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Abstract

We make three contributions to the theory
of k-armed adversarial bandits. First, we
prove a first-order bound for a modified
variant of the INF strategy by Audibert and
Bubeck [2009], without sacrificing worst case
optimality or modifying the loss estimators.
Second, we provide a variance analysis for
algorithms based on follow the regularised
leader, showing that without adaptation the
variance of the regret is typically Ω(n2) where
n is the horizon. Finally, we study bounds
that depend on the degree of separation of the
arms, generalising the results by Cowan and
Katehakis [2015] from the stochastic setting
to the adversarial and improving the result
of Seldin and Slivkins [2014] by a factor of
log(n)/ log log(n).

1 INTRODUCTION

The k-armed adversarial bandit is a sequential game
played over n rounds. At the start of the game the
adversary secretly chooses a sequence of losses (`t)

n
t=1

with `t ∈ [0, 1]k. In each round t the learner chooses
a distribution Pt over the actions [k] = {1, 2, . . . , k}.
An action At ∈ [k] is sampled from Pt and the learner
observes the loss `tAt

. Like prior work we focus on
controlling the regret, which is

R̂n = max
i∈[k]

n∑
t=1

(`tAt
− `ti) .

This quantity is a random variable, so the standard
objective is to bound R̂n with high probability or its
expectation: Rn = E[R̂n].

We make three contributions, with the common objective
of furthering our understanding of the application of

follow the regularised leader (FTRL) to adversarial
bandit problems. Our first contribution is a modification
of the INF policy by Audibert and Bubeck [2009] in
order to prove first-order bounds (i.e. in terms of the
loss of the best action) without sacrificing minimax
optimality. Then we turn our attention to the variance
of algorithms based on FTRL. Here we prove that using
the standard importance-weighted estimators and a large
class of potentials leads to a variance of Ω(n2), which
is the worst possible for bounded losses. Finally, we
investigate the asymptotic performance of algorithms
when there is a linear separation between the losses of
the arms. We improve the result by Seldin and Slivkins
[2014] by a factor of log(n)/ log log(n) and generalise
known results in the stochastic setting by Cowan and
Katehakis [2015] to the adversarial one by constructing
an algorithm for which the regret grows arbitrarily slowly
almost surely.

Related work The literature on adversarial bandits is
enormous. See the books by Bubeck and Cesa-Bianchi
[2012] and Lattimore and Szepesvári [2019] for a
comprehensive account. The common thread in the three
components of our analysis is adaptivity for algorithms
based on follow the regularised leader. The INF policy
that underlies much of our analysis was introduced
by Audibert and Bubeck [2009]. The connection to
mirror descent and follow the regularised leader came
later [Audibert and Bubeck, 2010, Bubeck and Cesa-
Bianchi, 2012], which greatly simplified the analysis.
The principle justification for introducing this algorithm
was to prove bounds on the minimax regret. Remarkably,
it was recently shown that by introducing a non-
adaptive decaying learning rate, the algorithm retains
minimax optimality while simultaneously achieving a
near-optimal logarithmic regret in the stochastic setting
[Zimmert and Seldin, 2019]. Despite its simplicity,
the algorithm improves on the state-of-the-art for
this problem Bubeck and Slivkins [2012], Seldin and
Slivkins [2014], Seldin and Lugosi [2017]. See also
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the extension to the combinatorial semibandit setting
[Zimmert et al., 2019]. First-order bounds for bandits
were first given by Allenberg et al. [2006], who analysed
a modification of Exp3 [Auer et al., 1995]. As far as we
know, previous algorithms with first order bounds have
not been minimax optimal (Rn = O(

√
kn)): the recent

work by Neu [2015b] achieved O(
√
kn(log(k) + 1))

expected regret, and [Wei and Luo, 2018] had a
O(
√
kn log n) bound. Both papers used the idea of an

adaptive learning rate similar to our analysis. In the
setting of gains rather than losses Audibert and Bubeck
[2010] have shown that by introducing biased estimators
it is possible to prove a bound of O(

√
kG∗) where G∗

is the maximum gain. Although it is not obvious, we
suspect the same idea could be applied in our setting.
We find it interesting nevertheless that the same affect
is possible without modifying the loss estimators. The
aforementioned work also assumes knowledge of G∗.
Possibly our adaptive learning rates could be used to
make this algorithm anytime without a doubling trick.

Although it is well known that straightforward appli-
cations of follow the regularised leader or mirror
descent with importance-weighted estimators leads to
poor concentration of the regret, we suspect the severity
of the situation is not widely appreciated. As far as
we know, the quadratic variance of Exp3 was only
derived recently [Lattimore and Szepesvári, 2019, §11].
There are, however, a number of works modifying the
importance-weighted estimators to prove high proba-
bility bounds Auer et al. [1995], Abernethy and Rakhlin
[2009], Neu [2015a] with matching lower bounds by
Gerchinovitz and Lattimore [2016]. Finally, we note
there are many kinds of adaptivity beyond first-order
bounds. For example sparsity and variance [Bubeck
et al., 2018, Hazan and Kale, 2011, and others].

