
A The regret bound of the Adaptive greedy algorithm
We present a finite-time bound on the cumulative regret defined in Equation (2).
Let Ht�1 is the set of all possible histories (after deterministic initialization) of the game up to turn t� 1:

Ht�1 =

⇢
h =


bmI+1 bmI+2 . . . bt�1

imI+1 imI+2 . . . it�1

�
: bs 2 {0, 1}, is 2Ms, 8s 2 {mI + 1, . . . , t� 1}

�
. (10)

If bs = 1 we say that the algorithm explored at time s, if bs = 0 we say that the algorithm exploited at time s, while is is the
index of the arm that was played at time s.

Theorem 2.1 Let us define the following quantities:

• g(p) = b+ (a� b)p ,

• fM(h,s)(g(p)) is the PDF (or PMF) of the maximum of the estimated mean rewards at time s given that each

arm has been pulled according to history h up to time s� 1:

fM(h,k)(x) =
1

(mt � 1)!
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,

where f1(x), · · · , fmk(x) and F1(x), · · · , Fmk(x) are the PDFs (or PMFs) of the distributions of the average

rewards,

• us(h, is) is an upper bound on the probability that arm is is considered to be the best arm at time s given the

history of pulls (according to h) up to time s� 1:

us(h, is) =
Y

i:µi>µis

✓
exp

⇢
�
tis(h, s)�(i, is)2

2r

�
+ exp

⇢
�
ti(h, s)�(i, is)2

2r

�◆
,

• Us(h, is) is an upper bound on the probability that arm is was pulled at time s given the history of pulls

(according to h) up to time s� 1:

Us(h, is) =

Z 1

0

✓
p

ms
1{bs=1} + (1� p)us(h, is)1{bs=0}

◆
fM(h,s)(g(p)) dp,

• ut(h, j) is an upper bound on the probability that arm j is considered to be the best arm at time t given the

history of pulls (according to h) up to time t� 1:

ut(h, j) =
Y

i:µi>µj

✓
exp

⇢
�
tj(h, t)�(i, j)2

2r

�
+ exp

⇢
�
ti(h, t)�(i, j)2

2r

�◆
,

• Ut(h, j) is an upper bound on the probability that arm j was pulled at time t given the history of pulls (according

to h) up to time t� 1:

Ut(h, j) =

Z 1

0

✓
p

mt
+ (1� p)ut(h, j)

◆
fM(h,t)(g(p)) dp.

Then, an upper bound on the expected cumulative regret Rn at round n is given by

E[Rn] 
X

j2MI

�j,i⇤j
+

nX

t=mI+1

X

j2Mt

�j,i⇤t

X

h2Ht�1

 
Ut(h, j)

t�1Y

s=mI+1

Us(h, is)

!
.



First step: Decomposition of E[Rn].

E[Rn] =
X

j2MI

�j,i⇤j
+

nX

t=mI+1

X

j2Mt

�j,i⇤t P (t 2 I(j)) , (11)

where we can write P (t 2 I(j)) as

P (t 2 I(j)) =
X

h2Ht�1

P
⇣
t 2 I(j)

��� Ht�1 = h

⌘
P (Ht�1 = h) , (12)

where Ht�1 is a random variable that takes values in Ht�1 defined as

Ht�1 =

⇢
h =


bmI+1 bmI+2 . . . bt�1

imI+1 imI+2 . . . it�1

�
: bs 2 {0, 1}, is 2Ms 8s 2 {mI + 1, . . . , t� 1}

�
. (13)

Ht�1 is the set of all possible histories (after deterministic initialization) of the game up to turn t � 1. If bs = 1 we say that
the algorithm explored at time s, if bs = 0 we say that the algorithm exploited at time s, while is is the index of the arm that
was played at time s. The set Ht�1 has

Qt�1
s=mI+1(2ms) elements. Note also that, by design of the algorithm, if an arm j is

new at time s,

P
✓
Ht�1 =


bmI+1 . . . bs = 0 . . . bt�1

imI+1 . . . is = j . . . it�1

�◆
= 0,

because the algorithm does not allow exploitation of a new arm. In the following steps we study (and find an upper bound
when needed) each term in (12).

Second step: Upper bound for P (Ht�1 = h).

