Exact Sampling of Directed Acyclic Graphs from Modular Distributions

Topi Talvitie
University of Helsinki
topi.talvitie @helsinki.fi

Abstract

We consider the problem of sampling directed
acyclic graphs (DAGs) from a given distri-
bution. We assume the sampling distribu-
tion is modular, i.e., the probability of a DAG
is a product of local factors, each of which
only depends on a node and its parents in
the DAG. Using inclusion—exclusion recur-
rence relations, we give an exact sampler that
requires O(3") time for preprocessing and
O(2") per sample, where 7 is the number of
nodes and O suppresses polylogarithmic fac-
tors. We also consider the symmetric special
case where the factors only depend on the size
of the parent set—this covers uniform sam-
pling under indegree constraints. In this case,
our exact sampler requires O(n?) time for pre-
processing and O(n?) per sample; this outper-
forms the previous best bound even for the uni-
form distribution. We demonstrate the perfor-
mance of both samplers also empirically.

1 INTRODUCTION

The protagonist of this paper is the following problem:
Given a function w that maps each directed acyclic graph
(DAG) on a finite node set V' to a non-negative real num-
ber w(G), draw a random DAG G with a probability pro-
portional to w(G). We will assume that w is modular,
i.e., w(QG) equals a product of node-wise factors w; (G;),
i € V, where G is the set of parents of node 7 in G.

This sampling problem arises chiefly in the Bayesian
approach to inferring the structure of a Bayesian net-
work (BN) from given data (Koller and Friedman, 2009,
Ch. 18.5). The function w is then proportional to a poste-
rior probability function, and obtained by multiplying a
modular prior by a modular likelihood function, possibly

Aleksis Vuoksenmaa
University of Helsinki
aleksis.vuoksenmaa @helsinki.fi

Mikko Koivisto
University of Helsinki
mikko.koivisto @helsinki.fi

ignoring a constant factor. The ability to efficiently sam-
ple from the posterior would provide a powerful means
for accurate, controlled estimation of various quantities
of interest. An example of such a quantity is the pos-
terior probability that there is a directed path between
two given nodes; for computing this quantity, the fastest
known exact algorithm takes time O(5"), where n is the
number of nodes and O hides polylogarithmic factors
(Chen et al., 2015).

Prior work has shown that exact sampling from so-called
order-modular" distributions takes time O(2"), which is
nearly linear in the input size (He et al., 2016; Niinimiki
et al.,, 2016). This result stems from stochastic back-
tracking of the dynamic programming steps for comput-
ing the normalizing constant of the distribution (Koivisto
and Sood, 2004). For the modular variant, on which we
focus in the present paper, the normalizing constant can
be computed in time O(3") using inclusion-exclusion
recurrences (Tian and He, 2009). It is natural to ask
whether one can also sample from modular distributions
with about the same time complexity.

The state-of-the-art sampling methods for modular dis-
tributions are approximate and enjoy only weak accu-
racy guarantees. Methods based on Markov chain Monte
Carlo (Madigan and York, 1995; Kuipers and Moffa,
2017) often perform well in practice, but they offer no
reasonable accuracy guarantees for finite runs. On the
other hand, there are methods based on importance sam-
pling from the order-modular counterpart of the distri-
bution (Friedman and Koller, 2003; He et al., 2016; Ni-
inimiki et al., 2016); for correcting the sampling bias,
the proposed techniques are not completely satisfactory:
while one obtains guaranteed lower and upper bounds

' An order-modular function differs from its modular coun-
terpart by a factor that is proportional to the number of topolog-
ical sorts of the DAG. Consequently, the class does not include,
e.g., uniform distributions, and in the literature, order-modular
distributions have been considered mostly for the sake of com-
putational convenience and efficiency.

for the quantity of interest, the interval is wide unless the
generated DAGs cover most of the probability mass in
the modular distribution, and moreover, computing the
interval takes time 0(3”) (He et al., 2016, Thm. 5(iv)).

In this paper, we present an algorithm for exact sam-
pling of DAGs from a given modular distribution in time
O(3™). The algorithm is inspired by the mentioned re-
currences of Tian and He (2009), which in turn can be
viewed as a generalization of a recurrence for the num-
ber of labeled DAGs due to Robinson (1973). From the
viewpoint of sampling, the recurrences are of no direct
use, however. This is because the involved sum formulas
have both positive and negative terms, hence not lend-
ing themselves to direct sampling, but rather to (poten-
tially very inefficient) rejection sampling. To overcome
this obstacle, we employ the idea of Kuipers and Moffa
(2015, 2017) to sample first a so-called root-layering,
which is a partition of the nodes into layers, and then
a DAG conditionally on the root-layering. Our key tech-
nical contribution is an efficient algorithm for random
generation of root-layerings.

For the fundamental special case where the sampling dis-
tribution is uniform (Ide and Cozman, 2002; Melangon
et al., 2001; Melancon and Philippe, 2004), fast al-
gorithms are known. Specifically, Kuipers and Moffa
(2015) gave an exact sampler that runs in O(n®) time
and a biased sampler that runs in O(n?) time; here time
refers to the number of bit operations. While these sam-
plers are based on efficient random generation of root-
layerings, they fall short if one sets constraints, e.g., a
maximum number of parents per node; to handle such
constraints, Kuipers and Moffa (2015) resort to approxi-
mate sampling along a Markov chain. Here, we general-
ize and improve these samplers: we give an algorithm for
exact sampling in time O(n3) from any symmetric mod-
ular distribution, i.e., where each w;(G;) only depends
on the size |G;| and not on ; moreover, for the uniform
distribution the time requirement is reduced to O(n?).