2 NOTATION

Given a vector x ∈ Rd let diag (x) ∈ Rd×d be the
diagonal matrix with x along the diagonal. The interior
of a topological spaceX is interior(X) and its boundary
is ∂X . The standard basis vectors are e1, . . . , ed. The
(d−1)-dimensional probability simplex is ∆d−1 = {x ∈
[0, 1]d : ‖x‖1 = 1}. A convex function F : Rd → R ∪
{∞} has domain dom(F ) = {x ∈ Rd : F (x) 6= ∞}.
The Bregman divergence with respect to a differentiable
F is a function DF : dom(F ) × dom(F ) → [0,∞]
defined by DF (x, y) = F (x)−F (y)−〈∇F (y), x− y〉.
The Fenchel dual of F is F ∗ : Rd → R ∪ {∞} defined
by F ∗(u) = supx∈Rd〈x, u〉 − F (x).

There are k arms and the horizon is n, which may or
may not be known. The losses are (`t)

n
t=1 with `t ∈

[0, 1]k. We let Lt =
∑t
s=1 `s. The importance-weighted

Potential Definition Alg.

Negentropy 1
η

∑k
i=1 pi(log(pi)− 1) Exp3

1/2-Tsallis − 2
η

∑k
i=1

√
pi INF

Log barrier − 1
η

∑k
i=1 log(pi)

Table 1: Common potential functions

estimator of `t is ˆ̀
t defined by ˆ̀

ti = 1 {At = i} `ti/Pti.
All algorithms proposed here ensure that Pti > 0 for
all t and i, so this quantity is always well defined. Let
L̂t =

∑t
s=1

ˆ̀
s. Expectations are with respect to the

randomness in the actions (At)
n
t=1. Of course the learner

can only choose Pt based on information available at
the start of round t. Let Ft = σ(A1, . . . , At). Then
Pt is Ft−1-measurable. Let Ati = 1 {At = i} and
Ti(t) =

∑t
s=1Asi be the number of times arm i is

played in the first t rounds. Our standing assumption
is that the first arm is optimal. All our algorithms are
symmetric, so this is purely for notational convenience.

Assumption 2.1. Lt1 = mini∈[k] Lti.

3 FOLLOW THE REGULARISED
LEADER

Follow the regularized leader (FTRL) is a popular tool
for online optimization [Shalev-Shwartz, 2007, Hazan,
2016]. The basic algorithm depends on a sequence of
potential functions (Ft)

∞
t=1 where Ft : Rd → R ∪ {∞}

is convex and dom(Ft) ∩∆k−1 6= ∅. In each round the
algorithm chooses the distribution

Pt = arg min
p∈∆k−1

〈p, L̂t−1〉+ Ft(p) ,

which we assume exists. The action At ∈ [k] is sampled
from Pt. In many applications Ft = F is chosen in a
time independent way, with examples given in Table 1.
This has the disadvantage that F must be chosen in
advance in a way that depends on the horizon, which
may be unknown. This weakness can be overcome
by choosing Ft = F/ηt where (ηt)

∞
t=1 is a sequence

of learning rates, which may be chosen in advance or
adaptively in a data-dependent way.

A modification that will prove useful is to let (At)∞t=1 be
a sequence of subsets of ∆k−1 and define

Pt = arg min
p∈At

〈p, L̂t−1〉+ Ft(p) .

The restriction to a subset of ∆k−1 can be useful to
control the gradients of Ft(Pt), which is sometimes
crucial. The following theorem provides a generic bound
for FTRL with changing potentials and constraint sets.



The result is reminiscent of many previous bounds for
FTRL, but a reference for this result seems elusive. Most
related is the generic analysis by Joulani et al. [2017],
which also provides the most comprehensive literature
summary.

Theorem 3.1. Assume A1 ⊆ · · · ⊆ An+1 ⊆ ∆k−1

and (Ft)
n+1
t=1 is a sequence of convex functions with

dom(Ft) ∩ At 6= ∅ for all t. Define

dt = max
y∈At+1

min
x∈At

‖x− y‖1 , gt = sup
x∈At

‖∇Ft(x)‖∞

and vn =

n∑
t=1

dt(gt + (t− 1)) .

Then the regret of FTRL is bounded by

Rn ≤ vn + E

[
n∑
t=1

〈
Pt − Pt+1, ˆ̀

t

〉
−DFt

(Pt+1, Pt)

]

+ E
[

min
p∈An+1

(Fn+1(p) + n‖p− e1‖1)− F1(P1)

]
+ E

[
n∑
t=1

(Ft(Pt+1)− Ft+1(Pt+1))

]
.

Proof. Let p ∈ An+1. Using the fact that ˆ̀
t is unbiased,

Rn = E

[
n∑
t=1

〈Pt − e1, ˆ̀
t〉

]

= E

[
n∑
t=1

〈Pt − p, ˆ̀
t〉

]
+ E

[
n∑
t=1

〈p− e1, `t〉

]
.

The second sum is the approximation error, and by
Holder’s inequality,

n∑
t=1

〈p− e1, `t〉 ≤ ‖p− e1‖1
n∑
t=1

‖`t‖∞ ≤ n‖p− e1‖1 .