Let us define hk, with k > mI , k 2 N, the first k �mI columns of h (so h and ht�1 are the same).
For each h, we indicate how many times arm j has been pulled up to time k with

tj(h, k) = 1{j2MI}
+

kX

s=mI+1

1{is2I(j)},

and, similarly to the definition of bXj given in (1), we denote the mean estimated reward for arm j, given history of pulled
arms h, with

bXj(h, k) =
1

tj(h, k � 1)

tj(h,k�1)X

s2I(j)

Xj(s). (14)

For each h, the probability of exploration at time k is a random variable E(h, k) with distribution given by

P (E(h, k) = p) = P
 
1�

maxj2Mk
bXj(h, k)� a

b� a
= p

!
, (15)

Let us define g(p) = b+ (a� b)p, then we can rewrite (15) as

P (E(h, k) = p) = P
✓
max
j2Mk

bXj(h, k) = g(p)

◆
. (16)

We will give a formula for 16 in the next step of the proof.
We can compute P (Ht�1 = h) recursively using the fact that P (Ht�1 = h) is equal to

P
⇣
Ht�1 = h

���Ht�2 = ht�2

⌘
P
⇣
Ht�2 = ht�2

���Ht�3 = ht�3

⌘
· · ·P

⇣
HmI+2 = hmI+2

���HmI+1 = hmI+1

⌘
P
�
HmI+1 = hmI+1

�
. (17)

hmI+1 has only one column:

bmI+1

imI+1

�
, where bmI+1 2 {0, 1} and imI+1 2MmI+1.

We can write P (HmI+1 = hmI+1) as
Z 1

0

✓
p

mI+1
1{bmI+1=1} + (1� p)P

⇣
bXimI+1 (h,mI + 1) > bXi(h,mI + 1) 8i 6= imI+1

⌘
1{bmI+1=0}

◆
P (E(h,mI + 1) = p) dp (18)



Similarly, we can compute each term in (17). For each s 2 {mI+2, · · · , t�1}, we have that P
⇣
Hs = h

���Hs�1 = hs�1

⌘

is given by
Z 1

0

✓
p

ms
1{bs=1} + (1� p)P

⇣
bXis (h, s) > bXi(h, s) 8i 6= is

⌘
1{bs=0}

◆
P (E(h, s) = p) dp (19)

Using independence of the arms and Proposition 3, for each s 2 {mI + 1, · · · , t� 1} we can write

P
⇣
bXis(h, s) > bXi(h, s) 8i 6= is

⌘
(20)

 P
⇣
bXis(h, s) > bXi(h, s) 8i : µi > µis

⌘
(21)



Y

i:µi>µis

P
⇣
bXis(h, s) > bXi(h, s)

⌘
(22)



Y

i:µi>µis


P
✓
bXis(h, s) > µis +

�(i, is)

2

◆
+ P

✓
bXi(h, s) < µi �

�(i, is)

2

◆�
(23)

and then bound each term by using Hoeffding’s inequality1:

P
✓
bXis(h, s) > µis +

�(i, is)

2

◆
 exp

⇢
�
tis(h, s)�(i, is)2

2r

�
(24)

and

P
✓
bXi(h, s) < µi �

�(i, is)

2

◆
 exp

⇢
�
ti(h, s)�(i, is)2

2r

�
. (25)

Let us define

us(h, is) =
Y

i:µi>µis

✓
exp

⇢
�
tis(h, s)�(i, is)2

2r

�
+ exp

⇢
�
ti(h, s)�(i, is)2

2r

�◆
, (26)

then, P
⇣
Hs = h

���Hs�1 = hs�1

⌘
 Us(h, is), where

Us(h, is) =

Z 1

0

✓
p

ms
1{bs=1} + (1� p)us(h, is)1{bs=0}

◆
P (E(h, s) = p) dp, (27)

and from (17)

P (Ht�1 = h) 
t�1Y

s=mI+1

Us(h, is). (28)

Third step: Formula for P (E(h, k) = p).

We can determine P (E(h, k) = p) = P
⇣
maxj2Mk

bXj(h, k) = g(p)
⌘

by using a result from Vaughan and Venables
[1972] that describes the PDF of the maximum of random variables coming from different distributions. Note that each
bXj(h, k) has a different distribution2 that depends also on sj . Given a square matrix A, let perm(A) be the permanent3 of A.

Then, the PDF of maxj2Mt
bXj(h, k) is given by

fM(h,k)(x) =
1

(mt � 1)!
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1Hoeffding’s bound: Let X1, · · · , Xn be r.v. bounded in [ai, bi] 8i. Let bX = 1
n

Pn
i=1 Xi and µ = E[ bX].

