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Abstract

Online planning under uncertainty on robots
and similar agents has very strict performance
requirements in order to achieve reasonable
behavior in complex domains with limited re-
sources. The underlying process of decision-
making and information gathering is correctly
modeled by POMDP’s, but their complexity
makes many interesting and challenging prob-
lems virtually intractable. We address this is-
sue by introducing a method to estimate rel-
evance values for elements of a planning do-
main, that allow an agent to focus on promis-
ing features. This approach reduces the ef-
fective dimensionality of problems, allowing
an agent to plan faster and collect higher re-
wards. Experimental validation was performed
on two challenging POMDP’s that resemble
real-world robotic task planning, where it is
crucial to interleave planning and acting in an
efficient manner.

1 INTRODUCTION

Planning and acting simultaneously comes naturally to
us as human beings, but is deceivingly complicated to
model and replicate. As the result of a long evolution-
ary process, we are capable of deliberating about rel-
atively complicated problems and often find reasonable
solutions by employing a number of cognitive resources.
We can shift our attention across entities, perceived or
imagined, and selectively focus on one or more at a time,
in order to examine their potential contributions within
the context of problem solving. More often than not,
however, we are not aware of the underlying selection
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process and do not consciously reason about the selec-
tion criteria. On the other hand, an artificial agent (such
as a mobile robot) must explicitly allocate resources for
deliberation — a task that grows in complexity in non-
deterministic and uncertain domains. If we intend to de-
sign agents that can efficiently plan, or deliberate about
the effects of actions, and subsequently execute these ac-
tions in a seamless, continuous stream to solve practical
problems, we must find ways to eschew brute-force com-
putation.

Initial attempts to include uncertainty in planning prob-
lems focused on logic models with added probabili-
ties, such as possible-worlds planning (Thiébaux and
Hertzberg, 1992; Boutilier et al., 1996). The current stan-
dard models are, however, the Markov Decision Process
(MDP) and the Partially Observable MDP (POMDP).
POMDP’s are particularly useful to model robotic task
planning: they explicitly represent the uncertainty of
observations, the effect of information-gathering ac-
tions and the agent’s own belief about its current state,
all modeled as probability distributions. Consequently,
POMDP’s also become intractable very quickly.

Existing planners can solve relatively large POMDP’s,
and produce good results in game-like or idealized plan-
ning domains (Silver and Veness, 2010; Somani et al.,
2013). Most test problems, however, tend to be sim-
plified through prior expert analysis and therefore fail
to represent challenges that an actual robot might face,
making POMDP’s for practical problems larger and ex-
ponentially more complex. Modern Monte-Carlo plan-
ners are particularly well suited for online planning,
and manage to cope with issues such as dimensional-
ity and history. Planning onboard robots, however, im-
poses additional limitations that often lead to poor per-
formance: we suggest that dimensionality can be reduced
further by selectively ignoring certain elements in the do-
main, effectively reducing the number of available ac-
tions and their associated observations and consequently
the branching factor of the underlying search tree.



With POMDP states as feature vectors, each element is
a feature that either contributes to reaching the goal (at
some point) or doesn’t, in which case it becomes simply
a distraction. By assigning a numerical value to a fea-
ture’s usefulness, the agent can progressively shift its fo-
cus towards more useful features and their associated ac-
tions and ignore the rest. This process, which we call in-
cremental refinement (IRE), uses the perceived relevance
of features (based on current opportunities) to prune the
underlying POMDP and help the agent avoid entire sec-
tions of the state space that lead to low rewards. This
work is part of our effort to formalize relevance within
the context of online planning, a concept we previously
defined as “an attentional filter guiding an agent’s per-
ception and action selection”.

In this paper we introduce IRE, which easily integrates
into Monte-Carlo POMDP planners, as well as a new
challenging POMDP. We begin by reviewing relevant re-
lated work, followed by a brief state-space analysis of
robotic POMDP’s. We then describe our method, its im-
plications for dimensionality reduction and provide an
upper limit for its approximation error. We provide ex-
perimental results in two sets of difficult POMDP’s and
conclude by discussing our results and derived future
work.