Therefore,

Rn ≤ E

[
n∑
t=1

〈Pt − Pt+1, ˆ̀
t〉+

n∑
t=1

〈Pt+1 − p, ˆ̀
t〉

]
+ n‖p− e1‖1 .

Let Φt(q) = Ft(q) +
∑t−1
s=1〈q, ˆ̀

s〉, which is chosen so
that Pt = arg minq∈At

Φt(q). Then the second sum in

the above display equals
n∑
t=1

(Φt+1(Pt+1)− Φt(Pt+1)− Ft+1(Pt+1) + Ft(Pt+1))

− Φn+1(p) + Fn+1(p)

=

n∑
t=1

(Φt(Pt)− Φt(Pt+1))

+ Φn+1(Pn+1)− Φ1(P1)− Φn+1(p)

+ Fn+1(p) +

n∑
t=1

(Ft(Pt+1)− Ft+1(Pt+1))

We can rewrite the Φ-differences as

Φt(Pt)− Φt(Pt+1)

= −DΦt
(Pt+1, Pt)− 〈∇Φt(Pt), Pt+1 − Pt〉 .

Let δt = Pt+1− arg minq∈At
‖q−Pt+1‖1. Then due to

first-order optimality condition for Pt on At,

E [〈∇Φt(Pt), (Pt+1 − δt)− Pt〉] ≥ 0,

therefore

E [〈∇Φt(Pt), Pt+1 − Pt〉] ≥ E [〈∇Φt(Pt), δt〉]

≥ E

[
〈∇Ft(Pt), δt〉+

t−1∑
s=1

〈ˆ̀s, δt〉

]

≥ −E

[
‖δt‖1

(
‖∇Ft(Pt)‖∞ +

t−1∑
s=1

‖`s‖∞

)]

≥ −dtgt − dt
t−1∑
s=1

‖`s‖∞ ≥ −dt(gt + (t− 1)) ,

where we used Holder’s inequality, the definitions of dt
and gt, non-negativity of ˆ̀

s and that E ˆ̀
s = `s ∈ [0, 1].

It follows that

Φt(Pt)− Φt(Pt+1) ≤ dt(gt + k(t− 1))−DΦt
(Pt+1, Pt) .

Since p ∈ An+1 and Pn+1 is the minimiser of Φn+1 in
An+1, we have

Φn+1(Pn+1)− Φn+1(p) ≤ 0 .

Finally, noting that Φ1 = F1 and DΦt
(Pt+1, Pt) =

DFt
(Pt+1, Pt) we obtain

Rn ≤ n‖p− e1‖1 +

n∑
t=1

dt(gt + (t− 1))

+ E

[
n∑
t=1

〈Pt − Pt+1, ˆ̀
t〉 −DFt

(Pt+1, Pt)

]
+ E [Fn+1(p)− F1(P1)]

+ E

[
n∑
t=1

(Ft(Pt+1)− Ft+1(Pt+1))

]
,

from which the statement follows.



4 FIRST ORDER BOUNDS

We now introduce the modification of the INF strategy,
which takes inspiration from Wei and Luo [2018],
Zimmert and Seldin [2019], Zimmert et al. [2019]. The
new algorithm plays on the ‘chopped’ simplex, with the
magnitude of the cut dependent on the round,

At = ∆k−1 ∩ [1/t, 1]k . (1)

Then for a convex potential ft(p) with dom(ft)
k ∩

∆k−1 6= ∅ define a potential

Ft(p) =
1

ηt

k∑
i=1

ft(pi) , (2)

where the learning rate ηt is given by

ηt =
η0√

1 +
∑t−1
s=1

ˆ̀2
sAs

(∇2(fs)(PsAs))−1
, (3)

where η0 is positive constant to be tuned later.

The Hessian of the potential plays a fundamental role in
the regret, simplifying the derivation of a generic first-
order bound:
Theorem 4.1. Suppose that∇2ft is decreasing on (0, 1)
and there exist B,C ≥ 0 such that

1

p2∇2ft(p)
≤ B, E

[
1

P 2
tAt
∇2ft(PtAt)

]
≤ C ,

for all p ∈ (0, 1) and t ∈ [n]. Assume additionally
that there exist a non-negative constant h1 and a non-
negative function h2(n) such that

vn + min
p∈An+1

(Fn+1(p) + ‖p− e1‖1n)− F1(P1)

+

n∑
t=1

(Ft(Pt+1)− Ft+1(Pt+1)) ≤ h1

ηn+1
+ h2(n) ,

almost surely. Then the expected regret of FTRL with
η0 =

√
h1/2

1/4 simultaneously satisfies

Rn ≤
√
h1

25/4
B + h2(n) + 2

√
2Bh1 + 27/4

√
h1

×

√
1 +

BLn1

2
+
Bh2(n)

2
+B2

(√
h1

29/4
+
h1√

2

)
,

Rn ≤
√
h1

25/4
B + h2(n) + 27/4

√
h1

√
1 +

Cn

2
.

Remark 4.2. h1 and h2(n) reflect the approximation
error, non-stationarity of the potential ft and how
sensitive it is to the changes in At. In a simple case with
At = A, ft = f for all t, this is a standard bound for the
sum of the potential differences. h1 can be a function
of n when the horizon n is known, as we choose the
learning rate based on it.