The rest of this paper is organized as follows. Section 2
presents our results more formally and also gives an out-
line of the algorithms. The actual algorithms are pre-
sented and analyzed in Sections 3 and 4 for the general
and the symmetric case, respectively. Section 5 reports
empirical results on the scalability of the samplers.

2 OVERVIEW

This section gives precise formulations of the two prob-
lem variants, the model of computation we assume in the
time complexity analyses, and our complexity results.
We also outline the main ideas underlying the two algo-
rithms, which we describe in detail in the later sections.

2.1 PROBLEMS

It would be natural to formulate the sampling problem in
an algebraic model, where the input weights are arbitrary
non-negative reals and time complexity amounts to the
required number of additions and multiplications. From
a practical viewpoint, however, it is crucial that we also
pay attention to the cost of representing the input weights
and the results of intermediate computations. These con-
siderations motivate us to restrict the input weights to
natural numbers, each of which has a finite representa-
tion either as a floating-point number (mantissa and ex-
ponent part) or as a plain integer (no exponent part).

DAG SAMPLING

Input: A set V and maps w; : 2V M - Nforeachie V.

Output: A random DAG G on V' drawn with a proba-
bility proportional to w(G) := [],cy wi(G5).

Recall that G; denotes the set of parents of node ¢ in G,
ie., G; = {j : jiis anedge in G}. Note that the size of
the input is exponential in the number of nodes n := |V/|.
Note also that we assume here implicitly that w is not
zero everywhere, which could be checked in time O(3")
by the algorithm of Tian and He (2009).

By restricting the input to maps that are identical and
symmetric, i.e., w;(.S) only depends on |S|, we arrive at
the following problem variant:

SYMMETRIC DAG SAMPLING

Input: AsetVandamapw: {0,...,|V]| -1} - N.

Output: A random DAG G on V drawn with a proba-
bility proportional to w(G) := [[,cy w(|Gil).

Here and henceforth we let w refer to both the “local” in-
put maps and the unnormalized “global” mass function;
the particular use will be clear from the context. Note
that in this problem variant the input size is linear in |V/].

These problems directly generalize to the setting where
one is asked to make a given number of independent
draws from the distribution. With this setting in mind, we
will consider both the preprocessing complexity, which
is independent of the number of draws, and the sampling
complexity, which is linear in the number of draws.

2.2 MODEL OF COMPUTATION

Our algorithms operate with large numerical expressions,
and the exact representations of their numerical values
may grow large. A naive implementation with fixed pre-
cision numbers could lead to numerical problems, result-
ing in incorrect results; the required amount of precision
is highly dependent on the algorithm and on the input.

For rigorous treatment of this issue, while maintaining
that our algorithms always sample exactly from the cor-
rect distribution, we will work under the word RAM
model (see, e.g., Hagerup, 1998, and references therein),
with B,,-bit machine word size. The model assumes
that we can perform elementary operations—such as ad-
dition, subtraction, multiplication, division, array index-
ing, and random number generation—on O(By,)-bit in-
tegers or floating-point numbers in O(1) time. Further-
more, the model assumes that By, is large enough to fit
indices of input bits (logarithmic in the length of input)
and individual input numbers in a single machine word.

2.3 RESULTS

Theorem 1. DAG SAMPLING can be solved with pre-
processing time O(3"n?) and sampling time O(2"n),
assuming the input weights are given as plain integers.

Here we require that the input weights are plain inte-
gers, because our algorithm performs exact integer com-
putations; converting floating-point numbers to integers
could blow up the length of the representation. The need
of exact arithmetic stems from non-monotonicity: the al-
gorithm employs inclusion—exclusion and is thus suscep-
tible to so-called catastrophic cancellations (i.e., loss of
accuracy in subtractions) if only fixed-precision floating-
point numbers are used.

For the symmetric variant, the complexity appears to de-
pend on the largest ratio between two input weights,

A :=log, (max {w(a)/w(b):1<ab<n-— 1}) ;

if some input weight is zero, we let A := oo.

Theorem 2. SYMMETRIC DAG SAMPLING can be
solved with preprocessing time O(n2 min{A + 1,n})
and expected sampling time O(n?).

In particular, the preprocessing time is O(n?) for un-
constrained uniform sampling, but the bound becomes
O(n?) for sampling under an indegree constraint. Now,
the sampling time is a random variable and we bound
its expected value, for the algorithm is based on itera-
tively increasing the precision of the computations until
exact sampling is guaranteed. The input weights can be
given as floating-point numbers, because the algorithm
uses only numerically stable monotone operations, i.e.,
additions and multiplications of nonnegative numbers.

For the availability of our implementations of the algo-
rithms, empirical performance results, and discussion of
the memory requirements, see Section 5.

R

Figure 1: The root-layering (Ry, ..., R4) of a DAG.

2.4 OUTLINE

Both our results (Theorems 1 and 2) stem from the
same algorithmic idea: first generating of a random root-
layering from the distribution induced by the function
w(@G), and then a random DAG conditionally on the root-
layering. We next introduce the notion of root-layering
and give an outline of our algorithms.

For a DAG G, denote by p(G) the set of root nodes of G,
ie, p(G) = {i : G; = 0}. For a set of nodes S in G,
denote by G — S the DAG obtained by removing S from
G, i.e., the DAG induced by the remaining nodes.

Definition 1. The root-layering of a DAG G is the tuple
(R1,...,R;) where Ry = p(G) and, if G — Ry is not
empty, (R, ..., Ry) is the root-layering of G — R;.