2 RELATED WORK

POMDP planning has decades worth of literature. A
large family of algorithms use piece-wise linear approx-
imations of the optimal value function (Smallwood and
Sondik, 1973), with methods such as Witness (Cassan-
dra et al., 1994) and Incremental Pruning (Cassandra
et al., 1997), which actively select and discard vectors
that correctly approximate the optimal value function.
Point-based algorithms improve scalability by maintain-
ing fewer vectors and updating select points in belief
space, often chosen through heuristics. Examples in-
clude HSVI (Smith and Simmons, 2004), PBVI (Pineau
et al., 2006), Perseus (Spaan and Vlassis, 2005) and
SARSOP (Kurniawati et al., 2008). PBVI and SARSOP
have some limited robotic applications, but are restricted
to very small POMDP’s.

Alternatively, sampling-based POMDP planning uses a
generative model to simulate transitions and approximate
state and action values. UCT, a Monte-Carlo Tree Search
(MCTS) algorithm based on UCB1 (Auer et al., 2002), is
commonly used to solve fully-observable MDP’s (Koc-
sis and Szepesvari, 2006). POMCP solves POMDP’s
through two significant changes to UCT: it approximates
the belief-state with an unweighted particle filter, and ex-
pands a tree of histories instead of a tree of states (Silver
and Veness, 2010). As an MCTS algorithm, it also trans-

lates well to online and anytime robot planning. In this
paper we adopt this approach and will therefore refer to
states with partially observable elements, instead of ex-
plicit belief states. Another algorithm combines heuris-
tics and sampling to prefer reachable beliefs and obtain
better worst-case performance than POMCP, but similar
average performance (Somani et al., 2013). We propose
instead addressing the underlying elements that lead to
such a large belief space.

The dimensionality of large POMDP’s can be addressed
by clustering states and generalizing state or belief val-
ues (Pineau et al., 2003), random forest model learning
(Hester and Stone, 2013) and value-function approxima-
tion with e.g.: neural networks. None of these methods
exploit the underlying structure of problems, but focus
on a general abstraction of POMDP’s. Machine learning
techniques have also been applied to POMDP’s, but they
come with challenges of their own and rely on simplistic
planning methods (Karkus et al., 2017; Igl et al., 2018).
Action hierarchies provide abstractions that also improve
performance (Sutton et al., 1999; Dietterich, 2000; Vien
and Toussaint, 2015), but they must be built in advance
whereas our proposal works entirely online and does
not rely on prior knowledge. The resulting simplifica-
tion provided by IRE is somewhat similar to state factor-
ing, but these techniques assume independence of state
variables and require prebuilt dependencies and a good
choice of basis functions. In addition, not all problems
can be easily or conveniently factored, so we focus on
planning directly over unfactored representations.

The underlying assumption of our approach is that it is
possible to simplify the dense action set of a full POMDP
model, and obtain a sparse representation with mostly
relevant features. Feature-relevance estimation is based
on action values, so in addition we use partial goal sat-
isfaction (PGS) to improve action selection (Saborio and
Hertzberg, 2019). PGS works as a Monte-Carlo rollout
policy and a reward-shaping bonus, that allows an agent
to exploit reward opportunities faster.

2.1 NOTATION

We rely on the standard notation for (PO)MDP’s: let .S
and A be finite sets of states and actions, T'(s,a,s’) =
P(s'|s,a) the transition probability to state s with
s,a and R a set of real-valued rewards. The tu-
ple (S, A, T, R) is an MDP and ~ its problem-defined
discount factor. For partially observable domains,
O(s,a,w) = P(w|s,a) is the probability of receiving
observation w € €2, and b € B is the agent’s internal be-
lief state, where b(s) is the probability of s being the cur-
rent state. A POMDP is the tuple (S, A, T, R, 2, O), and
the sequence h; = (ag, w1, . .., ar—1,w) is the history at



time ¢. Notice that the belief space is a |.S|-dimensional
hyperplane, which underlines the importance of efficient
dimensionality reduction techniques.