As an application of this general first-order result, we
derive a worst-case optimal bound for a carefully chosen
mixture of the INF regularizer and the log-barrier:

Corollary 4.3. For η0 = k1/4
√

13
3
√

2
+ 3√

2q
and

ft(p) = −2
√
p− log p√

k log1+q max{3, t}

and any q > 0 and n ≥ 3, the regret grows with n as

Rn = O

(√
kLn1 log1+q(n) + k2 log2(1+q) n+ k log1+q(n)

)
,

with some constants proportional to 1/q.

Corollary 4.4. For q = 1, η0 = k1/4
√

22/(3
√

2),

Rn ≤ 19k2 + 22k log2(n) + 2k log(n) + 6.5 log(n)

×
√
kLn1 + 19k3 + 2k2 log(n) + 11.2k2 log2(n) .

In the worst-case scenario the regret satisfies

lim sup
n→∞

Rn√
kn
≤ 9.2.

Corollary 4.5. If the horizon n ≥ 3 is known in advance,
using At = ∆k−1 ∩ [1/n, 1]k, η0 = k1/4

√
3/21/4 and

ft(p) = −2
√
p− log p√

k log n

results in

Rn ≤ k + 9.1k log n

+ 4.2

√
kLn1 log(n) + 2

√
k + 6k2 log2(n) ,

lim sup
n→∞

Rn√
kn
≤ 5.9 .

The proof of the last corollary simply repeats previous
statements, also using the stationarity of the constraint
set and ft(p). See the supplementary material for more
details.

Remark 4.6. Theorem 4.1 with known n reproduces
the result of [Wei and Luo, 2018] (note that they
used a slightly different algorithm and the learning rate
schedule): for the log-barrier potential ft(p) = − log p
we have B = C = 1 and h1(n) ∝ k log n, such that the
worst-case regret is Rn = O(

√
kn log n).

The proof of Theorem 4.1 follows from Theorem 3.1 and
the following lemmas:



Lemma 4.7. For a potential of the form Eq. (2) with
∇2ft(p) that is monotonically decreasing on p ∈ (0, 1),

n∑
t=1

〈
Pt − Pt+1, ˆ̀

t

〉
−DFt(Pt+1, Pt)

≤
n∑
t=1

ηt
2

`2tAt

P 2
tAt
∇2ft(PtAt

)
.

Proof. Let t ∈ [n] and suppose that Pt+1,At
> PtAt

.
Then using the fact that the loss estimators and Bregman
divergence are non-negative,

〈Pt − Pt+1, ˆ̀
t〉 −DFt

(Pt+1, Pt) ≤ 〈Pt − Pt+1, ˆ̀
t〉

= (PtAt
− Pt+1,At

)ˆ̀
tAt
≤ 0 .

Now suppose that Pt+1,At
≤ PtAt

. By [Lattimore and
Szepesvári, 2019, Theorem 26.5],

〈Pt − Pt+1, ˆ̀
t〉 −DFt

(Pt+1, Pt) ≤
1

2
‖ˆ̀t‖2(∇2Ft(z))−1 ,

where z = αPt + (1 − α)Pt+1 for some α ∈ [0, 1].
By definition ∇2Ft(z) = diag (∇2ft(z))/ηt and since
ˆ̀
ti = 0 for i 6= At,

1

2
‖ˆ̀t‖2∇2Ft(z)−1 =

ηt ˆ̀
2
tAt

2∇2ft(zAt
)
≤

ηt ˆ̀
2
tAt

2∇2ft(PtAt
)
,

where we used the fact that zAt
≤ PtAt

and that∇2ft(p)
is decreasing. The result follows by substituting the
definition of ˆ̀

tAt and summing over t ∈ [n].

Lemma 4.8. Let (xt)
n
t=1 be a sequence with xt ∈ [0, B]

for all t. Then

n∑
t=1

xt√
1 +

∑t−1
s=1 xs

≤ 4

√√√√1 +
1

2

n∑
t=1

xt +B .

The proof follows from a comparison to an integral and
is given in the supplementary material.

Proof of Theorem 4.1. Using the result of Theorem 3.1,
Lemma 4.7 and the assumption on the difference in the
potentials, we have

Rn ≤ h2(n) + E

[
h1

ηn+1
+

n∑
t=1

ηt
2

`2tAt

P 2
tAt
∇2ft(PtAt)

]
.

As `tAt ≤ 1, we can apply Lemma 4.8 with

xt =
`2tAt

P 2
tAt
∇2ft(PtAt

)
≤ B .

It follows that ηt = η0/
√

1 +
∑t−1
s=1 xs, and thus

n∑
t=1

ηt
2

`2tAt

P 2
tAt
∇2ft(PtAt)

≤

2η0

√√√√1 +
1

2

n∑
t=1

`2tAt

P 2
tAt
∇2ft(PtAt

)
+
η0

2
B .

The first term in the last line is proportional to 1/ηn+1,
therefore using the definition of ηt, Jensen’s inequality
and `2tAt

≤ `tAt
, the regret can be bounded as

Rn ≤ h2(n) +
η0

2
B +

(√
2h1

η0
+ 2η0

)

×

√√√√1 +
1

2
E

[
n∑
t=1

`tAt

P 2
tAt
∇2ft(PtAt

)

]
.