Figure 1 illustrates how the root-layering of a DAG par-
titions the node set. Observe that the root-layerings of a
DAG and its reverse (obtained by reversing the edges of
the DAG) generally yield different partitions.

Our algorithms have the following structure:

Step 1 (Preprocess) Compute and store appropriate
functions in a dynamic programming fashion.

Step 2 (Sample layering) Draw a random root-layering
from the distribution implied by w.

Step 3 (Sample DAG) Draw a random DAG from the
conditional distribution given the root-layering.

Given a root-layering, it is relatively easy to draw a ran-
dom DAG (Step 3) because the choices of the parent sets
of different nodes become independent, due to the mod-
ularity of the distribution. This is the key observation of
Kuipers and Moffa (2015, 2017).

The main challenge is to efficiently draw a root-layering
(Step 2). Our key observation is that we can sample it-
eratively, one layer in turn, starting from the roots of the
(random) DAG. While this approach was also taken by
Kuipers and Moffa (2015, Sect. 4), there is a crucial dif-
ference: since we allow parent set weights that do not

factorize into parent-wise weights, we cannot assign a
child’s parents independently, but we have to assign the
parent set as a whole—this leads to a major difference
in the required preprocessing. For the preprocessing we
employ inclusion—exclusion recurrences that are similar
in spirit to those by Tian and He (2009).

For the symmetric variant, the overall approach is the
same; however, monotone computations allow more eco-
nomical representation of numbers. In particular, we ob-
serve that low-precision computations suffice for exact
sampling. Furthermore, similarly to Kuipers and Moffa
(2015)—but in our more general and exact framework—
we exploit the fact that the number of nodes in any layer
of a random root-layering is small in expectation.

2.5 NOTATION

We will use the shorthands R, (Ra, ..., Rp),
URgp:=RyU---URp,and X Ry, := Ry + -+ - + Ry.

We call Ry.; alayering of U if Ry is an ordered partition
of U C V, and denote by L(U) the set of layerings of U.
We write G € Ry.; as a shorthand for “G is a DAG with
root-layering R1.;.” We denote by Gy the set of DAGs
on U, and by G[U] the subgraph of G induced by U.

3 PROOF OF THEOREM 1

To prove Theorem 1 we will first develop a formula
for the conditional probability of one layer in a random
root-layering, given the preceding layers. This formula
suggests both an efficient way to draw a random root-
layering and the auxiliary functions that we need to pre-
compute. After that we will address the complexity of
implementing the three steps in detail.

We begin by showing that for a fixed root-layering, the
choices of the parent sets are independent of each other.
In fact, we will need a stronger characterization that
shows how the choices for one layer only depend on the
previous layer and the union of the preceding layers. To
this end, for any pair of sets R C T, define the collection
of candidate parents sets as

C(RT)={SCT:SNR#DorR=0}. (1)

Lemma 3. Let Ry € L(V) and Ry = 0. A digraph
G on V is a DAG with root-layering Ry.; if and only if
G; € C(Rk717UR1;]€71)‘f0}’ alll <k<landi € R;.

Proof. We prove by induction on the set V. The claim
trivially holds for V' = (). For the induction step, assume
the claim holds for all proper subsets of V.

Let G be a DAG on V with root-layering Ry ;. If i € Ry,
then i is a root of G; hence, G; = 0 € C(0,0). For

the remaining layers, apply the induction assumption for
the subgraph G’ of G induced by V'\ R;. Because Ra;
is the root-layering of G’, we have for all i € Ry that
G, € C(0,0). Thus, G} is empty and G; C Ry. As i is
a non-root of G, the set G; intersects R;; hence, G; €
C(R1, Ry), as desired. If i € Ry, with k > 3, then G} €
C(Rk,h URQ;]@,1), whence G; € C(kal, URl;kfl).

For the other direction, assume G; € C(Rg—_1,UR1.5-1)
forall1 < k <land: € Rg. It follows that G; is empty
exactly when ¢ € R;, and thus R; must consist of the
roots of G. Now, foreach i € V'\ Ry, put G} := G;\ R.
If i € Ry, then G; C Ry and thus G, = 0 € C(0,0). If
1 € Ry, k > 3, then G, intersects Rj_1 and is contained
in URg.k—1; hence, G; € C(Rji_1,UR2.5—1). By the
induction assumption, G’ is a DAG with root-layering
Rs.;. As G is obtained from G’ by adding the nodes in
R, and edges from R; to UR,,; such that all roots of G
are in Ry, also G is a DAG with root-layering Ry.;. [

By Lemma 3, the probability that a random DAG has
root-layering R1.; is proportional to

!
Z Hwi(Gi) = H H Wi (Rg—1,UR1k—1), (2)

GERy iEV k=1i€ Ry,

where (R, T) = 3 gcc(p,r) wi(S). Indeed, the sum
can be written as n nested sums, in each of which G;
runs over C(Ry_1,URy.x_1), with i € Ry, and Rg = 0.
Reorganizing into a product of sums yields (2).

The conditional probability that the p:th layer is R,
given that the preceding layers are R;.,—; and the re-
maining node set U := V \ URj.,_; is not empty, is
proportional to the joint probability of I2y.,. This prob-
ability, in turn, is the marginal of the joint probability of
Rj.;, obtained by taking a sum of the product (2) over
the possible suffixes R,1.;. Now, eliminate the factors
that do not depend on Iz, and take the common factor,
for k = p, out of the sum. We get that the desired condi-
tional probability is proportional to

F(Rp, U) T @i(Rp—r, V\U), 3)
i€R,

where for all) # Iy C U C V we define

f(IOaU) = Z f[Hwi(lk—laV\UIk:s)- (4)

I..€L(U\Io) k=1i€I})

Using formula (3), we can generate a random root-
layering, provided that the f- and w;-values are avail-
able. Next we show how they can be efficiently precom-
puted, and after that we consider the DAG sampling step.