3 FEATURES AND COMPLEXITY

We are interested in POMDP’s that model robotic task-
planning under uncertainty, meaning an agent can move
(in 2D or 3D), manipulate objects and obtain information
through sensors. These objects or entities in the plan-
ning domain correspond to features, and we argue that
the complexity of such a POMDP is largely dependent
on them. This notation assumes states with mixed ob-
servability, so fully-observable features don’t yield prob-
abilistic observations. Previous studies of point-based
POMDP algorithms also realized that this assumption
better reflects the practical complexity of POMDP plan-
ning (Hsu et al., 2007).

Let 1 be the number of valid positions the agent can
assume, p the number of locations or positions of fea-
tures, k£ the number of features with variable positions
(eg.: those that move or that the agent might move), and
Qf C Q the subset of observations of feature f € F (eg.
obtained through information-gathering actions). The
state-space of such a POMDP is:

World configurations

Observation space

(é) [T 1o/ M

feF

where the left-most side corresponds to the number of
observable world configurations and the right-most side,
to the possible worlds generated by the different obser-
vations. The binary coefficient in both sides is the num-
ber of positions of the k£ movable features. The obser-
vation space however assumes an agent doesn’t know
which features can actually move, so it maintains a be-
lief about the position of every feature. The product of
feature-related observations gives the total distribution of
qualitative observations, such as “valuable”, or “useful”.

For example, in Rocksample any given rock can be either
valuable or not valuable, so for 8 rocks there are 28 possi-
ble arrangements, and for Rocksample[7,8] eq. 1 returns
12544 states. If there were 15 additional objects, with
two types of observations each, and 8 of them were mov-
able, the state space would increase to more than 1015,

For a goal-driven agent, however, many features and
their actions are irrelevant and will in fact be ignored
(e.g.: after many simulations). We propose estimating
feature relevance directly as a function of the combined

values of actions for a given feature. Features are only
relevant for goal-oriented planning as long as they pro-
vide or lead to useful (goal-related) interactions, so the
discounted rewards of these useful action opportunities
should be reflected in their relevance value. This is for-
mally presented in the next section.

4 FEATURES AND RELEVANCE

We will first define a value function that associates
action-values to features and second, a feature-value
function that combines these quantities to estimate an
overall relevance value. In practice it is necessary to
identify which features are affected by which actions,
and we propose doing so in a simple lookup table with an
update rule. Unlike tabular methods for planning or rein-
forcement learning, this particular table contains entries
only for each feature and action pair. This is perfectly
manageable for most if not all POMDP’s, unlike state or
belief tables.

For simplicity these equations are given in terms of states
(regardless of partial observability). Transferring these
methods to POMDP’s is trivial under the Monte-Carlo
POMDP approach.

4.1 FEATURE VALUES

MCTS and similar planning methods estimate an action-
value function (s, a), that approximates the true ¢(s, a)
function. This represents the discounted return of exe-
cuting action a in state s and then following some policy
7. The action-value function ¢ can be written in terms of
a state-value function:

Q(Sv a) = E[R(S, a, S,) + 'YU*(S/)]

where v € [0, 1] is a discount factor and v* is the optimal
state-value function, that is:

v*(s) =max > p(s'|s,a)[r(s, a, ") + 70 ()]

Bellman’s optimality equation for ¢ is therefore:

a(s,a) = Y p(s'ls, a)[r(s, a, ") + ymaxq(s', a)]

which relates the action-value function to its transition
probability, its immediate reward (r(s, a, s’)) and its ex-
pected reward following the optimal policy. Intuitively



this means that for any given state s, all of its associated
q(s, a) represent the immediate and the long-term bene-
fit of executing a, which is linked to a particular feature.
For example, if a = ’scan object 1°, then ¢(s, a) offers
information about object 1 (the feature) in the form of
a high or a low reward. However, for some particular
s and some particular policy, the opportunity to execute
a and discover its potential benefit may be too far into
the future and its contribution to ¢(s, a) too heavily dis-
counted. But if such action and its associated feature are
relevant in the future, they might also be relevant now.
For the purposes of relevance estimation, let’s assume
the following:

Hypothesis 1 For some given a € A.3s,8 € S s.t.
r(s,a, s") is significant — a is relevant.

