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Abstract

A foundational tool for making causal infer-
ences is the emulation of randomized control
trials via variable interventions. This approach
has been applied to a wide variety of contexts,
from health to economics [3, 6]. Variable in-
terventions have long been studied in indepen-
dent and identically distributed (iid) data con-
texts, but recently non-iid settings, such as net-
works with interacting agents [8, 17, 28] have
attracted interest. In this paper, we propose
a type of structural intervention [12] relevant
in network contexts: the network intervention.
Rather than estimating the effect of changing
variables, we consider changes to social net-
work structure resulting from creation or sev-
erance of ties between agents. We define the
individual participant and average bystander
effects for these interventions and describe iden-
tification criteria. We then prove a series of the-
oretical results that show existing identification
theory obtains minimally KL-divergent distri-
butions corresponding to network interventions.
Finally, we demonstrate estimation of effects of
network interventions via a simulation study.

1 INTRODUCTION

Practitioners in applied fields such as medicine, epidemi-
ology, and economics often seek causal understanding of
the processes they observe. In turn, an in-depth causal
understanding can inform decisions and improve policy.
The gold standard for obtaining this understanding is the
randomized control trial (RCT). Unfortunately, RCTs are
often infeasible due to expense or ethical concerns. The
field of causal inference provides a framework for emu-
lating RCTs in such situations, using observational data.

A fundamental element of the causal framework is the
notion of interventions. Researchers select one or more
‘treatment’ variables and outcomes of interest. The value
of the outcome of interest is estimated under the hypothet-
ical scenario in which the value of the treatment variable
is changed to a specific, researcher-chosen value.

A number of assumptions are required for such estimates
to have a valid causal interpretation. A common assump-
tion is that data samples are independent and identically
distributed (iid), which permits the application of conven-
tional statistical methods. Nevertheless, it is easy to think
of cases where this assumption does not hold. Here we
focus on domains pertaining to networks of interacting
study subjects such as infectious disease spread and so-
cial networks. Recently, several papers have proposed
methods for obtaining inferences from dependent data
[28, 24, 17, 16]. As in the iid setting, these papers emu-
late RCTs by intervening on variables and estimating the
effects on downstream outcomes.

Unfortunately, existing methods for network inference
are ill-suited to consider more general changes to the
network. For instance, in urban development economics
authors have proposed housing vouchers as a ‘treatment’
to incent families to move to neighborhoods with greater
opportunity for upward social mobility [3]. Evaluating
the effect of extracting a family from one neighborhood
and placing them in a new neighborhood with new so-
cial connections isn’t possible by considering changes to
values of variables alone: the network itself changes.

In this paper we extend the classical causal inference
framework to consider changes to social network struc-
ture. First, we review different network representations
in the causal inference literature as well as notions of
interventions that have departed from conventional vari-
able interventions. Next, we give a motivating example
based on the global political economy. Extending [12], we
propose network interventions; interventions on the struc-
ture of a network where ties between units are formed or



broken. We define the individual participant and aver-
age bystander effects of these interventions, analogous
to the network effects described in [8] and discuss identi-
fication. We then demonstrate that post-severance distri-
butions satisfy independence constraints for the severed
units while remaining minimally KL-divergent from the
pre-intervention distributions. Finally, we demonstrate
estimation of network intervention effects from observa-
tional data via a simulation study.

2 REVIEW

Causal Networks

Since networks are of interest to a variety of fields, there
are numerous representations, each with their own ad-
vantages and limitations. These representations were de-
veloped as a means of studying interference – the phe-
nomenon that arises when neighbors’ treatments causally
affect each other’s outcomes. While the present work
doesn’t focus explicitly on interference, we discuss it here
since our work is complementary to that literature.

A widely used approach, characterized in [17], represents
networks with directed acyclic graphs (DAGs), where
network connections appear as directed edges from one
individual’s variables to another’s. This approach lends
a natural causal interpretation that follows from a rich
literature on causal DAGs. Importantly, the relationships
between individuals are encoded in the functional rela-
tionships represented by edges connecting different units;
when two individuals are not friends, edges will be absent.

Recent work [28, 24, 15] advocates representing net-
works with Lauritzen-Wermuth-Freydenburg (LWF)
chain graphs (CGs), which were given a causal inter-
pretation in [11]. CGs extend DAGs by permitting rep-
resentation of symmetric relationships (i.e. stable-state
equilibria) via undirected edges. [15] argued that CGs
under the LWF interpretation can approximate feedback
processes when those processes are slow. While CGs pro-
vide a more general representation, their interpretation in
the context of the present work is somewhat complicated.