The first bound in the theorem follows from

E

[
n∑
t=1

`tAt

P 2
tAt
∇2ft(PtAt

)

]

≤ BE

[
n∑
t=1

(`tAt
− `t1 + `t1)

]
= BRn +BLn1

and then from choosing η0 =
√
h1/2

1/4 and solving the
resulting quadratic equation with respect to Rn.

For the second bound, we use ltAt ≤ 1 and the definition
of C, such that

E

[
n∑
t=1

`tAt

P 2
tAt
∇2ft(PtAt

)

]
≤ Cn

2
.

To prove the corollaries, we need to bound h1, h2(n), B,
and C:

Lemma 4.9. The Hessian of the hybrid potential in
Corollary 4.3 is monotonically decreasing, and for n ≥ 3

1

p2∇2ft(p)
≤
√
k log1+q n, E

[
1

P 2
tAt
∇2ft(PtAt

)

]
≤ 2
√
k ,

Proof. For p ∈ interior(∆k−1),

∇2ft(p) =
1

2p3/2
+

1

p2
√
k log1+q max {3, t}

is a decreasing function of p. It follows that for n ≥ 3

1

p2∇2ft(p)
≤
√
k log1+q n .



Moreover,

sup
t,Pt∈At

E
[

1

P 2
tAt
∇2ft(PtAt

)

]
≤ sup
t,Pt∈∆k−1

E

[
2√
PtAt

]
= 2
√
k .

Lemma 4.10. Under the conditions of Corollary 4.3,

vn ≤
√
k

ηn+1

(
4

3
+

2

q

)
+

5.5k

η0

√
1 + 9k3/2 log1+q(9k3/2)

+
3.7
√
k

η0

√
1 + 3

√
k log1+q 3 + 2k log n .

Proof. Due to the chopped simplex and the factorised
potential, we have (recall the definition in Theorem 3.1
and bound the second sum with the integral, as shown in
the supplementary material)

vn =

n∑
t=1

dt(gt + (t− 1))

≤
n∑
t=1

2k

t2

(
1

ηt
sup

p∈[1/t,1]

|∇ft(p)|+ (t− 1)

)

≤
n∑
t=1

2k

t2

(
1

ηt
sup

p∈[1/t,1]

|∇ft(p)|

)
+ 2k log n .

For p ∈ [1/t, 1] the gradient is bounded as

|∇ft(p)| ≤
1
√
p

+
1

p
√
k log1+q max {3, t}

≤
√
t+

t√
k log1+q max {3, t}

.

Therefore, the corresponding sum in vn converges. By
a straightforward calculation (see the supplementary
material), the Hessian is bounded as in Lemma 4.9),

vn ≤
√
k

ηn+1

(
4

3
+

2

q

)
+

5.5k

η0

√
1 + 9k3/2 log1+q(9k3/2)

+
3.7
√
k

η0

√
1 + 3

√
k log1+q 3 + 2k log n .

Lemma 4.11. Under the conditions of Corollary 4.3,

min
p∈An+1

(Fn+1(p) + ‖p− e1‖1n)− F1(P1)

+

n∑
t=1

(Ft(Pt+1)− Ft+1(Pt+1))

≤
√
k

ηn+1

(
3 +

1

q

)
+ k +

√
k

3η0

√
1 + 3

√
k log1+q 3 .

Proof. The potential is a mixture of the INF and the log-
barrier parts, Ft(p) = − 2

ηt

∑
i

√
pi − αt

ηt

∑
i log pi with

αt = 1/(
√
k log1+q max {3, t}).

To control the contribution of the INF term, first notice
that the INF part of Fn+1(p) is negative. Moreover,(
− 2

ηt
+

2

ηt+1

) k∑
i=1

√
Pt+1,i ≤ 2

√
k

(
1

ηt+1
− 1

ηt

)
.

Summing with the INF part of −F1(P1) and telescoping
shows that it contributes at most 2

√
k/ηn+1 to the sum.

For log-barrier, suppose αt/ηt ≤ αt+1/ηt+1. Then(
−αt
ηt

+
αt+1

ηt+1

) k∑
i=1

log(Pt+1,i) ≤ 0 .

Now suppose that αt/ηt > αt+1/ηt+1. For t ≥ 3, as
Pt+1 ∈ At+1,(

−αt
ηt

+
αt+1

ηt+1

) k∑
i=1

log(Pt+1,i)

≤
(
αt
ηt
− αt+1

ηt+1

)
k log(t+ 1)

≤ 1

ηt

(
log(t+ 1)

log1+q(t)
− 1

logq(t)

)√
k

≤
√
k

ηtt log1+q t
.

Summing over t and noting that due to α1 = α2 = α3

the potential is unchanged,
n∑
t=1

(
−αt
ηt

+
αt+1

ηt+1

) k∑
i=1

logwt+1,i

≤
n∑
t=3

√
k

ηtt log1+q t
≤
√
k

ηn+1q
+

√
k

3η3
,

where the last inequality (shown in the supplementary
material) essentially compares the sum to the integral of
1/(t log1+q t) and uses that 1/ logq t ≤ 1 for t ≥ 3. We
can further bound η3 as

1

η3
≤ 1

η0

√
1 + 3

√
k log1+q 3

by using the fact that the Hessian is bounded (see the
proof of Lemma 4.9).