In other words, there might be a transition with a sub-
stantial reward that makes this action, and its feature, rel-
evant. This suggests all potential future rewards should
be (somewhat) equally considered. The contribution of
an action/feature pair can then be estimated by expand-
ing the underlying MDP and considering all possible out-
comes on the subset S, C S of states where «a is avail-
able:

q(s0,a)

q(s1, a)
relevance of action a

q(sn-1,a)

q(sn,a)

where Vi.0 < i < n.s; €S,, which leads to the value
function:

U(fv OJ) = E[q(7 a)}
= q(s0,a)po + q(s1,a)p1+
.ot q(snfh a)pnfl + q(sn7 a)pn (2)
1
= |Sa| Z Q(saa)

SES,

We assume the distribution of action values is uniform in
this case because we are dealing with prospects, estimat-
ing the value of all afforded actions, and actual g-values
correctly combine reward and probability. An effect of
this average is that if there are many states where a has a
high (or low) return, this will be reflected in the value of
this feature-action pair.

4.2 FEATURE RELEVANCE

The relevance of a feature is defined as the expected
value of its afforded, weighted actions, as in eq. 3.

V(F) = E(w(o(f,0))
_ 1 3)
= 2wl

where w is some chosen importance scaling function.
This is necessary to more closely model preferences and
intuitive relevance estimation in extreme cases such as:

1. Underestimation: a feature has mostly actions with
very low rewards, except for one, extremely good,
goal-related action. Its relevance would otherwise
be very low.

2. Overestimation: a feature has very few or no useful
actions but they are not particularly punishing. Its
arithmetic mean is above the relevance threshold,
but the feature is not particularly relevant.

3. Partial sampling: a feature offers several actions but
few of them can actually be sampled (eg.: unreach-
able states). If only case 2 actions are available, its
value will be inaccurate.

We propose a value scaling function (eq. 4) based on the
idea that the contribution of values to feature relevance
is linear when they are negative but grows rapidly when
they are positive, with a fixed punishment for actions that
cannot be executed (N = 0).

o™ ifv >0
w((f,a)) =<k IfN=0 “)
v ifv<O

with K € R~ and n € R*. This assumes, as is the case
in most POMDP’s, that goal-related rewards are positive.
Eqgs. 4 and 3 can also be chosen to represent (and test)
some particular relevance criteria (e.g.: human prefer-
ences in known domains).

4.3 VALUE APPROXIMATION

In order to implement these methods and easily identify
action-feature pairs and values we propose using a sim-
ple table.

Definition 1 Let T be a catalog or table with entries cor-
responding to the mapping F x A — R, for features
f € F, their associated actions a € A and their corre-
sponding feature value v.



Table entries are therefore tuples of the form (f,a,v).
Values can be obtained alongside state-action values,
since they also use a combination of immediate and dis-
counted, delayed rewards. This value, v(f,a), can be
computed as per equation 5:

1
o(f.a) = 5 D _r(s.a.8") +ypmaxg(s’.a)  (5)

S

where N is the number of times action a was executed
and 7y is a discount factor. Eq. 5 can be easily imple-
mented as an online average (eq. 6):

o(fa) i)+ T
where r = r(s,a,s’) + vy max, ¢(s’,a’) is the imme-
diate reward plus the discounted future reward and N
counts the number of updates. We approximate v(f, a)
using a different discount factor, vy < =, to reflect the
short-term effect of actions instead of the long horizon
normally used in planning. Finally the feature-value,
V(f), is computed from the elements in T.

In between planning phases, once an action has been cho-
sen and executed in the “real world”, all table entries
must be updated to reflect the new current state. Fea-
ture relevance may change overtime, behaving in prac-
tice as a nonstationary problem. We suggest including a
type of learning factor to combine previous and current
estimates, weighing samples from the current state more
heavily. A simple solution is resetting the count in each
tuple to 1 and using the current value as a prior, which
leads to a variable learning factor of 1/N for N samples,
a solution known to minimize regret (Auer et al., 2002).
With this simple update rule, if the approximation was
correct then new updates won’t affect the current esti-
mate. If the approximation is incorrect but the action is
promising, the action selection policy will choose it often
in simulation and the entry will be corrected. If the value
was correct but in the current state is no longer valid (eg.:
the reward source was exhausted), the old information
will quickly be overwritten.