3.1 PRECOMPUTATION

Consider first the computation of the function w; for a
fixed i € V. Observe that for all T C V'\ {i}, we can
compute w; (0, T') and w;({x},T) for all z € T by sim-
ple summations over the w;-values, using O(3™) addi-
tions in total. For the rest of the @; (R, T')-values, we can
express C recursively as a disjoint union:

C(R,T) = C({z},T) U C(R\{z}, T\{z}), (5

where R C T such that |R| > 2 and « is an arbitrary ele-
ment of R. For the w;-values, this translates to the recur-
rence w;(R,T) = w;({z},T) + w;(R\{x}, T\{z}).
Using this recurrence, precomputing all the w;-values
for all ¢ € V requires O(3"n) additions.

Remark 1. Alternatively, we can first compute ; (0, T')
using fast zeta transforms, with O(2"n?) addition op-
erations in total, and then the rest using the identity
w;(R,T) = w;(0, T) — w;(0, T \ R). But this would
not affect the total precomputation time complexity.

Next, consider computing the f-values. Define for all
R C U C V the DAG collections

G(R,U) :={G € Gy : p(G) 2 V\U,p(GlU]) = R},
G(R,U) == {G € Gy : p(G) 2 V\U,p(G[U]) 2 R} .

In words, both collections only contain DAGs G on V
where every node in V\U is a root. The difference is that
in the induced subgraph G[U] exactly the nodes in R are
the roots fora G € G(R, U), whereas fora G € G(R,U)
also some node in U\ R can be a root.

The DAGs on V where all V' \ U are roots are exactly the
DAGs that can be obtained from a DAG on U by adding
edges from V'\ U to U. Thus, by Lemma 3 and definition
(4) we get a new interpretation for f(R,U):

Z H wi(Gi) . (6)

GeG(R,U)i€U\R

f(Rv U) =

By the principle of inclusion and exclusion,

fRUY = > (=TT wilG).

RCXCU GEG(X,U)i€U\R

The set G(X,U) consists of the DAGs that can be ob-
tained from a DAG in G((), U\ X) by changing the ini-
tially empty parent set of each node in X to a subset of
V\U. Thus we get that

FR,U) = Y (=)@ x) [@:(0,V\U),

RCXCU 1€X\R

GEG(0,U) €U

where
g(U) =

This formula for f is still problematic from the com-
plexity viewpoint because computing it directly would
require considering Q(4") triplets (R, U, X). To reduce
the complexity, consider a fixed U C V and the repa-
rameterized slice fy(S) := f(U\S,U) forall S C U.
Substituting X := U\Y yields

fu(8) =" (—)IEWlg(y) T wi(0,v\U).

YCS ieS\Y

Now, observe that fi;, when viewed as a vector indexed

by S, is a product of a 2!/V! x 21Vl matrix K and the vector
g of length 2!Y1; the matrix entries are given by

. i€S\Yand YCS

Ksy = [] (- a0,V \U))l 5o res]

ieU

Y

where [()] evaluates to 1 if) holds, else to 0. Thus, K is
a Kronecker product of |U| matrices of size 2 x 2, imply-
ing that fy can be computed with O (2!Y/|U]) additions
and multiplications (Yates, 1937; Kennes, 1992).

It remains to compute the g-values. Using the inclusion—
exclusion principle, we obtain for all) = U C V that

> (=nEr N TTwi@)

0#ARCU GeG(R,U) €U

g(U) =

Again, by relating the DAGs in G(R,U) to those in

G(0,U\ R), we get a recursive formula:

> (=)EFGU\R) [T wi(0, V\U)

0£RCU i€eR

g(U) =

with the base case () = 1.

Proposition 4. Computing the values f(R,U) for all
0 # R C U CV and w;(R,T) forall i € V and
R C T CV\ {i} requires O(3"n?) time.

Proof. As the input size is £2(2"), the machine word size
By, is 2(n). Furthermore, each subset of V' can be rep-
resented by O(1) machine words, and set operations on
them take O(1) time.

When computing the w;-values, each addition is with
numbers smaller than 2" - 28=_ Thus the operands fit in
O(1) machine words and the running time is O(3"n?).

In the formulas for f and g, each number fits in
O(n) machine words, since the numbers do not exceed
IG(0, V)] - 2Bmn < 2n*+Bmn — (2B=n) By ordering
the summation over) # R C U in the recurrence for
g by increasing R and reusing the subproducts from ear-
lier terms, we use O(n) time for each term, as the second
operand in each multiplication operation is a w-value and
thus fits in O(1) words. Because there are O(3™) terms
in total, computing all the g-values takes O(3™n) time.

Using fast algorithms for generalized Mobius transform
(Yates, 1937; Kennes and Smets, 1990; Kennes, 1992),
computing fi; requires O (2!Y!|U]) additions and multi-
plications of numbers that fit in O(n) words, and again
in each multiplication the second operand fits in O(1)
words. As we need fy for all U C V, computing all the
f-values takes O(3"n?) time. O

3.1.1 Monotone Version

The inclusion—exclusion algorithm requires subtraction,
which can lead to numerical problems if implemented
using fixed precision. We next give alternative precom-
putation formulas that only add and multiply nonnegative
numbers. We will build on these formulas in Section 4.