Then, P
⇣
bX � µ � "

⌘
 exp

n
�

2n2"2Pn
i=1(bi�ai)2

o
. In our case, " = �is,i

2 , n = ts or tis , b� a = r.
2For example, if Xi has a Bernoulli distribution with parameter µi, bXi,2 assumes values in {0, 1, 2}, with probabilities (1 � µi)2, (1 � µi)µi, µ

2
i ,

while bXi,3 assumes values in {0, 1, 2, 3}, with probabilities (1� µi)3, (1� µi)2µi, (1� µi)µ2
i , µ

3
i .

3The permanent of a square matrix A is defined like the determinant, except that all signs are positive.



where f1(x), · · · , fmk(x) and F1(x), · · · , Fmk(x) are the PDFs (or PMFs) of the cumulative distributions of the average
rewards bXj(h, k) of arms j 2Mk (if unknown, they are approximated by a Normal r.v. by CLT). Thus,

P (E(h, k) = p) = fM(h,k)(g(p)). (30)

Fourth step: Formula for P
⇣
t 2 I(j)

��� Ht�1 = h

⌘
.

We have that

P
⇣
t 2 I(j)

��� Ht�1 = h

⌘
=

Z 1

0


p
1

mt
+ (1� p)P

⇣
bXj(h, t) > bXi(h, t) 8i 6= j

⌘�
fM(h,t)(g(p))dp (31)

Similarly to Step 2, P
⇣
bXj(h, t) > bXi(h, t) 8i 6= j

⌘
has upper bound

ut(h, j) =
Y

i:µi>µj

✓
exp

⇢
�
tj(h, t)�(i, j)2

2r

�
+ exp

⇢
�
ti(h, t)�(i, j)2

2r

�◆
, (32)

and (31) has upper bound Ut(h, j), where

Ut(h, j) =

Z 1

0

✓
p

mt
+ (1� p)ut(h, j)

◆
fM(h,t)(g(p)) dp. (33)

Note that Ut(h, j) is different from Us(h, is) defined in (27) that have values of bs available.

Fifth step: Bringing together all the bounds of the previous steps.

From (12) we have that

P (t 2 I(j)) =
X

h2Ht�1

P
⇣
t 2 I(j)

��� Ht�1 = h

⌘
P (Ht�1 = h) 

X

h2Ht�1

Ut(h, j)
t�1Y

s=mI+1

Us(h, is), (34)

and from (11) in conclusion:

E[Rn] 
X

j2MI

�j,i⇤j
+

nX

t=mI+1

X

j2Mt

�j,i⇤t

X

h2Ht�1

 
Ut(h, j)

t�1Y

s=mI+1

Us(h, is)

!
.



B The regret bound of the UCB mortal algorithm

Theorem 2.3 Let
SEj

z=1 L
z
j be a partition of Lj into epochs with different best available arm, s

z
j and l

z
j be the first

and last step of epoch L
z
j , and for each epoch let uj,z be defined as

uj,z = max
t2{szj ,··· ,l

z
j }

&
8 (j, t) log(t� sj)

�2
j,z

'
, (35)

where

�j,i⇤t = �j,z for t 2 L
z
j . (36)

Then, the bound on the mean regret E[Rn] at time n is given by

E[Rn] 

X

j2MI

�j,i⇤j

+
X

j2M

EjX

z=1

�j,z min

0

BBB@
l
z
j � s

z
j , uj,z +

X

t2Lz
j

t>mI

(t� si⇤t
)(t� sj � uj,z + 1)


(t� sj)

�
4
r2
 (j,t)

+ (t� si⇤t
)
�

4
r2
 (i⇤t ,t)

�
1

CCCA
.

First step: Decomposition of E[Rn].

Let us partition the set of steps Lj during which arm j is available into Ej epochs Lz
j , such that

•
SEj

z=1 L
z
j = Lj ,

• L
z1
j \ L

z2
j = ; if z1 6= z2,

• i
⇤

t 6= i
⇤

s if t 2 L
z1
j and s 2 L

z2
j (i.e., if different epochs have different best arm available).

Since during the same epoch the best arm available does not change, let us define

�j,i⇤t = �j,z for t 2 L
z
j , (37)

and s
z
j = minLz

j , lzj = maxLz
j the first and last step of epoch L

z
j .

