
Supplementary – Be Greedy: How Chromatic Number meets
Regret Minimization in Graph Bandits

A Appendix for Section 2.2

RT =

T∑
t=1

(sitα̃− si∗α̃)

=

T∑
t=1

(k>itβ − k>i∗β) +

T∑
t=1

(git − gi∗)

≤
T∑
t=1

(k>itβ − k>i∗β) +

(
T

T∑
t=1

(git − gi∗)2

)1/2

≤
T∑
t=1

(k>itβ − k>i∗β) +

(
4T 2ε2

)1/2

≤
T∑
t=1

(k>itβ − k>i∗β) + 2εT

the second last inequality is due to Cauchy-Schwarz, and the last one is as (git − gi∗) ≤ 2ε, ∀t ∈ [T ].

B Discussion on Smooth rewards

By definition, any smooth function f : V 7→ R over a graph G(V,E) implies f to vary slowly on the neighboring
nodes of the graph G; i.e., if (i, j) ∈ E then fi ≈ fj , ∀i, j ∈ V . The standard way of defining this is by considering
f>Lf =

∑
(i,j)∈E(fi − fj)2 to be small, say f>Lf ≤ B, for some constant B ∈ R+ [29, 16, 34]. Clearly a small

value of B implies |fi − fj | to be small for any to neighboring nodes, i.e. (i, j) ∈ E.

We first analyze the RKHS view of the above notion of smooth reward functions. As before, let L = QΛQT is the
SVD of the Laplacian L, where Q = [q1 q2 . . . qN ] ∈ RN×N , Λ = diag(λ1, λ2, ·, λn) and suppose the singular
values λi = 0, ∀i > d, for some d ∈ [N ]. Now consider the linear space of real-valued vectors,

H(G) = {g ∈ RN | g>qi = 0 ∀i > d}

Note since L ∈ SN+ is positive semi-definite, the function ‖ · ‖L : H(G) 7→ R, such that ‖g‖L = g>Lg defines a valid
norm onH(G). In fact, one can show thatH(G) along with the inner product 〈·, ·〉L : H(G)×H(G) 7→ R, such that
〈g1,g2〉L = g>1 Lg2, ∀g1,g2 ∈ H(G), defines a valid RKHS with respect to the reproducing kernel K = L†. This
can be easily verified from the fact that ∀g ∈ H(G), L†Lg = g, and hence 〈g,Ki〉L = g>LKei = (LKg)>ei =
(L†Lg)>ei = gi, ∀i ∈ [N ].

Thus the smoothness assumption on the reward function f , can alternatively be interpreted as f being small in terms of
the RKHS norm ‖ · ‖L. The above interpretation gives us the insight of extending the notion of “smoothness” with
respect to a general RKHS norm associated to some kernel matrix K ∈ SN+ . More specifically, we choose the kernel
matrix K from the set of orthonormal kernels K(G) and consider f to be smooth in the corresponding RKHS norm.
Note here the Hilbert space of functionsH(K) is given by

H(K) = {g ∈ RN | g>qi = 0 ∀i > d}, (6)

where same as before, the SVD of K = QΛQ>, Q = [q1, . . . ,qN ] ∈ RN×N being the orthogonal eigenvector
matrix of K, Λ = diag(λ1, . . . λN ) be the diagonal matrix containing singular values of K. Clearly λi = 0, ∀i > d
implies r(K) = d. Also we define the corresponding inner product 〈·, ·〉K : H(K) × H(K) 7→ R, as 〈g1,g2〉K =



g>1 K†g2, ∀g1,g2 ∈ H(K). Then similarly as above, we can show thatH(K) along with 〈·, ·〉K defines a valid RKHS
with respect to the reproducing kernel K, as ∀g ∈ H(K), 〈g,Ki〉K = g>K†Kei = gi, ∀i ∈ [N ].