Finally, the log-barrier part of −F1(P1) is negative. The
log-barrier part of Fn+1(p) is bounded by

√
k/ηn+1 as

p ∈ An+1. Thus,

min
p∈An+1

Fn+1(p) + n‖p− e1‖1

≤
√
k

ηn+1
+ min
p∈An+1

n‖p− e1‖1 =

√
k

ηn+1
+

kn

n+ 1
.



Combining the three bounds and using that kn/(n+1) ≤
k concludes the proof.

Proof of Corollary 4.3. From Lemma 4.9, Lemma 4.10
and Lemma 4.11, we find

B =
√
k log1+q n , C = 2

√
k , h1 =

√
k

(
13

3
+

3

q

)
,

h2(n) = 2k log n+
5.5.k

η0

√
1 + 9k3/2 log1+q(9k3/2)

+
4.1

η0

√
k

√
1 + 3

√
k log1+q 3 + k .

Now applying Theorem 4.1 with η0 = k1/4
√

13
3
√

2
+ 3√

2q

completes the proof. Note that in the big-O notation, we
only kept the leading terms that grow with n.

Proof of Corollary 4.4. Starting from the end of the
previous proof, choosing q = 1 and upper-bounding the
numerical coefficients, we obtain the corollary.

5 VARIANCE OF THE REGRET

The expected regret is just one measure of the
performance of an algorithm. Algorithms with small
expected regret may suffer from a large variance.
Since the adversarial model is often motivated on the
grounds of providing robustness, it would be unfortunate
if proposed algorithms suffered from high variance.
Recently, however, it was shown that the variance of
Exp3 without exploration is quadratic in the horizon
[Lattimore and Szepesvári, 2019, §11], and a similar
result holds for Thompson sampling in a Bayesian setting
[Bubeck and Sellke, 2019]. Here we generalise these
arguments to prove quadratic variance of the regret for
a class of algorithms based on FTRL with importance-
weighted loss estimators. This is the worst possible result
for bandits with bounded losses. The class of policies
covered by our theorem includes INF and Exp3, but not
FTRL with the log barrier. To keep things simple we
restrict ourselves to algorithms of the form

Pt = arg min
p∈∆k−1

〈p, L̂t−1〉+
1

ηn

k∑
i=1

f(pi) ,

where f is convex and (ηn)∞n=1 is a sequence of learning
rates. Note that this corresponds to a sequence of
algorithms, each with a fixed learning rate.

Assumption 5.1. The number of actions is k = 2 and f
is Legendre with (0, 1) ⊆ dom(f) and 0 ∈ ∂ dom(f).

The assumption on the potential is satisfied by all
standard potentials for bandits on the probability

simplex, including those in Table 1. It allows us to write
Pt in a simple form. Let g(p) = f(p) + f(1− p), which
is convex and Legendre with dom(g) = (0, 1). Given
x ≥ 0,

arg min
p∈[0,1]

(px+ g(p)) = ∇g∗(−x) ,

where we used the fact that for Legendre functions the
gradient is invertible and (∇g)−1 = ∇g∗. That g
is Legendre with dom(g) = (0, 1) also ensures that
∇g∗ is nondecreasing and limx→−∞∇g∗(x) = 0 and
limx→∞∇g∗(x) = 1. By symmetry, we also have
∇g∗(0) = 1/2. The point is that by the definition of
FTRL, Pt1 = ∇g∗(ηn(L̂t−1,2 − L̂t−1,1)).
Theorem 5.2. Assume lim supn→∞ n∇g∗(−anηn) <
∞ for all a > 0. Then for all sufficiently large n there
exists a bandit for which P(R̂n ≥ n/4) ≥ c, where c > 0
is a constant that depends on the algorithm, but not the
horizon.
Corollary 5.3. Under the same conditions as Theorem 5.2
the variance of the regret is Var[R̂n] = Ω(n2).

Examples Suppose ηn = an−1/2 for some a > 0.
Then the conditions of the theorem are satisfied when
f is the negentropy. In this case ∇g∗ is the sigmoid
function and the corresponding algorithm is just Exp3.
When f(p) = −2

√
p and x ≤ 0, then

∇g∗(x) =
1

2

1−

√
1 +

4
(
2
√

1 + x2 − 2− x2
)

x4

 ,

which satisfies lim supn→∞∇g∗(−a
√
n)n = 1/a2. In

this sense 1/2-Tsallis entropy with ηn = Θ(n−1/2) just
barely satisfies the conditions. The consequence is that
the minimax optimal INF policy proposed by Audibert
and Bubeck [2009] has quadratic variance. The log
barrier does not satisfy the conditions and we speculate
it is more stable.

Proof of Theorem 5.2. Assume for simplicity that 4 is a
factor of n. Let αn ∈ [0, 1/2] be a constant to be tuned
subsequently and consider a bandit defined by

`t1 =

{
αn if t ≤ n/2
0 otherwise .