Beyond these notions, there is a substantial literature on
probabilistic relational models [9, 5]. These models gen-
eralize conventional graphical models by employing first-
order logic to describe the nature of relationships between
entities. These models have been extended to causal in-
ference in network settings [1], however, similar to chain
graphs, their use in public health contexts like those con-
sidered here is not yet well established. For these reasons,
we will restrict attention to graphical models.

Aside from graphical representations, a large subset of the
interference literature formalizes inter-unit relationships

algebraically as in [8]. Many of these formulations could
be reformulated using graphical models.

Structural Interventions

The majority of the causal inference literature has focused
on hypothetical experiments wherein interventions are
made upon variables (e.g. smoking status) and the ef-
fects of interventions are considered with respect to some
outcome (e.g. lung cancer). The two dominating frame-
works, the Neyman-Rubin potential outcomes framework
[14, 23] and Pearl’s graph-based framework [18] differ
primarily in their philosophical approach, and recently
researchers have begun to use their terminology and me-
chanics interchangeably. See, for example [20]. The
causal interpretation of variable interventions under these
(and other) frameworks is the subject of literature at the in-
tersection of applied fields and the philosophy of science.
These discussions are broad and have a lengthy history.
For an incomplete survey, we encourage the interested
reader to consult the works of Halpern, Tian, and Pearl
[30, 7], and Woodward [31].

In the past two decades, there has been a movement to-
wards defining more general notions of intervention. Korb
proposed several generalizations, including interventions
that are stochastic with respect to the treatment variable
[10]. Eberhardt and Scheines discussed similar ideas,
contrasting ‘hard’ and ‘soft’ interventions, corresponding
to changing causal structure (e.g. removing edges) and
parametric form respectively [4]. They proposed using
this continuum of interventions to aid in causal discovery
efforts (see also [30]). Malinsky proposed a framework
for considering the effects of changes to the structure of a
causal model on a ‘macro level’ [12]. In this framework,
one modifies structural equations or manipulates parame-
ters in order to evaluate counterfactuals pertaining to the
world in which macro level features are different. Finally,
unrelated to philosophy, [16] proposes a type of edge in-
tervention in social networks as a means of understanding
changes in network ties. In addition, interventions on
paths and edges were considered in the context of medi-
ation analysis in [26]. In the current work, we build on
these ideas to evaluate general interventions on network
ties, enabling us to envision the counterfactual world in
which two units are severed or connected.

3 MOTIVATING EXAMPLE: THE
POLITICAL ECONOMY

In this section we give a motivating example: a model of
trade relations between countries, in which network inter-
ventions provide a means of understanding counterfactual
changes to network structure.
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Figure 1: (a) A DAG representing time series cross sectional data on three countries where country 2 has a trade
agreement with countries 1 and 3; (b) the DAG in (a) after an intervention is performed, severing the alliance between
countries 2 and 3 at t = 3.

In global economics, policies made by one country, such
as treaties, trade deals, and tariffs, have a direct impact on
the nations geographically and diplomatically connected
to the policymaker. In light of current events, we refer
to the interventions represented in Fig. 1 as the ‘Brexit’
scenario (for severing two or more countries) and the
‘Turkey joins the EU’ scenario (for connecting two or
more countries). These types of temporal DAG models,
also known as dynamic Bayes nets [13], correspond to
time series cross sectional data from the political economy
literature [2]. Each country i is represented by temporally
sequential observations Yi,1, Yi,2, . . . Yi,T where each Y
is a vector of economic variables (GDP, unemployment
rate, open-market funds rate, etc.).

As a generalization of Fig. 1, we can imagine the network
having several countries, each with multiple neighbors.
We can then consider the hypothetical effect of a ‘clean
break’ at time t between one country and some or all of
its neighbors (introducing non-stationarity [22]). This is
represented by moving from Fig. 1 (a) to Fig. 1 (b) by sev-
ering the connection between countries 2 and 3 at t = 3.
We can also consider the reverse intervention, where two
previously unconnected countries are connected, corre-
sponding to the signing of a trade agreement. Graphically,
this corresponds to moving from Fig. 1 (b) to (a). Using
the framework we propose in this paper, a decision-maker
could evaluate these hypothetical policies prior to imple-
mentation and ensure that they have the intended effect.

4 REPRESENTING NETWORKS WITH
CAUSAL DAGs

Throughout this paper, we will consider performing causal
inference in social networks represented by DAGs. In

this section we formalize the notation needed to define
network interventions and their associated effects.