The algorithm for computing the w;-values uses only ad-
dition operations, so it requires no changes. To compute
the f-values without subtraction, consider the definition
(4), and separate the summation over /; to the front. We
get that f(Iy,U), for [y C U C V, can be written as

S T (o, VN U\ 1))

O£ CU\Ip Liely

X Z f[Hwi(Ik—laV\UIk:S) :

Io.e €L(U\(IoUL1)) k=2 i€}

Reindexing the second factor inside the summation to
match the formula (4) for f(I1,U\Ip) gives us that

fTo,U) = > f(I,UN) [i (To, V\(U\TD)) -

041, CU\Io iel

The base case is f(U,U) = 1 (by applying (4) directly).
To compute f(Io,U) forall) # Iy C U C V via the
recurrence, we need to consider O(4™) sum terms in to-
tal, since there are O(4™) triplets (Io, I1,U) satisfying
IonI; = 0and [y UI; € U C V. Summing over
() £ I, C U\ Iy in increasing order by |I;| and reusing
the subproducts from the previous terms, each term re-
quires O(1) multiplications and additions.

Remark 2. The monotone algorithm can efficiently op-
erate with floating-point numbers. Using O(1)-word
numbers it requires O(4™) time for precomputation and
achieves very small maximum relative error. The error
can be mitigated by adaptively rerunning the precompu-
tation if the precision is insufficient for exact sampling.
We do this for the symmetric version in Section 4.3; the
proofs can be adapted to the asymmetric case.

3.2 SAMPLING

After precomputation, for each sample we draw we need
to do two things: sample a root-layering R;.; and then
sample a DAG conditional on the root-layering.

Recall that we sample the root-layering iteratively: hav-
ing Ry.p—1 sampled and U := V' \ UR;.,_1 nonempty, a
set) # R, C U is chosen as the next layer with proba-
bility proportional to f(Rp, U) [[;cp, wi(Rp—1,V\U),

where Ry := (). When sampling R, we have to con-
sider 2!Vl — 1 < 27+1-D different sets, which means we
consider at most 2" + 271 + 2772 + | = O(2") sets

in total. By considering the different possibilities for R,
ordered by inclusion and reusing the subproducts from
earlier sets, we need only O(1) multiplications for com-
puting each weight. Considering the set 2, in increasing
order by size and reusing the subproducts from earlier
sets, O(1) multiplications suffice per R,,.

Once the root-layering R;.; is fixed, by Lemma 3, we can
sample the DAG simply by drawing forall 1 < k& <[
and ¢ € Ry the parent set G; from C(Ry—_1,UR1.5-1)
weighted by w;. If we order all the nodes by the root-
layering, then for each node we consider only subsets of
its predecessors, and thus we consider at most on—1l 4
2n=2 4 9n=3 4 | = O(2") subsets in total.

All arithmetic operations are with numbers that fit in
O(n) machine words, and in each multiplication the sec-
ond operand fits in O(1) words (cf. proof of Prop. 4).
Thus we get that after precomputation, each sample can
be drawn in O(2"n) time. This, together with Proposi-
tion 4, completes the proof of Theorem 1.

Remark 3. We could sample in polynomial time by in-
vesting O(4™) time to precomputation: by computing the
probability distribution over the next layer R, for each
pair (R,,_1, U) and the distribution for G; € C(Ry_1, P)
weighted by w; for each triplet (i, Rx_1, P).

4 PROOF OF THEOREM 2

To prove Theorem 2, we will adapt the algorithms of Sec-
tion 3 by replacing node sets by their sizes: w;(R,T),
f(R,U) become w(r,t), f(r,u), respectively. We will
build on the monotone version of the algorithm, intro-
ducing several modifications.

4.1 NUMERICAL PRECISION

As our algorithms will no longer be exponential time,
we have to consider the complexity of the numeric op-
erations with greater detail. Because we now allow non-
negative floating-point weights, our computations are in-
exact. To enable exact sampling, we will use variable
precision: first do all computations with floating-point
numbers with mantissa length of O(1) machine words,
keeping track of the maximum error; as long as the result
is inconclusive, double the mantissa length and redo the
computations using the same random number sequence.

To bound the numerical errors in our computations, we
define? the relative error of an approximation x’ of x as
[lnz’ — Inz|. The maximum relative error of floating-
point operations with L-word mantissa is the machine
epsilon ey, (L), or ey, for short, equal to In(1 4 27 LBm),
If @’ and b’ are floating-point representations of a and b
with relative errors €, and ¢, then the relative error of
the floating-point addition or multiplication of a’ and v’
is at most max{e,, €} + € Or €, + €} + €1, rESPECtively.

The exponent parts in the floating-points numbers will
always fit in O(1) machine words and thus not affect the
time complexity. (Indeed, all the computed numbers are
sums of products of at most n input weights, with at most
exp(O(n?)) terms. Thus the logarithms of the (absolute)
values get increased by a factor at most O(n?), implying
that the lengths of the exponent part get increased by at
most O(log n) bits, staying within O(1) machine words.)

4.2 PRECOMPUTATION

In order to compute the w-values, we first compute for
all 1 <t < n — 1 the entries

t t
. t N t—1 .
w00 =3 (ot a0.0 =3 (42})uths
— \J — \J — 1
J J
we precompute the binomial coefficients via the Pascal

triangle. The rest, for 2 < r <t < n — 1, we compute
via the recurrence w(r,t) = w(1,t) + w(r — 1,¢t — 1).