The RKHS norm ‖g‖K = g>K†g defines a measure of the smoothness of g, with respect to the kernel function K.
One way to see this is that ∀g ∈ H(K), ‖gi − gj‖ = ‖〈g, (K(i, ·) − K(j, ·))〉‖ ≤ ‖g‖K‖K(i, ·) − K(j, ·)‖K =
‖g‖K|(Kii + Kjj − 2Kij)|, where the inequality follows from Cauchy-Schwarz [10]. Note since K ∈ K(G),
Kii = 1, ∀i ∈ [N ], we have |(Kii + Kjj − 2Kij)| ≤ 4 ∀i, j ∈ [N ]. In particular, for two similar nodes i and j, it
is expected that K(i, j) ≈ 1, in which case the quantity |(Kii + Kjj − 2Kij)| ≈ 0. Thus to impose a smoothness
constraint on g, it is sufficient to upper bound ‖g‖K ≤ B, for some fixed B ∈ R, ∀g ∈ H(K).

We thus justify our assumption of ‖f‖K ≤ B which implies the reward vector f to be a smooth functions over the
underlying graph G, with respect to embedding K.

C Proofs for Section 3

For all proofs concerning the algorithm SupOUCB we denote for convenience Xj = Xsj ,tj+1, similarly all notations
with subscript j are to be read with subscript (sj , tj + 1) i.e., variables at the end of phase j in algorithm SupOUCB
Let us denote Nj = tj − sj + 1 i.e., number of rounds in phase j.

Proof of Lemma 4: Clearly, the least square solution of (4) would satisfy α̂s,t
(
Xs,tX

>
s,t + IN

)
− Xs,trs,t = 0,

solving which we get α̂s,t = (Xs,tX
>
s,t + γIN )−1Xs,trs,t.

Now from Sherman–Morrison–Woodbury (SMW) formula [38] we know that for any non-singular matrix A1 ∈ Rn×n,
and any A2,A2 ∈ Rn×m,

(A1 + A2A
>
3 )−1 =A−1

1 −A−1
1 A2(In + A>3 A−1

1 A2)−1A>3 A−1
1 .

Using above with A1 = γIN and A2 = A3 = Xs,t we get, (Xs,tX
>
s,t + γIN )−1 = 1

γ

(
IN − Xs,t(γIt−s +

X>s,tXs,t)
−1X>s,t

)
. Thus for any v ∈ [N ], we have

f̂s,t(v) = U>v α̂s,t

=
U>v
γ

(
IN −Xs,t(γIt−s + X>s,tXs,t)

−1X>s,t
)
Xs,trs,t

= U>v Xs,t(γIt−s + X>s,tXs,t)
−1rs,t

= k̂
v

s,t(K̂s,t + γIt−s)
−1rs,t,

last equality follows from the definition of k̂
v

s,t and K̂s,t.

Proof of Lemma 7:

Let Vj = XjX
>
j + γIN , we have

|f̂ j(v)− f(v)| = |u>v (α̂j−1 −α) |

= |u>v V
−1/2
j−1 V

1/2
j−1 (α̂j−1 −α) |

≤ ||V1/2
j−1 (α̂j−1 −α) || ||uv||V−1

j−1

Using Lemma 18 which bounds the term ||V1/2
j−1 (α̂j−1 −α) || we get

|f̂ j(v)− f(v)| ≤ b ||uv||V−1
j−1

(7)

Note that for the first phase, there is no previous phase hence V0 = I and α0 = 0 are taken. We see that ||uv||V−1
j−1

can

be expressed in terms of K̂j using Sherman-Morrison-Woodbury formula as follows



u>v V−1
j−1uv = γ−1u>v

(
INj −Xj(γINj + K̂j)

−1X>j
)
uv

= γ−1

(
1−

(
k̂
v

j

)>
Mjk̂

v

j

)

Using above result in (7) we get the desired result.

Lemma 18. Let 0 ≤ δ ≤ 1, then for any phase j in the algorithm SupOUCB using graph embedding K the following
holds with high probability 1− δ

||
(
XjX

>
j + γINj

)1/2 (
α̂>j −α

)
|| ≤ b

where b =
(
R
√
c+Bmax(1, 1√

γ )
)

with c = r(K) + 2
√
r(K) log 1

δ + 2 log 1
δ .

