8 APPENDIX

8.1 PROOFS

Proof for Proposition [T}

Proof. We show that max, D 5(75(s)||74(s)) is well-
defined for an MDP M with two representations M4
and M. From Theorem |1, we know the distribution
m(s) can be written with respect to its occupancy mea-
sure p,. It is sufficient to show that we can map occu-
pancy measures of 74 and 72 to a common MDP. By
the definition of an occupancy measure,

pr(s,a) =P(n(s) = a) Z:O v'P(s; = s|m)

n

= ET:(sU,ag,m ,sn)wn[zizo ’Yil((si, ai) = (s, a))}

that is to say, the occupancy measure is the expected dis-
counted count of a state-action pair to appear in all pos-
sible trajectories. Since we have trajectory mappings be-
tween M and M %, we can convert an occupancy mea-
sure in M“ to one in M® by mapping each trajectory
and perform the count in the new MDP representation.
Formally, the occupancy measure pZ; of 7% in M” can
be mapped to an occupancy measure in M4 by
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Following  from this, we can  compute

Djs(nB(s)||74(s)) using any s in M“. And the

maximum is defined. In the definition, there is a choice
whether to map 74’s occupancy measure to MP or
7B’s to MA. Though both approaches lead to a valid
definition, we use the definition that for D jg(-||), we
always map the representation in the first argument to
that of the second argument. It is preferable to the other
one because in Theorem 2} we want to optimize
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by optimizing
Bp, = Entnp, [max, Dys(n?(s) |7 (s))]

usually via computing the gradient of Blgz wrt. . If
we use f4_, p to map from M4 to MP, the gradient will
involve a complex composition of f4_, g and 74, which
is undesirable. O

To prove Theorem |2} we need to use a policy improve-
ment result for a single MDP (a modified version of The-
orem 1 in [29])).

Theorem 4. Assume for an MDP M, an expert policy
mg have a higer advantage of over a policy m with a
margin, i.e., n(rg, M) — n(mw, M) > & Define

o = max, Dicp (7' (s)||7(s))
B =max, Dys(n'(s)||ng(s))
€rp = MaXs q |[Ar, (s,a)]

€r = Max, q |Ar(s,a)]

then (M) > ne(x', M) — 200mmtoce) 4 5

Proof. The only difference from the original theorem is
that the original assumes E, , <, (s),a~n(s) [Ar (5, 08) —
Ar(s,a)] > & > 0 for every state s. It is a stronger
assumption which is not needed in their analysis. No-
tice that the advantage of a policy over itself is zero, i.e.,
Eqr(s)[Ax(s,a)] = 0 for every s, so the margin as-
sumption simplifies to B, ,~r, (s)[Ar (5, aE)] > §'.

By the policy advantage formula,

n(me, M) = (M) = Eronp [y~ 7 An(sisa)]

0

00 .
= ]Esin.,rE ]Ea,;w‘rrE(s,;) [Zizo ’YlAﬂ'(Si; az)]

Z ]Eg7 ~Prp [5l Zi:o ’Y’L]
5/
1—n

So an assumption on per-state advantage translates to a
overall advantage. Thus we can make this weaker as-
sumption which is also more intuitive and the original
statement still holds with a different ¢ term. O

Proof of Theorem 2k

Proof. Theorem[2)is a distributional extension to the the-
orem above. For M ~ Do, let 6oy = n(n?, MPB) —
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The derivation for .J(7'P) is the same. O
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Finally, we provide the proof for Theorem [3] We first
quantify the performance gap between a policy 7 and an
optimal policy 7*. For a policy that is able to achieve e
0—1loss, £(s,7) = 1(n(s) # 7*(s)), measured against
7*’s action choices under its own state distributions, then
we can bound the performance gap. Let Qf' (s, ) denote
the t-step cost of executing 7 in initial state s and then
following policy 7/

Theorem 5. (Theorem 2.2 from [51|], adpated to our
notations) Let 7 be such taht E,., [((s, )] = € and
Q’F_H_l (s,7*) — Q’;_H_l(s, a) < wforall action a,t €
{1,2,---,T}, thenn(m, M) > n(m*, M) — uTe.

Thus the important quantity to measure is €, and by mea-
suring the disagreements between two policies in two
views, we can upper bound e. The result is originally
stated in the context of classification, and the above theo-
rem justifies the learning reduction approach of reducing
policy learning to classification.

Theorem 6. (Corollary 5 in [16|] applied to full clas-
sifiers) Using the definitions in Theorem |3} with prob-
ability 1 — o over the choice of a sample set N, for

all pairs of classifiers hy, ho such that for all i we have
Ci(hh h2, O') > 0 and bi(hl, hQ, U’) <L

€ <maxjeqy,... k} bj(h1, ha,0)

Proof. The only change from the original proof is that
instead of a partial classifier which can output L, we
consider a full classifier. Then we could eliminate the
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Figure 7: Two views for Risk-Aware Path Planning. On
the left, the obstacle is enclosed by a polytope (MILP
view) and on the right the obstacle is enclosed by an el-
lipse (QCQP view).

estimates for P(h; # L) and the error introduced by
converting a partial classifier to a full classifier via ran-
dom labelling when the output is L. [

Proof of Theorem

Proof. For the bound for 74, we are measuring € 4 on its
sampled paths. Then directly apply Theorem [6] gives an
upper bound on € 4. Apply Theorem 5] gives the result of
Theorem 31 O

8.2 PICTORIAL REPRESENTATION OF THE
TWO-VIEWS IN RISK-AWARE PATH
PLANNING:

We present a pictorial representation of the two differ-
ent views used in the experiments in Fig[7] In the MILP
view, the constraint space is represented using additional
auxiliary binary variables to choose the active side of
the polytope, whereas in the QCQP view, the constraint
space can be encoded in a quadratic constraint.

8.3 RISK-AWARE PLANNING DATASET
GENERATION:

We generate 150 obstacle maps. Each map contains 10
rectangle obstacles, with the center of each obstacle cho-
sen from a uniform random distribution over the space
0 <y <1,0 < ax < 1. The side length of each ob-
stacle was chosen from a uniform distribution in range
[0.01, 0.02] and the orientation was chosen from a uni-
form distribution between 0° and 360°. In order to avoid
trivial infeasible maps, any obstacles centered close to
the destination are removed. For MILP view, we directly
use the randomly generated rectangles for defining the
constraint space. However, for the QCQP view, we en-
close the rectangle obstacles with a circle for defining the
quadratic constraint.



8.4 DISCRETE/CONTINUOUS CONTROL
RESULTS IN TABULAR FORM

Acrobot Swimmer Hopper
A (CoPiEr) | —86.44 +£10.80 | 106.35 £23.11 | 217.83 + 30.03
A (PG) —169.57 £10.48 | 109.09 & 21.58 | 278.66 £ 32.87
A (Al —252.42 £8.73 | 100.36 £22.37 | 49.39 £ 10.35
B (CoPiEr) | —88.48 £15.13 | 104.16 £19.32 | 168.88 £ 18.21
B (PG) —257.16 £10.93 | 103.48 +=21.89 | 89.34 +4.89
B (Al —251.74£9.65 | 96.74 £19.57 22.59 £ 5.55
A+B —86.42 + 3.48 108.71 £5.03 | 346.53£5.91




