however, this
equivalence does not hold any longer when the outcome
variables assume an increasing number of possible val-
ues. Given the fundamental importance of the instru-



mental scenario in causal inference and the increasing
attention it has been receiving in quantum information
(particularly in applications as randomness generation)
we hope these results will strength the connections be-
tween both fields and motivate further applications of the
graph-theoretical approach within causality.

Acknowledgements

We acknowledge support from John Templeton Founda-
tion via the grant Q-CAUSAL n◦61084 (the opinions
expressed in this publication are those of the authors
and do not necessarily the views of the John Templeton
Foundation). RC acknowledges the Brazilian ministries
MEC and MCTIC, funding agency CNPq (PQ grants
No. 307172/2017-1 and No 406574/2018-9 and INCT-
IQ) and the Serrapilheira Institute (grant number Serra-
1708-15763).

References

[1] J. M. Mooij et al. Distinguishing cause from effect
using observational data: methods and benchmarks.,
The Journal of Machine Learning Research 17, 1103
(2016).

[2] J. Pearl, Causality: models, reasoning, and infer-
ence. Cambridge University Press, (2000).

[3] J. Pearl, On the testability of causal models with la-
tent and instrumental variables. Proceedings of the
Eleventh conference on Uncertainty in artificial intel-
ligence. Morgan Kaufmann Publishers Inc. (1995).

[4] B. Bonet, Instrumentality tests revisited. Proceed-
ings of the Seventeenth conference on Uncertainty in
artificial intelligence. Morgan Kaufmann Publishers
Inc. (2001).

[5] J. M. Wooldridge, Introductory econometrics: A
modern approach. Nelson Education, (2015).

[6] R. R. Ramsahai, Causal bounds and observable con-
straints for non-deterministic models. Journal of Ma-
chine Learning Research 13, 829 (2012).

[7] D. Kédagni, I. Mourifie, Generalized instrumental
inequalities: Testing the IV independence assump-
tion., available at SSRN (2017).

[8] R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio,
L. Aolita, S. Giacomini, F. Sciarrino, Quantum viola-
tion of an instrumental test. Nature Physics 14.3 291
(2018).

[9] T. Van Himbeeck, J. B. Brask, S. Pironio, R. Ra-
manathan, A. B. Sainz, E. Wolfe, Quantum violations

in the Instrumental scenario and their relations to the
Bell scenario. arXiv:1804.04119 (2018).

[10] A. Cabello, S. Severini, A. Winter, Graph-theoretic
approach to quantum correlations, Physical review
letters, 112, 040401 (2014).

[11] R. Rabelo, C. Duarte, A. J. López-Tarrida, M. T.
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