`t2 =

{
0 if t ≤ n/2
1 otherwise .

Clearly the first arm is optimal. Let c1 > 0 be a
constant such that for all sufficiently large n it holds
that ∇g∗(−nηn) ≤ c1/n, which is guaranteed to exist
by the assumptions in the theorem. Then define events
Ft = ∩ts=n/2+1{As = 2, Ps1 ≤ c1/n}. On the event
Fn the random regret satisfies

R̂n ≥
n

2
− αnn

2
≥ n

4
. (4)



The theorem follows by proving that P (Fn) ≥ c for all
sufficiently large n and constant c > 0. The idea is to
show that the estimated loss for the optimal arm after the
first n/2 rounds is large enough that the algorithm never
plays the optimal arm in the second half of the game with
constant probability.

First half dynamics The choice of αn determines the
dynamics of the interaction between the algorithm and
environment in the first n/2 rounds. Before the main
proof we establish some facts about this. Let α ∈ [0, 1/2]
and define (ps(α))ns=0 inductively by p0(α) = 1/2 and

ps+1(α) = ∇g∗
(
−ηn

s∑
u=0

α

pu(α)

)
,

which is chosen so that Pt+1,1 = ps(α) whenever
t + 1 ≤ n/2 and T1(t) = s. Here we used the fact that
L̂t2 = 0 for t ≤ n/2, which follows from the definition
of the bandit. Let Qs(α) =

∑s−1
u=0 α/pu(α). Clearly

Q2(1/2) > 0 and Qs(0) = 0 for all s. Furthermore,
Qs(α) is increasing in both α and s and continuous in
α. Therefore there exists an α◦ ∈ (0, 1/2) such that
Q2(1/2) ≥ Q3(α◦). Now suppose that Qs(1/2) ≥
Qs+1(α◦). Using the fact that ∇g∗ is increasing,

Qs+1(1/2) = Qs(1/2) +
1

2
∇g∗ (−ηnQs(1/2))

−1

≥ Qs+1(α◦) + α◦∇g∗ (−ηnQs+1(α◦))
−1

= Qs+2(α◦) ,

which by induction means thatQs(1/2) ≥ Qs+1(α◦) for
all s ≥ 2. Notice that L̂t1 = Qs(αn) when T1(t−1) = s.

Second half dynamics Define threshold λn by

λn = n+ n2/(2(n− c1)) ≤ 2n ,

where the latter inequality holds for all sufficiently large
n. Let E be the event E = {L̂n/2,1 ≥ λn}. We claim
that P (Fn |E) ≥ exp(−c1/2). Suppose that t > n/2
and E ∩ Ft occurs. Then

L̂t2 =

t∑
s=n/2+1

1

Ps2
≤

t∑
s=n/2+1

1

1− c1/n
≤ n2

2(n− c1)
,

where the first inequality follows from the definition of
Ft. Therefore, since L̂t1 ≥ L̂n/2,1 ≥ λn,

Pt+1,1 = ∇g∗(ηn(L̂t2 − L̂t1))

≤ ∇g∗
(
ηn

(
n2

2(n− c1)
− λn

))
≤ c1

n
. (5)

Hence P (Ft+1 |Ft, E) ≥ 1 − c1/n. Noting that Eq. (5)
implies that Pn/2+1,1 ≤ c1/n shows that E ⊆ Fn/2+1

and hence by induction

P (Fn |E) ≥
(

1− c1
n

)n/2
≥ exp(−c1/2) . (6)

Lower bounding P (E) By Eqs. (4) and (6) it suffices
to prove that P (E) is larger than a constant for
sufficiently large n. Let s = min{u : Qu(1/2) ≥ λn},
which by our assumptions on ∇g∗ for sufficiently large
n is at least s > 2 and at most s ≤ n/2. Then Qs(α◦) ≤
Qs−1(1/2) < λn ≤ Qs(1/2). By the intermediate
value theorem and the continuity of α 7→ Qs(α) we may
choose αn ∈ (α◦, 1/2] such that Qs(αn) = λn. Now
introduce a sequence of independent geometric random
variables (Gu)su=0 with Gu ∈ {1, 2, . . .} and E[Gu] =
1/pu(α). Then by construction,

P (T1(n/2) ≥ s) = P

(
s−1∑
u=0

Gu ≤
n

2

)
. (7)

You should think of Gu as the number of rounds before
the algorithm plays action 1 for the uth time. Let

κ = min

{
m :

s−m−1∑
u=0

1

pu(αn)
≤ n

8

}
.

Then either
∑s−κ−1
u=0 1/pu(αn) ≤ n/16 in which case

1/ps−κ(αn) ≥ n/16 or
∑s−κ−1
u=0 1/pu(αn) ≥ n/16.

Then there exists a constant c2 ≥ 0 such that for
sufficiently large n,

ps−κ(αn) = ∇g∗(−ηnQs−κ−1(αn))

= ∇g∗
(
−ηn

s−κ−1∑
u=0

αn
pu(αn)

)
≤ ∇g∗

(
−α◦nηn

16

)
≤ c2

n
.