Intuitively, the relevance of a feature at a given time is
determined by the possible actions that can be simulated
from the starting state and how they affect this feature.
Without useful actions, the feature might be considered
irrelevant. Features can be selectively enabled and dis-
abled during (online) planning according to their current
relevance status, allowing simulations and rollouts to fo-
cus only on those actions that affect active features. This
reduces the number of reachable states and consequently
the effective problem size.

4.4 DIMENSIONALITY REDUCTION

The core principle of our proposal is that irrelevant fea-
tures may be ignored, since their presence does not sig-
nificantly affect the resulting policy. By avoiding fea-
tures, the action branching factor is reduced and many
(belief) states avoided, pruning the search tree. Depend-
ing on each problem, ignoring a feature might involve
additional considerations (eg.: a mobile robot may ig-
nore a chair but not drive through it). In its current form
our proposal uses a simple threshold check:

true ifV(f)>r
false otherwise

active(f) = { (7

where 7 € R. The set of available actions at some given
moment ¢ reduces to:

A=A\ A (8)

with A~ the set of inactive actions, defined by the actions
of inactive features:

A== |J A )

feF-

where 7~ = {f | V(f) < 7} is the set of inactive fea-
tures, and A(f) C A the subset of actions linked to fea-
ture f. This set may be used with any action-selection
rule to ignore actions of features with low relevance val-
ues, resulting in relevance-aware versions of UCB, e-
greedy, etc.

4.4.1 Bounds For Feature Activation

Inactive features are, in principle, those that do not help
an agent achieve its goal. Here we will briefly explain
their properties and their connection to the activation
threshold. For the following let

w = "lge (w(v(f,a))) (10)
denote the sum of all positive (including 0) values,
w” =Y g (w(v(f,a))) (11)

represent the sum of all negative values (where 1g(z) =
x € R is the indicator function), and N the number of
actions linked to feature f (those that participate in its
value function). Inactive features satisfy V' (f) < 7 and
correspondingly:



wt +w™
N
wT < TN —w™

<T

(and consequently) wt < |w™| A TN —w™ >0
12)

This states the mean of all positive, importance-weighted
values w(v(f, a)) is lower than the mean of negative val-
ues. From eq. 12 it follows that:

Pac S, w((f,a))=7N—w" (13)
in other words, there is no single action with an
importance-weighted value of at least 7N — w™. Since
the importance weight for positive values is a power of
n,and 7N — w™ > 0 it is also true that:

Va eS8, v(f,a) <0V v(f,a)< VTN —w~ (14)

which guarantees that an inactive feature does not have
any actions such that v(f,a) > V7N — w~. In a given
setting, if n,7 and N act as constants the main influ-
ence in the activation or deactivation of a feature is w™.
This means inactive features are those with actions that
yield significantly (n-degree polynomial) larger negative
reward, than they do positive reward. Modifying 7 on-
line would either relax or restrict feature activation, and
perhaps such a variable policy might be useful in some
domains.

4.4.2 Estimation Errors

From eqs. 2 and 14 it follows that E[g(-,a)] <
VTN —w— for inactive features, so let U =
VTN — w~ be the upper bound of the expected action
value. When a feature is active, it doesn’t affect an action
selection policy so the base convergence theorems hold
(e.g. for UCT, etc.). The same applies when a feature
is inactive, and its actions are not part of a (sub) optimal
policy (i.e. an action selection policy with decreasing
exploration rate would eventually ignore them).

Non feature-related actions, such as navigation, are not
affected by feature activation and are always available in
their corresponding states. We then have two cases of
interest: the first occurs when an action is part of an e-
optimal policy but is unavailable during action selection
due to a value approximation error (should be active in-
stead). The second case is when the action-value approx-
imation is correct but very low, and so the feature-value
is below the activation threshold. This means the action
is required but cannot be selected.