Causal DAG Prerequisites

We follow standard notation from the probabilistic graph-
ical models literature with vertices and random variables
used interchangeably. We will represent random vari-
ables and their realizations via capital letters (V ) and
lowercase letters (v) respectively. Sets of variables and
their realizations will be denoted in boldface (V and v).
We also define shorthand notation for standard graph-
ical notions: parents, paG(V ) ≡ {W |W → V }; an-
cestors, anG(V ) ≡ {W |W → · · · → V }; children,
chG(V ) ≡ {W |V → W}; descendants deG(V ) ≡
{W |V → · · · → W}. Each of these can be generalized
disjunctively to sets: paG(S) ≡ ∪V ∈S paG(V ). We also
define non-descendants ndG(S) = V \ deG(S). Finally
XV denotes the state space of the variable V .

A statistical DAG model G with vertices V is associ-
ated with a set of probability distributions on random
variables in V that satisfy the factorization: p(V) =∏
V ∈V p(V |paG(V )).

In such models, the absences of edges between variables,
relative to a complete DAG, encode independences. These
correspond to the local Markov property of DAGs: X ⊥⊥
ndG(X) \ paG(X)|paG(X).

Extending statistical DAGs, a causal DAG model G with
vertices V is associated with a set of distributions on
counterfactual variables in V. For Y ∈ V and A ⊂
V \ Y , a counterfactual Y (a) describes the value of Y
under the hypothetical scenario in which A is set to a via
an intervention [18]. We will describe generalizations to
this convention in the next section.



In this paper, we assume Pearl’s functional model of a
DAG G(V). Under this model, if a are the values of the
parents of V ∈ V, then V (a) is determined by a structural
equation f(a, εV ) where f is invariant to changes to the
values of a and εV is an error term. We will further
assume that there are no hidden variables in the models
discussed in this paper. Relaxing this assumption for
network interventions is the subject of future work.

The above counterfactuals, often referred to as one step
ahead counterfactuals, permit us to describe all variables
in the model via recursive substitution:

V (a) ≡ V (apaG(V ), {W (a) : W ∈ paG(V ) \A})

where A ∈ V and a ∈ XA.

A parameter in a model is said to be identified if it is
expressable as a function of the observed data. In causal
DAGs with no unobserved variables, all counterfactual
distributions p(V(a)) are identified by the g-formula
[21]:

p({W (a) : W ∈ V \A}) =
∏

W∈V\A

p(W | paG(W ))|A=a

As an example, consider a single-unit version of Fig. 2.
If we are interested in the effect of setting A = a, the
interventional distribution p(V(a)) is given by p(Y |A =
a,C)p(C).

While classical interventions set a variable to a value,
we are often interested in how an intervention affects an
outcome along multiple pathways, such as the separate
effects of smoking, smoke inhalation and nicotine, on a
patient’s risk of lung cancer. In these cases, it is natural
to think of interventions in which we intervene on the
treatment node with different values for each edge out of
the node. For instance, we might consider setting smoking
status to 0 for the sake of the smoke inhalation edge
and to a reference value for the nicotine exposure edge,
corresponding to having the patient smoke e-cigarettes.

Formally, for a set of treatment variables A the set of
edges out of A is denoted by α. Interventions are per-
formed with a multiset aα which maps edges to constant
values for A or to the natural value of A for each A ∈ A.
As with node interventions, for Aα = {A|(AB)→ ∈ α},
where (AB)→ ∈ α signifies that an edge A→ B is in α,
edge interventions given by p({W (aα) : W ∈ V \Aα})
are identified by the edge g-formula [27] with paᾱG(V ) =
{W |(WV )→ 6∈ α}:∏

W∈V\Aα

p(W |a(ZW )→∈α, paᾱG(W )). (1)

If we again consider a single-unit version of Fig. 2, when
we intervene with aα = {(CA)→ = c, (CY )→ = c′},
the distribution p({W (aα) : W ∈ V \Aα}) is given by
p(Y |A,C = c′)p(A|C = c).

As an alternative generalization to classical interventions,
we might be interested in customizing treatments accord-
ing to unit-specific characteristics. For instance, we might
want to choose a cancer patient’s chemotherapy regimen
according to the specific characteristics of their tumor.
Rather than setting treatments to fixed values, we set
them to analyst-specified functions of pre-treatment co-
variates. This type of policy intervention is the subject of
the dynamic treatment regime (DTR) literature [29, 25].

Formally, for a set of treatment variables A, the set of pre-
treatment covariates we wish to use to set each A ∈ A is
denoted CA. Policy interventions entail setting A to the
set of functions fA, where fA ∈ fA maps XCA

→ XA.
Responses to policy interventions, p({W (fA) : W ∈
V \A}), are identified by the policy g-formula [25]:∏
W∈V\A

p(W |{fA(CA) : A ∈ A ∩ paG(W )}, paG(W ) \A)

(2)

Continuing with our single-unit example for Fig. 2, sup-
pose we are interesting in setting A to a policy that is a
function of C: fA(C). Then the counterfactual distribu-
tion p(V(fA(C))) is given by p(Y |A = fA(C), C)p(C).