Proof of Lemma 18:

Let ej = [ηsj , · · · , ηtj ]>. Now consider the following term(
α̂>j −α

)
= V−1

j Xjrj −α

= V−1
j Xj

(
X>j α+ ej

)
−α

= V−1
j (Xjej −α) (8)

The last equality is obtained by adding and subtracting the term V−1
j α from second equality. Now we try to bound

the quantity D(α̂j ,α) =
(
α̂>j −α

)>
Vj

(
α̂>j −α

)
, it cab be verified that D(α̂j ,α) = Lj(α) − Lj(α̂j) where

Lj(w) =
∑tj
t=sj

(
w>xt − rt

)2
is the cumulative squared loss.

D(α̂j ,α) =
(
α̂>j −α

)>
(Xjej −α) ( from (8) )

= (Xjej −α)
>

V−1
j (Xjej −α)

=
1

γ
(Xjej −α)

>
(

I−Xj

(
K̂j + γI

)−1

X>j

)
(Xjej −α)

=
1

γ

(
2α>Xj

(
K̂j + γI

)−1

K̂jej − e>j K̂j

(
K̂j + γI

)−1

K̂jej

+e>j K̂jej +α>α− 2α>Xjej −α>Xj

(
K̂j + γI

)−1

X>j α

)
= e>j

(
K̂j + γI

)−1

K̂jej − 2α>Xj

(
K̂j + γI

)−1

ej +
α>α

γ

≤ 2
√
α>α

√
e>j

(
K̂j + γI

)−2

K̂jej + e>j

(
K̂j + γI

)−1

K̂jej

+
α>α

γ
(Cauchy-Schwartz inequality)

= ||A1/2ej ||2 +
||α||2

γ
+ 2||α||||B1/2et|| (9)

where A =
(
K̂j + γI

)−1

K̂j and B =
(
K̂j + γI

)−2

K̂j . The last inequality follows from positive semi-definite

property of A and B. Let λ1 ≥ · · · ≥ λNj be the eigenvalues of K̂j . Now we state the concentration inequality for
sub-Gaussian quadratic forms [12]



Theorem 19. Let x = [x1 · · ·xm]> be sub-Gaussian random vector with independent entries each with mean 0 and
variance at most R2 then

Pr
[
||Cx||2 ≥ R2F (C, s)

]
≤ exp(−s)

where Tr
(
C>C

)
+ 2

√
Tr
(

(C>C)
2
)
s+ 2||C>C||s and s ≤ 0

Applying the above theorem to ||A1/2et|| we get that with high probability 1− δ(setting exp(−s) = δ)

||A1/2et||2 ≤ Tr (A) + 2

√
Tr (A2) log

1

δ
+ 2||A|| log

1

δ

=

Nj∑
i=1

λi
λi + γ

+ 2

√√√√ Nj∑
i=1

λ2
i

(λi + γ)
2 log

1

δ

+ 2
λ1

λ1 + γ
log

1

δ
( using definition of A)

≤ r(K) + 2

√
r(K) log

1

δ
+ 2 log

1

δ
(= c) (10)

The last inequality follows from the fact that if Kj rank is r(j) then except r(j) number of eigenvalues the rest of the
eigenvalues will be zero and r(Kj) ≤ r(K). Now again we apply theorem 19 to the term ||B1/2ej || we get that with
high probability 1− δ

||B1/2ej ||2 ≤ Tr (B) + 2

√
Tr (B2) log

1

δ
+ 2||B|| log

1

δ

=

Nj∑
i=1

λi

(λi + γ)
2 + 2

λ1

(λi + γ)
2 log

1

δ

+ 2

√√√√ Nj∑
i=1

λ2
i

(λi + γ)
4 log

1

δ
( from definition of B)

≤ r(K) + 2

√
r(K) log

1

δ
+ 2 log

1

δ
(= c) (11)

Now we make use of (10) and (11) in the equation (9) to obtain

D(α̂j ,α) ≤ cR2 +
||α||2

γ
+ 2BR

√
c

≤ cR2 +
B2

γ
+ 2BR

√
c (Since ||α|| ≤ B)

≤ cR2 +B2 max(1,
1

γ
) + 2BR

√
c max(1,

1
√
γ

) (12)

(13)

The final inequality follows by considering 2 cases when γ ≥ 1 and γ < 1. The Lemma follows from the last
inequality.