To compute f(r,u) for all 0 < r < u < n, we employ
the symmetric version of the monotone recurrence:

fryu) = “ir(u ; T) fz,u—r)w(r,n—u+r)®. (7)
r=1

To state the time complexity of the precomputation, let
M7, denote the number of operations needed for multi-
plying two L-word numbers. Known results for integer
multiplication imply that My, = O(L).

Proposition 5. Using L-word floating-point precision,
we can compute the values f(r,u) foralll1 <r <wu<n
and w(r,t) forall0 <r <t <n—1in O(n*My) time
to within a relative error of O(ney,).

Proof. The binomial coefficients and w-values can be
computed with O(n?) additions. As each addition in-
creases the maximum relative error by at most €,,, the
maximum relative error of these values is O(n2ey,).

We compute the powers w(r,n — u + r)* for all rele-
vant 7, u, z by repeated multiplication, requiring O(n?)

2Qur definition deviates from the standard |2’ — x| /. Ours
is convenient for estimating the error of multiplications. The
two definitions are approximately equal when the error is small.

multiplications and resulting in O(n3e,,) relative error.
After that, we compute f(r,u) foralll < r <u <n
in increasing order by u with O(n3) multiplications and
additions, using the recurrence for f. We can prove by
induction on u that the relative error of f(r,w) is at most
C un? e, for some constant C; thus the maximum rela-
tive error of the output values is O(ney,).

In total, we do O(n?) arithmetic operations with L-word
floating-point numbers, thus taking O(n3Mp) time. [

4.3 SAMPLING

Similarly to the general case, we sample the layer sizes of
the root-layering, 1., iteratively: having r1.,_; sampled
and u := n — X711 nonzero, anumber 1 < 1, < uis
chosen as the size of the next layer with probability pro-
portional to (;;)f(rp, w)i(rp_1,n—u)"», where ro = 0.
Due to symmetry, we can then sample the root-layering
Ry, by distributing the elements of V' into the sets such

that |Ry| = ry for all 1 < k < [uniformly at random.

Once the root-layering Ry is fixed, by Lemma 3, we can
sample the DAG by drawing forall 1 < k£ < landi € Ry,
the parent set G; from C(Ry_1, UR1.x—1) weighted by
w(|G;|). If k = 1, then always G; = (). Suppose k > 2
and define P := UR;.;_1. Now, apply (5) repeatedly to
the nodes in © € Ry_; along some total order < on V'
to partition C(Ry_1, P) into a disjoint union of the sets
C({z}, P;), where P, = P\{y € Rx_1:y < z}. The
idea is to first choose the smallest x € Rj;_; contained
in G;, and then choose the rest of GG; from P,.. The prob-
ability of choosing x is proportional to w(1,|P,|). To
draw the rest of GG;, draw first the size j of GG; with prob-
ability proportional to (lljﬂ Il)w(7). with 1 < j < | Py,
and then j nodes from P, \ {«} uniformly at random.

Because the computed numbers are (controlled) approxi-
mations, we have to check whether they suffice for exact
sampling. We can detect if they do not, and then call
the attempt a failure and repeat the computations with
increased precision parameter L, using the same random
numbers. The following result concerns a single trial:

Proposition 6. After precomputation with L-word pre-
cision, the DAG can be sampled in O(n*>My) time with
failure probability at most exp (O(n"€y)) — 1.

Proof. The sampling algorithm consists of several steps,
in each of which we draw some j from {1,2,...,m}
with probability proportional to p;. We implement the
sampling step by computing the cumulative sums Xp;.;
for all 0 < j < m, drawing a number ¢ € [0, Xp1.,n)
uniformly at random and finding the first 1 < j < m
such that ¢ < Xpy.;. Thus the sampling phase requires
O(m) addition and comparison operations.

Both sampling the layer sizes and the parent set sizes
require O(n) draws. For each draw there are O(n) out-
comes, whose unnormalized probabilities are computed
with O(n) additions and multiplications (using repeated
multiplication for the powers of w(r,—1,7 — u) when
sampling the root-layering). Sampling the parent sets
when their sizes are fixed takes O(ng) time, for that can
be implemented using O(logn)-bit exact integer arith-
metic. In total, the algorithm runs in O(n?M,) time.

By the error bounds for the precomputed values
(Prop. 5), we get the bound O(n®e,,) for the relative er-
rors of the sampling proportions. If we normalize the
proportions to probabilities, all values are in range [0, 1],
and thus their absolute errors are exp(O(n°ey)) — 1.
Thus in each sampling step, the probability that there is
not enough precision to determine the correct result is
exp(O(nSey)) — 1. As there are O(n) sampling steps,
the total failure probability is exp(O(n7ey)) — 1. O

Now, consider the expected running time of the full ex-
act sampling method in which we increase the precision
parameter L until sampling succeeds. We run the pre-
computation for a fixed initial precision L’, which is a
constant independent of n. Then, in the sampling phase,
we first try sampling with L = L', and as long as it fails,
we keep doubling the precision, each time running both
the precomputation and sampling again with precision
L = 2F [/, where F is the number of failures so far.

By Propositions 5 and 6, we know that (for some choice
of time unit) the time complexities of precomputation
and sampling are at most n> M, and n2 M, respectively,
and the failure probability is at most exp [cn”en (L)] —1
for some constant ¢ > 0. Thus, we get that the expected
sampling time is bounded from above by

n2Mp + Z nSMQFL/(eXp [cn7em(2F71L’)} — 1))
F=1

It suffices to show that the sum over F', which we denote

by S, satisfies S < n2 for some choice of L’ that is in-

dependent of n. Indeed, this will imply that with O(n?)-

time precomputation we can sample DAGs in O(n?) ex-

pected time, proving Theorem 2 for the case A = Q(n).