DAG Representation of Network Data

In this paper we will represent networks of interacting
agents with DAGs following [17]. We will assume each
network G is associated with a probability distribution
p(V) and that G has a causal interpretation as described
above. Denote the set of agents (‘units’ or ‘subjects’) in
G by A. G can be partitioned into sub-graphs Gi with
variables Vi ⊂ V for each agent i ∈ A. The marginal
distribution for agent i is therefore denoted p(Vi). The
notation −i will refer to A \ i. Analogously, G−i denotes
the subgraph of G where Vi and its associated edges have
been removed.

We define the notion of unit homogeneity. This assump-
tion has two parts: a) if there exists a unit i ∈ A with
variable Vi ∈ Vi, then there is a corresponding Vk ∈ Vk

for all k ∈ A with an analogous interpretation; and b)
if there exists a unit i ∈ A with variables Vi, Ui ∈ Vi

such that Vi ∈ paGi(Ui), then Vk ∈ paGk(Uk) for all
k ∈ A. The first part ensures that units are all of the
same ‘type’ (e.g. all agents have the same demographic
variables, and the same outcome variable). The second
part ensures that the existence of a relationship between
one unit’s variables implies the same relationship exists
for all other units.

For an example of these definitions, consider Fig. 2. Each
unit has a variable of each ‘type’ (e.g. C,A, Y ) and the
connections between variables are the same for each unit
(e.g. Ci → Ai in all units).
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Figure 2: A simple social network represented by a DAG.
The network exhibits unit homogeneity, symmetric con-
nections, and homogeneous connections.

On the network level, we define the notions of connect-
edness, symmetry of connections, and homogeneity of
connections. Two units i, j ∈ A, with i 6= j, are said to
be connected if for some Vi ∈ Vi and some Uj ∈ Vj it
is the case that Vi ∈ paG(Uj). The connection between i
and j is said to be symmetric if the vice-versa relationship
holds. That is, if i and j are connected and the connec-
tion is symmetric then for all Vi ∈ paG(Uj), we have
Vj ∈ paG(Ui), where Vi is analogous to Vj and Ui is
analogous to Uj . The set of units connected to unit i in G,
also referred to as i’s neighbors, will be denoted NG(i).
Finally, we define homogeneity of connections, which
ensures that the relationships across the network are simi-
lar. If i and j are connected and there is an edge between
some Vi ∈ Vi and some Vj ∈ Vj then network connec-
tions are homogeneous if for all connected units k, l in
the network, an edge is present between the analogous
Vk ∈ Vk and Vl ∈ Vl.

We further define homogeneity of functional form which
strengthens the notion of homogeneity for connections
by imposing that, for any pair of connected nodes, the
marginal distribution with respect to those two nodes is
the same as the marginal distribution for any other pair
of connected nodes (e.g. p(Vi,Vj) = p(Vk,Vl) for
all i 6= j and k 6= l)). Under this assumption, pairwise
relationships between units are the same, regardless of
the type of unit. This assumption is reasonable in certain
applied contexts, such as infectious disease spread, which
is governed by a process that operates in the same way
for any unit in the population.

For an example of these definitions, once again consider
Fig. 2. Connections are symmetric (e.g. C1 → A2
and C2 → A1) and homogeneous (e.g. C1 → A2 and
likewise C3 → A2).

5 NETWORK INTERVENTIONS

In this section we introduce the notion of network inter-
ventions where we intervene on the structure of a network
by adding or removing edges, changing relationships be-

tween units. We define effects of these interventions and
give identification criteria in §6, describe appealing prop-
erties of certain network interventions with respect to
KL-divergence in §7, and discuss estimation in §8.

Severance Interventions

We will call interventions in which we sever two indi-
viduals in a network ‘severance interventions’. For a
graph G with pre-intervention distribution p(V), where
V is partitioned by {Vi|i ∈ A}, we denote the interven-
tion severing units i and j by i ./ j. Graphically, this
corresponds to removing all edges between Vi and Vj ,
yielding the graph Gi./j . We will define responses to sev-
erances with respect to individual units (e.g. p(Vi(i ./ j)).
The joint response is simply the joint distribution over
these counterfactuals.

We propose two different types of severance intervention.
Each formulation has a corresponding causal interpreta-
tion and one could use either formulation depending on
the application.

The first formulation, which we will call ‘value-based’
severance and is closely tied to classical mediation analy-
sis, generalizes edge interventions [27] to networks. We
intervene on variables in an edge-specific manner, re-
placing cross-unit edges into a unit, say i, with synthetic
edges into i that represent fixed relationships no longer
dependent on variables in the previously connected unit.