Proof of Theorem 8: Let x∗ be the optimal arm/vertex and xt be arm selected by algorithm in round t. Consider the



definition of regret

RT (K) =

T∑
t=1

(x∗ − xt)
>
α

=

J∑
j=1

tj∑
t=sj

(x∗ − xt)
>
α

≤
J∑
j=1

Nj

(
(x∗ − xt′)

>
αj−1 + bZ

)
(14)

where t′ = argmaxt∈{sj ,··· ,tj} (x∗ − xt)
>
α and Z = ||xt′ ||V−1

j−1
+ ||x∗||V−1

j−1
. The final inequality follows from (7)

and holds good for each phase with probability 1− Jδ. Note that v∗ ∈ Aj for every j (under high probability) which
follows from Lemma 7. By applying Lemma 18 we get

(x∗ − xt′)
>
αj−1 ≤ b

(
||xt′ ||V−1

j−1
+ ||x∗||V−1

j−1

)
(15)

Now we state 2 lemmas from [29] without proof
Lemma 20. For all v ∈ Aj , we have:

||uv||2V−1
j

≤ 1

Nj−1

tj−1∑
l=sj−1

||xl||2V−1
l

Lemma 21. For each phase j, we have:

tj∑
l=sj

||xl||2V−1
l

≤ log

(
|Vj |
|γIN |

)

Now by applying Lemma 20, Lemma 21 and (15) for (14) we get

RT (K) ≤ 4b

J∑
j=1

Nj

√
1

Nj−1
log

(
det Vj−1

det(γIN )

)

We bound the term det Vj in terms of the rank of the embedding r(K) in the following Lemma
Lemma 22.

det Vj

det(γIN )
≤
(

1 +
Nj
γ

)r(K)

Proof. We know that K̂j = X>j Xj and X>j Xj have same non-zero eigenvalues. Let Bj = K̂j +γINj , we see that for

setting t ≤ N , det Vj = γN−Nj det Bj . Moreover det Bj = γNj−r(K̂j)
∏r(K̂j)
i=1 (γ + λi) where λi are eigenvalues

of K̂j . So using expression for det Bj we have

det Vt

det(γIN )
=
γN−r(K̂j)

∏r(K̂j)
i=1 (γ + λi)

γN

=

r(K̂j)∏
i=1

(
1 +

λi
γ

)

≤
(

1 +
Nj
γ

)r(K)

The final inequality follows from the fact that r(K̂t) ≤ r(K) and λi ≤ Tr(K̂t) = Nj . Hence the result.



By applying Lemma 22 we have

RT (K) ≤ 4b

J∑
j=1

Nj

√
r(K)

Nj−1
log(1 +

Nj
γ

)

≤ 4b
√

2

J∑
j=1

2j/2

√
r(K) log

(
1 +

T

γ

)
( using the definition sj)

≤ 8b

√
r(K)T log

(
1 +

T

γ

)

Using the definition of b we see that
RT (K) = O

(
r(K)

√
T log T

)

For all proofs concerning the algorithm OUCB we denote for convenience Xj = X1,j , similarly all notations with
subscript j are to be read with subscript (1, j) i.e., variables at the end of round j − 1 in algorithm OUCB.

Proof of Lemma 5: From Theorem 2 in the paper [39] we have with probability 1− δ

|f̂1,t(v)− f(v)| ≤ R

√
2 log

(
det(Vt)1/2

δ det(γIN )1/2

)
+B (16)

where Vt = X>t Xt + γIN . The result follows using Lemma 22 to bound det Vt

det(γIN ) .