We may assume w.l.o.g. that n > ¢+ 4. Put L' := 16
and apply the inequalities Myr, < 4F+4 < nf+4 and
em(L) < 27LBm < n~L (o get that

< 3 (e [).

F=1

Since exp(z) — 1 < 2z for 0 < x < 1, we have that

o0

- F+3

S < n? Z2n13+F72)
F=1

Finally, observe that 13+ F —2F+3 < —F forall F > 1.

Remark 4. In practical settings, the exact approach is of-
ten unnecessary: using large enough fixed precision, the
failure probability can be made insignificant. The failure
probability bound in Proposition 5 is loose; tracking the
maximum numerical errors in run time is a practical way
to verify the exactness of sampling.

44 NUMBER OF ROOTS

To finish the proof of Theorem 2, we will make use
the observation that an overwhelming majority of DAGs
have very few root nodes. A similar idea was followed
by Kuipers and Moffa (2015) for sampling DAGs from
a slightly biased uniform distribution with only O(n?)
bit operations. In our case, the distribution is not uni-
form and the weights will affect the performance of the
method through the parameter A, which measures the
uniformity of the weights. Moreover, we want to sam-
ple exactly from the correct distribution.

For a probabilistic bound on the number of root nodes,
we build on the following result due to Liskovets (1975):
for 2 < ¢ < m, the probability that a DAG with m la-
beled nodes chosen uniformly at random has more than
£ roots is at most

2(m —) —0(t-1)/2
(m+ D+ 2z =2 .®

We will next extend this results to our case of weighted
DAGs. Moreover, we want to bound the sizes of all lay-
ers in the root-layering, not just the first.

Recall that for all) # R C U C V we defined the set

G(R,U) = {G € Gy : p(G) 2 V\U.p(GU]) = R}.

Observe that we can write the probability that a random
DAG with |U| labeled nodes has more than ¢ roots as
the ratio Z\X|>e IG(X,U)|/ > x |G(X,U)|, where the
sums are over () # X C U; this is because the choice of
edges from V' \ U to U is independent of the structure of
the induced subgraph G[U]. We can also write this ratio
using the formula (6) we developed for the asymmetric
weighted case, provided that we set all weights to 1, as

Z@#XQU}\X\>Z f(Xv U) HieX uA)z(@, VAU)
ZQ);&XQU f(X, U) HieX wi((z)v 14 \ U)
Now, translating to the symmetric case, under the same

assumption (w(s) = 1 forall 0 < s < n — 1), and using
Liskovets’s inequality (8), yields

e () f (@, w)(0,n — u)”
Yo (5) f(,)(ON—U) N

9—(=1)/2

We want to apply this inequality to prove that for some ¢,
we introduce only negligible error by using only the first
¢ terms in the sum of the recurrence (7) for computing
the f-values. Our problem is, however, that the terms
in the recurrence are of type (%) f(z,w)w(r,n —u)®,
where 1 < r < n — u, whereas the inequality we ob-
tained is only valid for » = 0. We can fix this by ob-
serving that because the weight is uniform, it holds that
w(0,n —u)/2 < w(r,n —u) <w(0,n — u), and thus

— Yoo () f (@ w)i(r,n —u)® < gn—t(t—1)/2
P Y Fwyio(rn — w)r '

Now, let us remove the assumption of uniform weights
and denote by A the binary logarithm of the ratio be-
tween the maximum and minimum weight (in the case of
at least one zero weight, A = oo). Because both the divi-
dend and the divisor in p, are homogeneous polynomials
of degree u in the input weights, removing the uniformity
assumption increases p, by a factor at most 24 < 274,
Thus py < 2MATD=UE=D/2 fora]] 2 < ¢ < u.

To ensure that the error is negligible, i.e., py = O(ep,), it
is sufficient to set £ = O(y/n(A+ 1) + Bn,), because
em = O(27LBm) and the precision parameter L is a
constant in the precomputation phase. The introduced
O(enm) relative error for the f-values is dominated by the
error bound O(ne,,) of Proposition 5. Furthermore, we
only need to compute a value f(r,u) if » < ¢, because
in the sampling phase we can use a similar argument to
show that we can ignore the layer sizes 7, larger than /.
This improves the precomputation time to O(n? + n¢?).
In the rare case that this optimization changes the result
in the sampling phase, the sampling will fail. If that hap-
pens, we retry the sampling with higher precision simi-
larly to Section 4.3, without the optimization, and thus
we always get the correct result.

For the complexity analysis of the algorithm, we may
assume that By, = O(logn), because in the previous re-
sults we only needed that B,,, = Q(logn) and rounding
input values to the used precision introduces at most €y,
relative error, which does not affect the analysis. Thus
setting £ = O(y/n(A+1) +logn) = O(y/n(A+1))
is sufficient, which means that the precomputation time
complexity is O(n?(A + 1)). This combined with the
result of Section 4.3 completes the proof of Theorem 2.

S PRACTICE

We have implemented several variants of the presented
algorithms into a publicly available C++ program.® Per-
formance tests were run on a desktop computer with an
Intel Core 17-4790 processor and 16 GB of memory.