In the first case, the action value should satisfy v > U
but due to errors, it does not. We can then express the
probability of the approximation v + ¢ falling under the
upper bound as P{v < U — €} which can be estimated
using Hoeffding’s theorem, that states:

P{X<pu—a}< e~20%/nx

where X is the empirical mean from nx elements, p is
the distribution mean and a an upper bound. In our case
X = q(s,a) is our empirical mean, ;1 = q(s, a) is the
true mean, and a = U — € the upper bound. We then get:

P{X’ <p—a) < e—Q(U—E)2/”q

" — 2
< exp{—Q(\/TN_w —e)

N
15)

This probability is maximal when ( VTN —w™ — e) —
0, which can happen under two circumstances:

1. When a very large error e approaches the bound /.
This reflects a poor overall approximation, often the
result of insufficient budget (eg.: Monte Carlo sim-
ulations), which also determines asymptotic conver-
gence. This can be addressed by increasing the ap-
proximation budget or implementing more sample-
efficient action selection techniques such as PGS.

2. If ¢ -+ 0 and w~ =~ 7N, meaning the expected
reward of the feature’s actions is very close to the
activation threshold 7. Keep in mind that an inac-
tive feature also satisfies w™ < |w™|, so the reward
of the good actions is in the interval [0, |7|) suggest-
ing this case is more likely when actions don’t yield
much reward. A simple way to address this issue is
using a lower activation threshold, or perhaps even
a variable threshold.

Additionally, if an action is not available (because its fea-
ture is inactive) and it is in fact optimal, then very likely
no other feature-related action is available either (unless
approximation errors occur in practice). A potential so-
lution (apart from using a lower threshold) is to stochas-
tically activate a feature, introducing an exploration pat-
tern, or to limit the number of features that can be inac-
tive, allowing an agent to always select among the most
promising actions.

This analysis underlines the importance of a suitable acti-
vation threshold, which under appropriate circumstances
will simplify a problem while preserving the inherent
convergence properties of a planning algorithm. Without



further analysis, an easy recommendation is to choose a
T that is somewhat below the reward of expensive neces-
sary actions but above other costly actions.

4.5 PLANNING WITH INCREMENTAL
REFINEMENT

IRE-based POMDP planning is shown in algorithm 1.
Line 3 corresponds to an IRE-enabled (or feature-aware)
Monte-Carlo planner, where matching entries in T up-
date their feature-values and feature-action visit counts
when their corresponding action is executed. After the
simulation budget is exhausted, the best action is se-
lected in line 4 from the subset in eq. 8 (e.g.: with IRE-
enabled UCB1), executed, and its corresponding results
received. The POMDP simulator is updated to reflect
these changes and features are activated or deactivated to
reflect their current values (function BELIEFREVISION).

Algorithm 1 Online planning & acting with IRE

Input: Generative model G, initial belief state by
Output: Policy 7

procedure ONLINE PLANNER
repeat
f-MCTS from s = B
a < ms(s)
Execute a

1:

2

3 > Updates feature-values
4

5:

6: Receive s, 0,

7 .

8

9

0

>e.g.: f-UCBI
> “real-world” action

Update G with a, o,
BELIEFREVISION(B(h))
until s is terminal
10: end procedure
11: function BELIEFREVISION(b)
12: for all f € F do

13: If V(f) < 7, deactivate f Vs € b
14: Otherwise activate f Vs € b

15: Y{f,a) N(f,a) <1

16: end for

17: IfVf € F are inactive, activate random f

18: end function

S RESULTS

We chose two challenging POMDP’s that represent ac-
tual robotic tasks, with many objects and realistic reward
distributions. Our performance results show that an agent
can considerably improve its performance in complex,
practical problems through feature-relevance estimation.

The first problem is the cellar domain from (Saborio and
Hertzberg, 2019), inspired by the well known Rocksam-
ple but with added obstacles that increase complexity. In
this problem, the robot must collect valuable wine bottles
while avoiding or interacting with crates and shelves. In
some cases a promising bottle might be behind a crate,

and the agent might have to push the crate aside. Push-
ing crates yields a small punishment of —2, so the agent
must consider whether a bottle is in fact valuable before-
hand. Shelves cannot be pushed and yield a punishment
of —10, so in addition the agent must also make sure an
object is a crate before pushing it. Movement incurs in
a penalty of —1, while using the object scanner yields a
reward of —0.5 but returns noisy information about a bot-
tle’s value and an object’s type. Collecting valuable bot-
tles awards +10, while non-valuable bottles cost —10.
The agent must leave with at least one valuable bottle
to complete the task, receiving an additional +10. In
the experiments we used cellar[5,2,6,4], a medium-sized
problem in a 5 x 5 grid with 2 bottles, 6 crates, 4 shelves
and approximately 108 states, cellar[7,8,7,8] with over
10° states and cellar[11,11,15,15], a large POMDP with
more than 103° states.