Proof of Theorem 6: Using Lemma 5 and Lemma 22 we get the confidence bound in round t on the reward

|f̂1,t(v)− f(v)| ≤ R
√
r(K) log(1 +

t

γ
) + 2 log

1

δ
+B, (= Bt) (17)

Let x∗ = argmaxv α
T
∗ uv. Let the regret per round be rt = maxv∈[N ] f(v) − f̂1,t(v) = αT∗ (x∗ − xt) where xt is

the vertex chosen in round t. We now state the following result from the proof of Theorem 1 in [29] without proof
which bounds rt with a high probability of 1− δ

rt ≤ 2Bt||xt||V−1
t

(18)

Now the cumulative regret is given by

RT (K) =

T∑
t=1

Bt ≤

√√√√T

T∑
t=1

r2
t

≤ 2BT

√√√√T

T∑
t=1

||xt||2V−1
t

≤ 2BT
√

2T log det VT

Substituting and |VT | (using Lemma 22), we get

RT (K) ≤ 2BT

√
2r(K)T log

(
1 +

T

γ

)
(19)

Substituting for BT , we get RT = O(r(K)
√
T log T )



D Proofs for Section 4

Proof of Corollary 11

Proof. An immediate consequence of Theorem 8 gives

RT = O
(
d∗
√
T log T

)
,

and the first claim follows by recalling that d∗ satisfies the sandwich property [32]

α(G) ≤ d∗ ≤ χ(G),

where recall that α(G) denotes the independence number of G. The second claim is due to [30].

Proof of Lemma 12

Proof. Note than in the embedding U, for any two vertices i, j ∈ [N ], if (i, j) /∈ E, then U>i Uj = 0. Also
‖Ui‖2 = 1, ∀i ∈ [N ]. Thus U ∈ Lab(G). Clearly r(U) = c, since its columns consists of only c many standard
basis vectors of RN . Moreover since K = U>U, we have that Kii = U>i Ui = 1 and Kij = U>i Uj = 0,
∀i, j ∈ [N ] such that (i, j) /∈ E. Thus K ∈ K(G). Suppose if the SVD of U is given by U = PΣQ>, we know that
K = U>U = QΣ2Q>. Thus rank(K) = r(U>U) = r(U) = c.

Proof of Corollary 15

Proof. If U is the embedding returned by Algorithm 3, then by Lemma 12, K = U>U ∈ K(G) and r(K) = |C|. The
results now follows from a straightforward application of Theorem 8 with Kc = K.

Proof of Corollary 15

Proof. From [19] we know that given any graph G′, the number of colors used by the greedy coloring algorithm is at
most dmax(G′) + 1. Thus |Cg(G)| ≤ dmax(G) + 1. The claim now follows directly from Corollary 13.

E Proofs for Section 5

Proof of Theorem 16

Proof. The proof is similar to the proof provided in [16]. Consider a graph with k disjoint cliques Gk. The reward
structure r is given as follows:

• Every node in a clique has the same expected reward.

• A clique is chosen randomly i.e., a number I is picked uniformly at random from {1, · · · , k}.

• For nodes v ∈ GI have the rewards distributed as N
(

1
2 + δ, 1

)
and the rest of nodes in other cliques v /∈ GI have

rewards distributed as N
(

1
2 , 1
)
.

Clearly the reward structure for node v has following form rv = fv + ε with ε = N (0, 1) and fv = 1
2 + δI{v ∈ GI} is

the expected reward.

It is to be shown that expected reward f ∈ F(G). This can be seen by constructing orthogonal labeling X using k
orthogonal vectors {x1, · · · , xk} and assigning xi label to every node in clique Gi. Since X has rank k there exists
some α∗ such that f = XTα∗.

Since the actions and rewards are indistinguishable within a clique, we see that graph MAB setting reduces to picking a
clique with highest reward. Thus graph MAB setting can be transformed into k-arm MAB setting with each clique
representing an arm with normally distributed rewards.



Now we refer Theorem 23, which is similar to Theorem 5.1 in [6] where rewards are generated randomly according to
Bernoulli distributions to obtain the lower bound. Alternatively we prove the same thoerem with rewards generated
under Gaussian noise; a proof sketch of this theorem was provided by [16] but we provide the entire proof for sake of
completeness.

Clearly k = χ(G) and with reduction to k-arm bandits and proof of 23 under the described reward structure, we get the
theorem.