3 github.com/ttalvitie/modular-dag-sampling

*
10000 X
*
1000 —k— Per sample (A = inf) R
Per sample (A = 0) ¥

100 -%:- Preprocessing (A = inf) «
10 Preprocessing (A = 0) ‘,_/
C
g !
T o4

0.01

0.001
0.0001

16 64 | 256 | 1024 | 4096 | 16384

Number of nodes

Figure 2: Running times for sampling from symmetric
distributions. Shown are averages over 10 runs.

In the asymmetric case, it is feasible to sample DAGs
on up to around n = 20 nodes due to the exponential
time and memory requirements. In this range, the mono-
tone algorithm is, in fact, faster than the asymptotically
faster inclusion—exclusion algorithm, both in theory and
in practice (4" < 3"n? if n < 22). Following Re-
marks 2 and 4, we tested a fixed-precision implemen-
tation of the monotone algorithm. With n = 15 nodes
and 7-bit random input weights, preprocessing took 119
seconds and drawing one DAG took 0.031 seconds; this
required 90 % of the memory. Extrapolating from this,
it would take around 2 days to sample a 20-node DAG,
provided that a few terabytes of memory is available.

We also tested a variant that trades time for space. The
space requirement is dominated by the storage of the w;-
values. To reduce the requirement, we only precomputed
w;(R, U) for | R| < 1 and employed the recurrence given
in Section 3.1 to compute w;(R,U) for |R| > 1 when
needed. This increases the time requirement by a O(n)
factor. With this modification, we were able to handle
17-node DAGs, spending about 5 hours (18 600 seconds)
for preprocessing and 0.270 seconds per sample.

In the symmetric case, we tested the presented algorithm
with and without the optimization based on small ex-
pected layer sizes. We observed (Figure 2) that both the
required preprocessing time and the required sampling
time are in line with the asymptotic (cubic and quadratic)
bounds given in Theorem 2. For comparison, Kuipers
and Moffa (2015) report their exact uniform sampler (im-
plemented in Maple) being able to draw six 100-node
DAGs in a second (preprocessing time excluded). Our
sampler appears to be two orders of magnitude faster—
we suspect this to be partly because of the different pro-
gramming languages, but also because of the difference
in the asymptotic time complexities of the samplers.

References

Chen, Y., Meng, L., and Tian, J. (2015). Exact Bayesian
learning of ancestor relations in Bayesian networks. In
Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, volume 38 of Pro-
ceedings of Machine Learning Research, pages 174—
182. PMLR.

Friedman, N. and Koller, D. (2003). Being Bayesian
about network structure. A Bayesian approach to
structure discovery in Bayesian networks. Machine
Learning, 50(1-2):95-125.

Hagerup, T. (1998). Sorting and searching on the word
RAM. In Proceedings of the 15th Annual Symposium
on Theoretical Aspects of Computer Science, volume
1373 of Lecture Notes in Computer Science, pages
366-398. Springer.

He, R., Tian, J., and Wu, H. (2016). Structure learning
in Bayesian networks of a moderate size by efficient
sampling. Journal of Machine Learning Research,
17:101:1-101:54.

Ide, J. S. and Cozman, F. G. (2002). Random gener-
ation of Bayesian networks. In Proceedings of the
16th Brazilian Symposium on Artificial Intelligence,
volume 2507 of Lecture Notes in Computer Science,
pages 366-375. Springer.

Kennes, R. (1992). Computational aspects of the Mbius
transformation of graphs. /EEE Transactions on Sys-
tems, Man and Cybernetics, 22(2):201-223.

Kennes, R. and Smets, P. (1990). Computational aspects
of the Mobius transformation. In Proceedings of the
6th Annual Conference on Uncertainty in Artificial In-
telligence, pages 401-416. Elsevier Science.

Koivisto, M. and Sood, K. (2004). Exact Bayesian struc-
ture discovery in Bayesian networks. Journal of Ma-
chine Learning Research, 5:549-573.

Koller, D. and Friedman, N. (2009). Probabilistic
Graphical Models: Principles and Techniques. MIT
Press.

Kuipers, J. and Moffa, G. (2015). Uniform random gen-
eration of large acyclic digraphs. Statistics and Com-
puting, 25(2):227-242.

Kuipers, J. and Moffa, G. (2017). Partition MCMC for

inference on acyclic digraphs. Journal of the American
Statistical Association, 112:282-299.

Liskovets, V. (1975). On the number of maximal vertices
of a random acyclic digraph. Theory of Probability
and its Applications, 20:401-4009.

Madigan, D. and York, J. (1995). Bayesian graphical
models for discrete data. International Statistical Re-
view, 63:215-232.

Melancon, G., Dutour, 1., and Bousquet-Mélou, M.
(2001). Random generation of directed acyclic graphs.
Electronic Notes in Discrete Mathematics, 10:202—
207.

Melancon, G. and Philippe, F. (2004). Generating con-
nected acyclic digraphs uniformly at random. Infor-
mation Processing Letters, 90(4):209-213.

Niinimiki, T., Parviainen, P., and Koivisto, M. (2016).
Structure discovery in Bayesian networks by sampling
partial orders. Journal of Machine Learning Research,
17:57:1-57:47.

Robinson, R. W. (1973). Counting labeled acyclic di-

graphs. In New Directions in the Theory of Graphs,
pages 239-273. Academic Press, New York.

Tian, J. and He, R. (2009). Computing posterior proba-
bilities of structural features in Bayesian networks. In
Proceedings of the 25th Conference on Uncertainty in
Artificial Intelligence, pages 538-547. AUAI Press.

Yates, F. (1937). The Design and Analysis of Factorial
Experiments. Imperial Bureau of Soil Science.