We also introduce another interesting task-planning
problem, in which an unmanned aerial vehicle (UAV)
must navigate a grid-shaped forest to observe and doc-
ument a number of creatures. The forest has bears, trees
and one or more specimens of Big Foot, the apelike crea-
ture of North American folklore. The UAV doesn’t know
in advance which type creatures are, so it has to identify
them using a noisy sensor and update the corresponding
probability. In order to do so, the UAV needs to know
their most recent location, but all of them (except trees)
move to adjacent locations stochastically. A grid region
can be scanned with another sensor (based on Rocksam-
ple’s virtual sensor), and if there is a creature its location
is updated (erroneous readings are possible). Finally the
UAV may photograph any creature, which also reveals
their type, but photos of anything other than Big Foot are
punished. Identifying and taking pictures succeeds only
when the UAV is directly above a creature. We assume
all features are tagged in advance, so their tag number or
id is known but their location and type is not. The task is
completed by taking a specified amount of pictures and
leaving the area.

The reward distribution is —0.5 for sensing actions (lo-
cation check and identify), —1 for navigation (including
waiting and leaving) and misuse of identify (eg.: crea-
tures with unknown location), +5 and —10 for good
and bad photos respectively, 410 for terminating suc-
cessfully and —100 in case of failure (leaving too soon,
etc.). In our experiments, creatures move to an adjacent
cell with probability 0.15 and identifications are correct
with probability 0.9. Observations include the ground,
Big Foot and non-Big-Foot creatures, and the tag num-
ber of each object in the domain. If we refer to the gen-
eral problem as BigFoot[n, ¢, t], for an n x n grid with ¢
creatures and t trees, there is a total of 6 + n? + 2(c + 1)
actions and 3 + ¢ + ¢ observations. The problems below



are BigFoot[3,3,2], with approximately 10° states, Big-
Foot[4,3,2] with around 10® states and BigFoot[5,8,8]
with over 101 states.

We compared the performance of IRE and of regular
POMCEP, both with a uniformly random rollout policy
(legal actions only) and with PGS. To the best of our
knowledge there are no other online planners that can
handle POMDP’s this lalrge,1 so we did not perform an
exhaustive comparative analysis. Statistics were com-
piled from experiments running on several Intel Xeon
E5-2660 CPU’s, but a single instance runs similarly on
standard desktop hardware. All results are averaged over
100 runs and use up to 2'® Monte-Carlo simulations per
step, but in the plots we skip the results with very few
simulations to better appreciate the region with signifi-
cant differences. In practice, given the size of these prob-
lems, using more simulations might be desirable (and at-
tainable since we’ve achieved some speedup). Note that
for the purpose of testing we quickly selected parameter
values that showed promising results, so performance is
limited by these choices and may be improved with fur-
ther analysis for specific, real-life scenarios.

Figure 1 shows the average discounted returns in the
cellar domain. In cellar[5,2,6,4] we used an activation
threshold of 7 = —6 and v = 0.99, while the two others
used 7 = —5 and v = 0.95. All three used vy = 0.5 and
binary entropy threshold (PGS parameter) of 0.5. The
maximum number of steps for each problem was 150,
250 and 350 respectively.