Combining the two cases and choosing c2 ≥ 16
guarantees that ps−κ(αn) ≤ c2/n for sufficiently large
n. Using the fact that s 7→ ps(αn) is decreasing,

2n ≥ λn =

s−1∑
u=0

αn
pu(αn)

≥
s−1∑

u=s−κ

α◦n

c2
=
κα◦n

c2
.

Rearranging shows that κ is less than a constant that is
independent of n. By Markov’s inequality

P

(
s−κ−1∑
u=0

Gu ≥
n

4

)

≤ P

(
s−κ−1∑
u=0

Gu ≥ 2

s−κ−1∑
u=0

1

pu(αn)

)
≤ 1

2
.

Hence

P

(
s−κ−1∑
u=0

Gu <
n

4

)
≥ 1

2
. (8)



Furthermore,

α◦
ps−1(αn)

≤ αn
ps−1(αn)

≤
s−1∑
u=0

αn
pu(αn)

= Qs(αn) = λn ≤ 2n .

Therefore, using again that s 7→ ps(α) is decreasing,

P

(
s−1∑

u=s−κ
Gu ≤

n

4

)

≥
(
n/4

κ

)
ps−1(αn)κ (1− ps−κ(αn))

n/4−κ

≥
(
n/4

κ

)(α◦
2n

)κ (
1− c2

n

)n/4−κ
,

which for sufficiently large n is larger than a strictly
positive constant and the result follows by combining the
above with Eqs. (7) and (8).

Remark 5.4. We believe the result continues to hold
for adaptive learning rates under the assumption that
lim supt→∞ t∇g∗(−atηt) <∞ for all a > 0. The proof
becomes significantly more delicate, however.

6 LINEARLY SEPARABLE BANDITS

In this section we consider the case where the adversary
chooses an infinite sequence of loss vectors (`t)

∞
t=1. The

main objective is to prove logarithmic (or better) regret
under the following assumption.

Assumption 6.1. There is a linear separation between
the optimal and suboptimal arms:

∆i = lim inf
n→∞

(Lni − Ln1)/n > 0 for all i > 1 .

Note that if (`t)
∞
t=1 are independent and identically

distributed random vectors, then the above holds almost
surely whenever there is a unique optimal arm. We
provide two results in this setting. The first generalises
a known result from stochastic bandits that there exist
algorithms for which the asymptotic random regret
grows arbitrarily slowly almost surely [Cowan and
Katehakis, 2015].

Theorem 6.2. For any nondecreasing function f : N→
N with limn→∞ f(n) = ∞ there exists an algorithm
such that lim supn→∞ R̂n/f(n) <∞ almost surely.

The algorithm realising the bound in Theorem 6.2
explores uniformly at random on a set E for which
lim supn→∞ |E ∩ [n]|/f(n) ≤ 1 almost surely. The
reader is warned that the constants hidden by the
asymptotics are potentially quite enormous.

Of course this result says nothing about the expected
regret, which must be logarithmic for consistent
algorithms [Lai and Robbins, 1985]. The following
theorem improves on a result by Seldin and Slivkins
[2014] by a factor of log(n)/ log log(n).

Theorem 6.3. There exists an algorithm such that for
any adversarial bandit Rn = O(

√
kn). Furthermore,

under Assumption 6.1 it holds that

lim sup
n→∞

Rn
log(n)2 log log(n)

<∞ .

The algorithm is INF with enough forced exploration
that the loss estimators are guaranteed to be sufficiently
accurate to detect a linear separation. The proofs of
Theorems 6.2 and 6.3 use standard concentration results
and are given in the supplementary material.

7 OPEN QUESTIONS

Despite the relatively long history and extensive
research, many open questions exist about k-armed
adversarial bandits. Perhaps the most exciting question
is the existence/nature of a genuinely instance-optimal
algorithm. The work by Zimmert and Seldin [2019]
suggests the possibility of an algorithm for which Rn =
O(
√
kn) and Rn = O(

∑
i:∆i>0 log(n)/∆i), where

∆i = 1
n

∑n
t=1(`ti − `t1) is the empirical gap between

the arms. In fact, one could hope for a little more.
For stochastic Bernoulli bandits with means (θi)

k
i=1,

the KL-UCB algorithm by Cappé et al. [2013] satisfies
Rn = O(

∑
i:∆i>0 ∆i log(n)/d(θi, θ

∗)) where d(θi, θ1)
is the relative entropy between Bernoulli distributions
with bias θi and θ1 respectively. We are not aware of
a lower bound proving that such a result is not possible
for adversarial bandits with θi = 1

n

∑n
t=1 `ti. At

present it is not clear whether or not our modified algo-
rithm from Corollary 4.3 retains the logarithmic regret
in the stochastic setting, both because we use an adap-
tive learning rate and a hybrid potential. Finally, it is
known that sub-exponential tail bounds are incompatible
with logarithmic regret in the stochastic setting [Audibert
et al., 2009], but by appropriately tuning the confidence
intervals it is straightforward to prove the variance is
linear in n, which is optimal. Missing is an adaptation
of INF that enjoys (a) minimax regret, (b) logarithmic
regret in the stochastic setting and (c) linear variance.
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