For Vi ⊂ V, let AVi
= paGj (Vi), the parents of Vi

in Vj . We consider setting AVi
to aVi

for the sake
of edges from AVi

to Vi. All other edges out of AVi
maintain the observed values of their source node so that
for all Vj ∈ V \ Vi, Vj’s pre- and post-intervention
distributions are the same. Since the intervention values
are constant, i and j are no longer connected. Returning
to our diplomacy example, one might choose aVi

to be a
reference value in the network, such as network averages
of economic variables. Formally, p(Vi(i ./ j; aVi)) =

p
(
Vi(AVi = aVi , {Vj(aVi) : Vj ∈ paG−j (Vi)})

)
The second formulation, which we call ‘stochastic’ sev-
erance, entails marginalizing out the parents from the
severed unit. We phrase these as policy interventions.

Consider Vi ∈ Vi and let A = {A ∈ Vi|paGj (A) 6= ∅}
(i.e. A is the set of unit-i variables with parents in unit
j). The counterfactual p(Vi(i ./fA j)) corresponds to
selecting a set of stochastic policies fA where each fA is
unit-structure preserving (see below). The counterfactual
is given by the recursive formula:

p(Vi(i ./fA j)) = fVi({C(fA) : C ∈ paG(A) \ paGj (A)})

For a policy fVi to be unit-structure preserving,
p(Vi|paG−j (Vi)) must be the same in the pre- and post-
intervention distributions. This ensures that unit i’s causal



structure is maintained. Formally, fVi({W : W ∈
paG−j (Vi)}) =∫

paj(Vi)
p(Vi| paG(Vi))d(paj(Vi)),

where paj(Vi) = paG(Vi) ∩Vj .

We will argue in §7 that post-severance distributions are
minimally KL-divergent from p(V) among the class of
distributions corresponding to the DAG with reduced edge
set. Specifically, this holds for value-based severances
if, instead of fixing values, we allow the source nodes of
edge interventions to vary and average over those nodes.
Likewise, for stochastic severances, the KL result holds
if we pick fVi such that Vi and it’s remaining parents
paGi./j (Vi) have a particular relationship.

Connection Interventions

We will call interventions in which we adjoin two previ-
ously unconnected individuals in a network connection
interventions. We will denote the intervention where units
i and j are joined by i�j. Graphically, this corresponds to
inserting one or more edges from Gi to Gj or vice-versa,
yielding Gi�j . As before, we will define responses to con-
nection interventions with respect to individual units (e.g.
p(Vi(i � j)). The joint response p(V(i � j)) is simply the
joint distribution over these counterfactual variables. We
describe three separate and increasingly general formula-
tions of connection interventions.

Interventions Under Functional Form Homogeneity

If we assume that the functional forms of network ties
are homogeneous, and further assume that each structural
equation in the network aggregates arbitrarily many in-
puts, then the new structural equation for each variable is
determined by the equations for the analogous variables
in the network.

We might be interested in counterfactual situations that
are not present in the observed data, such as the case
when connecting two units results in one unit having more
neighbors than any unit in the observed data. Because
we assume homogeneity of functional form, we can only
allow for classes of policies that can flexibly handle an
arbitrary number of neighbor nodes.

For the intervention to be well-defined, we must have
fV ∈ F , where F is a class of aggregator functions
of the form f(hU (U1, U2, . . . ), hW (W1,W2, . . . ), . . . ).
Each hZ maps Z → R where Z is an arbitrary-sized
multiset of Z-type variables. In turn, f maps H → R
where H is the arbitrary-sized multiset of outputs from
the h functions. For instance, if Vi has parents of types
U,W ⊂ V, we might select hU to output the mean of

the U ’s, hW to output the median of the W ’s, and f to
output the sum of those two values.

Suppose i and m, and i and k are connected in G. Then
under functional form homogeneity, the relationships be-
tween Vi ∈ Vi and Um ∈ paGm(Vi) and Vi and the
analogous Uk ∈ paGk(Vi) are governed by a function
fV . In the post-intervention distribution, p(Vi(i �fV j)),
where units i and j are connected, the relationship be-
tween Vi and Uj is also governed by fV . The associated
counterfactual is given by:

p(Vi(i �fV j)) = p(Vi = fV ({V (i � j) : V ∈ paGi�j (Vi)}))

Intervening With Known Policies

We can relax the assumption of homogeneous network
ties by intervening with a known functional form. As with
the previous formulation, the analyst is interested in un-
derstanding the effect of inducing a specific relationship.
Continuing our diplomacy example from §3, consider
Turkey as a candidate for EU membership. Since Turkey
has a large, robust economy, it may be able to negotiate a
more favorable entrance with specific parameters, simi-
lar to Switzerland’s non-member bilateral treaties. This
formulation represents the inverse operation of function
form-based severance interventions.