Theorem 23. For any number of actions k ≥ 2 and for any time horizon T , there exists a distribution over the
assignment of rewards such that the expected weak regret of any algorithm (where the expectation is taken with respect
to both the randomization over rewards and the algorithms internal randomization) is at least

1

28
min{T,

√
kT}

Proof. The proof follows the proof of [6] closely and we borrow the same notation. The rewards are constructed as
follows:

• An arm I is picked uniformly at random from A = {1, · · · , k} arms. Arm I is termed ’good’ arm.

• For arm the reward is distributed as N
(

1
2 + δ, 1

)
and the rest of arm have rewards distributed as N

(
1
2 , 1
)
.

The expected reward of the best arm is
(

1
2 + δ

)
T . Let P∗{·} to denote probability with respect to this random choice

of rewards, and we also write Pi{·} to denote probability conditioned on i being the good arm: Pi{·} = P∗{·|I = i}.
Finally, we write Punif{·} to denote probability with respect to a uniformly random choice of rewards for all actions
(including the good arm). Analogous expectation notation E∗ [·] , Ei [·], and Eunif [·] will also be used.

Let A be the algorithm and xi(t)(t) be the reward obtained by A by choosing arm i(t) in round t. Let rt = xi(t)(t) be a
random variable denoting the reward received at time t, and let rt denote the sequence of rewards received up through
trial t : rt = (r1, ..., rt). For shorthand, r = rT is the entire sequence of rewards. As usual, GA =

∑T
t=1 rT denotes

the return of the algorithm A, and Gmax = maxa∈A
∑T
t=1 xa(t) is the return of the best action. Let Ni be a random

variable denoting the number of times action i is chosen by A.

Lemma 24. Let f : {0, 1}T → [0,M ] be any function defined on reward sequences r. Then for any action i,

Ei[f(r)] ≤ Eunif [f(r)] +Mδ
√

2Eunif [N(i)]

Proof. For any distributions P and Q, denote the Total Variation distance between P and Q [15] by

dTV (P,Q) =
1

2
max
|h|≤1

∣∣∣∣∫
Ω

hdP −
∫

Ω

hdQ

∣∣∣∣
where h : Ω→ is a function such that h(x) ≤ 1. Let DKL(P ||Q) denote the KL-divergence between the distributions
P and Q. We have

Ei[f(r)]− Eunif [f(r)] =

∫
Ω

fdPi −
∫

Ω

fdPunif

≤M
∣∣∣∣∫

Ω

f

M
dPi −

∫
Ω

f

M
dPunif

∣∣∣∣
≤ 2MdTV (Pi, Punif )

The Pinsker’s inequality [15] relates dTV to DKL

2d2
TV ≤ DKL

Using Pinsker’s inequality, we have

Ei[f(r)]− Eunif [f(r)] ≤M
√

2DKL(Punif ||Pi) (20)



Using chain rule for relative entropy, we have

DKL(Punif ||Pi) =

T∑
t=1

DKL(Punif{rt|rt−1}||Pi{rt|rt−1})

=

T∑
t=1

(Punif{i(t) 6= i}DKL (N1||N1) + Punif{i(t) = i}DKL (N1||N2))

where N1 = N
(

1
2 , 1
)

and N2 = N
(

1
2 + δ, 1

)
. Since DKL (N1||N2) = δ2, we have

DKL(Punif ||Pi) ≤ δ2
T∑
t=1

Punif{i(t) = i} = Eunif [N(i)] δ2 (21)

From (20) and (21) we get the theorem.

Now we state the following theorem, we skip the proof as the steps are same as those for Theorem A.2 in [6] except
that we apply Lemma 24 (instead of Lemma A.1 found in [6]) to Ni.

Theorem 25. For any algorithm A, and for the distribution on rewards described above, the expected regret of
algorithm A is lower bounded by

E∗[Gmax −GA] ≥ δ

(
T − T

K
− Tδ

√
2
T

K

)

Now using Theorem 25 and setting δ = 1
4 min{

√
K
T , 1} we obtain the result.
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