All plots consistently show that IRE-based methods
eventually match or outperform non-relevance-aware
planning, regardless of the chosen policy. PGS is already
effective at gathering larger rewards using less simula-
tions, but its performance can be greatly improved with
relevance estimation. Cellar[5,2,6,4] is deceivingly com-
plicated: it contains “only” two valuable bottles but both
are out of reach, so the agent must necessarily push at
least one crate. This difficulty is reflected in the perfor-
mance difference of fig. la, where PGS’s advantage is
exploited by IRE to achieve even higher rewards. The
performance increase is particularly noticeable in cel-
lar[7,8,7,8] (fig. 1b), where regular PGS is matched by
the IRE-enabled random policy and doubled by its IRE-
based version. The largest problem has several easily
accessible bottles, so the challenge is simply focusing on
the bottles while determining which (if any) non-bottle
objects are useful. In this case, the performance dif-
ference of feature-relevance estimation is still noticeable
but not as dramatic. Planning with IRE was much faster
in all cases (see table 1), with speedups of 1.7, 2.62 and
1.41 respectively.

"Performance with DESPOT is very close to POMCP.

In the Big Foot domain we used 7 = —7, v = 0.95 and
¢ = 0.5 in all problems, with a PGS entropy threshold
of 0.5 in BigFoot[5,8,8] and 0.4 in the rest, and a max-
imum of 150, 250 and 450 steps respectively. Figure 2
shows the average discounted returns.

Rewards in the Big Foot domain have very long delays,
collected only after the agent locates, identifies and pho-
tographs valuable creatures. Consequently, the accuracy
of relevance estimation is affected by the quality of its
underlying policy. Despite such limitations, incremen-
tal refinement outperforms non-IRE methods, in some
instances by a significant margin. Some parameters in
the Big Foot domain might require fine-tuning but, as ta-
ble 1 shows, IRE already provides a clear advantage in
both cumulative reward and runtime. In BigFoot[3,3,2]
IRE-PGS collected almost twice the reward of standard
PGS very quickly. A similar pattern can be observed
in BigFoot[4,3,2]. BigFoot[5,8,8] is considerably more
difficult and this difference is reflected in runtimes and
rewards, both of which were improved with IRE. We
achieved speedups of 1.74, 1.66 and 1.21 respectively.

In some cases the mean discounted return decreased with
more simulations using the random policy. It is possi-
ble that the agent is more likely to select more useful
and “expensive” actions with a larger planning budget,
instead of executing only “cheaper”, less useful actions,
but nonetheless runs out of time. Despite this limitation,
IRE seems to also improve the random policy (an exem-
plar case in fig. 1b).

Table 1 compiles the average running times and standard
error of the two best performing policies in each prob-
lem (PGS and PGS with IRE) with 2'6 simulations over
100 runs. IRE consistently collects higher rewards in
considerably less time. These runtimes are for complete
episodes with many consecutive actions; planning for a
single action requires only a fraction of the time.

Table 1: Performance with PGS and 2'6 simulations

Problem IRE Reward Time (s.)
Celari52641 | % | [S%099 | 310
Celarl78781 | % | Sierto06 | 3609
Cellar[11,11,15,15] ; }3;1 i 8:?2 192072990
BigFoot[3,3.2] ; ‘2‘3223 i 8:3? §21§i
BigFoot[4,3,2] % | SOsaxila| 21ss
BigFoot[5,8,8] ; ._98.'7415 1 jft ](59926 532451
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Figure 2: Performance in the Big Foot domain over 100 runs

6 CONCLUSIONS

We designed and implemented a relevance-estimation
method for online POMDP planning, that approximates
feature relevance by a weighted combination of action
values. Features that satisfy the threshold criteria are
considered relevant, and the rest are ignored by the
planner. Our theoretical results show that there exists
a threshold value that separates valuable features from
those with overall low expected rewards, effectively sim-
plifying large problems. The experimental results con-
firm that this approach significantly improves runtime
and expected returns, without the use of detailed domain
knowledge. Efficient, online POMDP planning opens up
many opportunities in a variety of challenging scenarios
that combine exploration, manipulation and information-
gathering in dynamic environments.

Future work includes designing and experimenting with
different scaling functions and activation policies, for
instance based on value histories, general prior knowl-
edge or on predefined preference criteria. In this paper
we showed that a fixed threshold is sufficient to achieve
promising results, but in practice more finely tuned pa-
rameters might perform even better. We will continue to
work towards transferring these methods onboard mobile
robots, focusing on practical tasks that require efficiently
interleaving planning and acting.
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