We wish to evaluate the effect of connecting units i
and j with a known induced relationship. In the pre-
intervention distribution, Vi ∈ Vi is determined by
fVi(paG(Vi), εVi) ∈ FVi . For the intervention to be valid,
the analyst must specify f ′Vi ∈ F

′
Vi

where F ′Vi is a family
of unit-structure preserving functions. The counterfactual
is defined as:

p(Vi(i �f ′
Vi

j)) = p(Vi = f ′
Vi({V (i � j) : V ∈ paGi�j (Vi)}))

In this context, the notion of a unit-structure preserving
policy is the same as before, however for notational clarity
we define S = paGi�j (Vi) \ paG(Vi), Vi’s new parents in
the post-intervention graph, and rephrase the definition
as:

p(Vi|paG(Vi)) =
∫

S
f ′
Vi(paGi�j (Vi))p(S)dS (3)

Intervening with Unknown Policies

In the most general formulation, we do not assume the an-
alyst knows the interventional policy in advance. Instead,
we formalize a procedure for picking an optimal policy to
govern the relationship between connected units subject
to some known constraints. In the example where we
consider Turkey joining the EU, this corresponds to the
EU and Turkey negotiating a treaty that jointly optimizes
their outcomes (e.g. mean per-capita GDP).

Building on the preceding subsection, we can simply ex-
press this type of intervention as an optimization on some



jointly defined criterion, such as utility, within a class of
policies. Let F ′Vi and F ′Vj be families of unit-structure
preserving candidate policies for Vi and Vj . Let C be a
known set of constraints that the solution must satisfy (e.g.
Turkey cannot trade away more natural resources than it
has). Let g((Vi, Vj)(fVi , fVj )) be a known function that
captures the joint outcome for units i and j under a given
pair of f ’s. Then the optimal f ’s are given by:

arg max
fVi∈F′

Vi
,fVj∈F′

Vj

E[g(Vi, Vj)(fVi , fVj )] subject to C

Solving this optimization corresponds to evaluating
p(V(i � j)(fVi , fVj )) for each pair of candidate f ’s that
satisfy C and picking the best pair.

6 EFFECTS AND IDENTIFICATION OF
NETWORK INTERVENTIONS

Hudgens and Halloran [8] defined the direct, spillover,
and network average effects for interference settings. Re-
spectively, these correspond to the effect on unit i’s out-
come when i’s treatment is modified, the effect on i’s
outcome when i’s neighbor’s treatment is modified, and
the average effect on all units’ when someone’s treatment
is modified (i.e. the sum of the direct and spillover ef-
fects). Since these effects are defined for a particular type
of node intervention, it is necessary to define analogous
effects for network interventions.

We define two new effects: the individual participant
effect (IPE), and the average bystander effect (ABE). The
IPE is defined for units i and j when they are the subjects
of a network intervention. IPEi is the contrast between
i’s observed and interventional outcomes. For severances
(with connections defined analogously), this contrast is
given by IPEi(i ./ j) = Yi−E[Yi(i ./ j)]. We can also
define the average participant effect (APE) as the mean
of IPEi and IPEj .

The ABE captures the contrast for units not directly in-
volved in a network intervention. By the Markov prop-
erty of DAGs, for a network intervention on i and j, the
ABE is non-trivial for i and j’s pre-intervention neighbors
NG(i) ∪ NG(j) \ {i, j} (e.g. the other countries i and j
have treaties with). For severances, ABE(i ./ j) =

1
|(Ni ∪Nj) \ {i, j}|

∑
k∈(Ni∪Nj)\{i,j}

Yk − E[Yk(i ./ j)]

Connections are defined analogously. Following [8], the
average effect on the network (e.g. the effect on the
‘global’ economy) is the sum of APE and ABE.

Identification

For a given intervention type, if the IPE is identified then
the ABE is also identified and vice versa. We therefore

focus on the criteria for identification of each type of
intervention we’ve discussed.

Under our setup, value-based severance interventions are
the network analogue of edge interventions in mediation
settings. For a severance of units i and j, let α be the set
of edges out of paG(Vi) ∩Vj . If aα specifies a constant
value for each edge Vj → Vi and that the source nodes
for all other edges in α are random, then p(Vi(i ./ j; aα))
is identified by the edge g-formula (Eq. 1).

For instance, in Fig. 2, if we are interested in the effect
on Y2 of severing units 2 and 3 by setting AV2 = aV2 =
{C3 = c3, A3 = a3} for the sake of the edges (C3Y2)→
and (A3Y2)→, then:

p(V2(2 ./ 3); aV3 ) =
p(Y2|A1, A2, C1, C2, A3 = a3, C3 = c3)
×p(A1|C1, C2)p(A2|C1, C2, C3 = c3)p(C1)p(C2)

The other interventions we define entail a change in
the functional form of the variables of interest. Sup-
pose we wish to join units i and j with A = {V ∈
Vi|paGi�j (V ) ∩ Vj 6= ∅} and CA = {V ∈ Vj |A ∈
chGi�j (V )}. Then, if fA are all functions that either satis-
fying the aggregator properties for the homogeneous case,
or are unit-structure preserving for the non-homogeneous
case, the counterfactual p(Vi(i�fA j)) is identified by the
policy g-formula (Eq. 2). Stochastic severances (e.g. of
units i and j) are also identified under our setup, with A =
{A ∈ Vi|paGj (A) 6= ∅} and CA = paG(A) \ paGj (A)
for each A ∈ A and fA satisfying unit-structure preserva-
tion for each fA. For homogeneous connections, we must
also estimate the parameters of each aggregator function
(hV , hW , etc.) from observed data. These are identified
by maximum likelihood from G
As an example, if we are interested in performing a
stochastic severance on units 2 and 3 in Fig. 2, suppose
we set fVi(paG2./3(Vi)) = p(Vi|paG(Vi) \paG3(Vi)) for
each Vi ∈ Vi. Then the identifying functional for the
effect on V2 is given by:

p(V2(2 ./f ′
Vi

3)) = p(Y2|A1, A2, C1, C2)

×p(A1|C1, C2)p(A2|C1, C2)p(C1)p(C2)

Latent-Variable Network Interventions

Throughout this work, we have assumed that data is repre-
sentable by a DAG where all variables are observed. We
can relax this assumption to allow for models in which
some variables are latent. In these cases, the interpretation
of the proposed interventions remains the same, however,
identification conditions will be modified slightly.

Consider a latent-variable DAG G(V ∪H) with V ob-
served and H hidden. From G, we can obtain a acyclic



directed mixed graph (ADMG) G′(V) via a latent projec-
tion operation [19]. G′ represents an equivalence class of
graphs that share the same observed variables and set of
independence constraints [19].

Identification of network interventions in an ADMG G′ re-
lies on the assumptions described in the previous section,
existing non-parametric identification theory for ADMGs,
and the requirement that the network intervention oper-
ates only on edges that are present in both G and G′. As
pointed out previously, value-based severances in DAGs
can be identified by the edge g-formula. Under the relax-
ation allowing for latent variables, value-based severances
are instead identifiable according to a version of the ID al-
gorithm adapted to edge interventions, proven sound and
complete in [25]. Likewise, for stochastic severances and
for connection interventions, if the identification condi-
tions described in the previous sub-section hold, then the
respective interventions are identifiable according to a ver-
sion of the ID algorithm adapted to policy interventions,
proven sound and complete in [25]).

7 OPTIMAL CHOICE OF
POST-SEVERANCE DISTRIBUTION

In this section we prove a series of results regarding the
KL-divergence from a distribution p(V), corresponding
to a known DAG G, to another distribution p̃(V), corre-
sponding to a DAG in which edges have been removed.
The results demonstrate that the KL-divergence from p
to p̃ is minimized when p̃ takes on a form similar to the
g-formula [21]. These probabilistic results help justify
the g-formula and edge g-formula as intuitive tools for an-
alyzing causal queries in DAGs. Moreover, these results
motivate the manner in which we perform severances.

The first result demonstrates that when removing edges
between a node A and its parents, a simple modification
to the factorization of G, removing A’s parents from the
term for A yields the KL-minimal distribution satisfying
the independence constraints implied by the severance.

Theorem 1 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let A ∈ V. Let P(V)
be the set of probability distributions that factorize ac-
cording to G. Then

p(A)
∏

V ∈V\A

p(V | paG(V )) = arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ paG(A)

The second result generalizes the first by allowing for
edge removal between A and a subset of its parents.

Theorem 2 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let A ∈ V and B ⊆ V

such that B ⊆ paG(A). Let P(V) be the set of probabil-
ity distributions that factorize according to G. Then

p(A| paG(A) \B)
∏

V ∈V\A

p(V |paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃) s.t. A ⊥⊥ B| paG(A) \B

The following result generalizes the previous theorem to
allow for removal of any set of edges in G. This result
corresponds to directly to severance interventions. If we
remove the dependence of each variable on the parents for
which we remove edges, and otherwise keep the variable
functionally consistent with its original structural equa-
tion, the result is the minimally KL-divergent distribution
from the original distribution that reflects the severance.

Theorem 3 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let A ∈ V and for
each A ∈ A define In(A) ⊆ paG(A), the set of parents
of A whose edges into A we wish to remove. Let P(V) be
the set of probability distributions that factorize according
to G. Then∏

A∈A

p(A| paG(A) \ In(A))
∏

V ∈V\A

p(V |paG(V ))

= arg min
p̃∈P(V)

DKL(p||p̃)

s.t. A ⊥⊥ In(A)|paG(A) \ In(A) ∀A ∈ A

The final two results are corollaries of Thm. 3 and are
closely related to classical causal inference. The first
corresponds to variable interventions where we fix some
A ⊆ V to a value a. The KL-closest distribution to p(V)
is given by the g-formula, where terms for each A ∈ A
are removed and variables with parents in A are evaluated
with those parents set to a.

Theorem 4 Let V be a set of random variables with
p(V) corresponding to a DAG G. Let A ⊆ V and assume
that for some a we have p(A = a) > 0. Let P(V) be the
set of probability distributions that factorize according to
G. Then∏

V ∈V\A

p(V | paG(V ))|A=a = arg min
p̃∈P(V)

DKL(p||p̃) s.t.

p̃(Ai|ndG(Ai)) = I(Ai = ai) for i = {1, . . . , |A|}

The final result, which can be found in the appendix,
generalizes the above theorem to edge interventions [27].
This result corresponds to the value-based formulation of
severances. When we fix a set of edges to constant values,
the resulting distribution is given by the edge g-formula
and is the KL-closest distribution to the pre-intervention
distribution that reflects the fact that those edges have
been fixed.



95% Confidence Intervals of Bias
Intervention Erdős-Rényi Barabasi-Albert Watts-Strogatz

Homogeneous Connection (-.0049, .0020) (-.0021, .0006) (-.0024, .0010)
Known Connection (-.0014, .0010) (-.0004, .0016) (-.0018, .0020)

Unknown Connection (-.0035, .0025) (-.0134, .0124) (-.0280, .0093)
Stochastic Severance (-.0015, .0043) (-.0096, .0066) (-.0032, .0020)

Value Severance (-.0088, .0112) (-.0010, .0020) (-.0048, .0016)

Table 1: 95% confidence intervals for the bias of estimates of each type of network intervention.

8 EXPERIMENTS

We now describe a set of simulation studies which demon-
strate the feasibility of obtaining unbiased estimates of the
effects of network interventions. In these experiments we
assume partial interference: we observe M samples of a
network, each withN units. While we do not consider full
interference scenarios, in which the analyst has access to
only a single sample of the network, similar results could
be obtained in that setting using the auto-g-computation
algorithm [28]. We also assume that all pre-intervention
networks satisfy symmetry of connections, and homo-
geneity of units, connections, and functional form.

We consider a social network graph resembling Fig. 2
where all variables C,A, and Y are binary. In four sepa-
rate experiments we demonstrate estimation across vary-
ing social network generators, varied attachment probabil-
ities for the Erdős-Rényi generator, varied network sizes,
and varied sample sizes. For the latter three experiements
we restrict attention to the stochastic severance interven-
tion. For each unit i we generate values for Vi according
to log-linear models with parameters τC , τA, τY . For the
detailed setup, please see the appendix.

For each experiment we estimate the average IPE by sep-
arately applying the intervention to each unit in the net-
work. For severances we remove the connection between
the unit of interest and it’s highest degree neighbor while
for connections we connect the unit to it’s highest degree
non-neighbor.

8.1 ESTIMATION AND EVALUATION

For each experiment we first fit models for each variable
type given it’s parents via MLE where features for neigh-
bor variables are sums of those variables. We estimate
values of endogenous nodes using Monte Carlo sampling
using these fit models and exogenous nodes via the em-
pirical distribution. We estimate values in the pre- and
post-intervention worlds and report the mean difference
between these estimates across all units and all samples
of the network. For specific details on the mechanics of
each intervention type, please see the appendix.

To evaluate the performance of this estimation technique,
we generate ‘ground truth’ graphs for each intervention
and generate values for the Yi’s of interest. For each
simulated network we generated 1000 bootstrap samples.
We compare the intervention effects to the ground truth
effects and obtain the bias of our approach. As presented
in Table 1 above, and Tables 2 - 4 in the appendix, the
95% confidence interval for each experiment covers the
ground truth bias and thus shows that the effects of net-
work interventions can be consistently estimated.

9 DISCUSSION

In this paper we proposed a framework for intervening
on the structure of a social network graph by severing
or creating connections between subjects. We defined
effects that extend the network effects defined in [8].
We then proved that for severances, and causal interven-
tions generally, the g-formula and edge g-formula ob-
tain distributions that are minimally KL-divergent from
the pre-intervention distribution subject to the indepen-
dence constraint imposed by the intervention. Finally,
we demonstrated that these effects can be estimated from
observational data via a simulation study.

In the future, this framework could be generalized to chain
graph models to allow for more flexibility of network
representation.
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