Then, using the second formulation of the cumulative regret given in (3) we have that

Rn =
X

j2MI

�j,i⇤j
+
X

j2M

X

t2Lj
t>mI

�j,i⇤t 1{t 2 I(j)} (38)

=
X

j2MI

�j,i⇤j
+
X

j2M

EjX

z=1

�j,z

X

t2Lz
j

t>mI

1{t 2 I(j)} (39)

Let us call
T

z
j (l

z
j ) =

X

t2Lz
j

t>mI

1{t 2 I(j)}

the total number of times we choose arm j in epoch z during the game (after initialization). Then, by taking the expectation
of (39) we get

E[Rn] =
X

j2MI

�j,i⇤j
+
X

j2M

EjX

z=1

�j,z E
⇥
T

z
j (l

z
j )
⇤
. (40)

Therefore, finding an upper bound for the expected value of (38) can be accomplished by bounding the expected value of
T

z
j (l

z
j ).



Second step: Decomposition of T z
j (l

z
j ).

Recall that with Tj(t� 1) we indicate the number of times we played arm j before turn t starts. For any integer uj,z , we
can write

T
z
j (l

z
j ) = uj,z +

X

t2Lz
j

t>mI

1{t 2 I(j), Tj(t� 1) � uj,z}

= uj,z +
X

t2Lz
j

t>mI

1

8
<

:
bXj +  (j, t)

s
2 log(t� sj)

Tj(t� 1)
> bXi⇤t

+  (i⇤t , t)

vuut2 log(t� si⇤t
)

Ti⇤t
(t� 1)

, Tj(t� 1) � uj,z

9
=

;

 uj,z +
X

t2Lz
j

t>mI

t�sjX

kj=uj,z

t�si⇤tX

ki⇤t
=1

1

8
<

:
bXj +  (j, t)

s
2 log(t� sj)

kj
> bXi⇤t

+  (i⇤t , t)

vuut2 log(t� si⇤t
)

ki⇤t

9
=

; .

Therefore we can find an upper bound for the expectation of T z
j (l

z
j ) by finding an upper bound for the probability of the event

A =

(
bXj +  (j, t)

s
2 log(t� sj)

kj
> bXi⇤t +  (i⇤t , t)

s
2 log(t� si⇤t )

ki⇤t

)
.

Third step: Upper bound for E[T z
j (l

z
j )].

Using Proposition 1 and Proposition 2 we have that, by choosing uj,z = maxt2{szj ,··· ,l
z
j }

l
8 (j,t) log(t�szj )

�2
j,z

m
,

A ⇢

 (
bXi⇤t < µi⇤t �  (i

⇤

t , t)

s
2 log(t� si⇤t )

ki⇤t

)
[

(
bXj > µj +  (j, t)

s
2 log(t� sj)

kj

)!
. (41)

Using Hoeffding’s4 bound we have that

P
 
bXi⇤t < µi⇤t �  (i

⇤

t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)

!
 exp

8
><

>:
�

2k2i⇤t (i
⇤

t , t)
2 2 log(t�si⇤t

)

ki⇤t

ki⇤t r
2

9
>=

>;
= (t� si⇤t )

�
4
r2
 (i⇤t ,t)

P
 
bXj > µj +  (j, t)

s
2 log(t� sj)

Tj(t� 1)

!
 exp

8
<

:�
2k2j (j, t)

2 2 log(t�sj)
kj

kjr
2

9
=

; = (t� sj)
�

4
r2
 (j,t)

.

Using the inclusion in (41) in combination with Hoeffding’s bounds, we have that

E
⇥
T

z
j (l

z
j )
⇤
 uj,z +

X

t2Lz
j

t>mI

ljX

kj=uj,z

t�si⇤tX

ki⇤t
=1

P
(
bXj +  (j, t)

s
2 log(t� sj)

kj
> bXi⇤t +  (i⇤t , t)

s
2 log(t� si⇤t )

ki⇤t

)

 uj,z +
X

t2Lz
j

t>mI

t�sjX

kj=uj,z

t�si⇤tX

ki⇤t
=1

h
(t� si⇤t )

�
4
r2
 (i⇤t ,t) + (t� sj)

�
4
r2
 (j,t)

i

= uj,z +
X

t2Lz
j

t>mI

(t� si⇤t )(t� sj � uj,z + 1)
h
(t� sj)

�
4
r2
 (j,t) + (t� si⇤t )

�
4
r2
 (i⇤t ,t)

i
. (42)

4Hoeffding’s bound: Let X1, · · · , Xn be r.v. bounded in [ai, bi] 8i. Let bX = 1
n

Pn
i=1 Xi and µ = E[ bX].

Then, P
⇣
bX � µ � "

⌘
 exp

n
�

2n2"2Pn
i=1(bi�ai)2

o
.

In our case, n is kj or ki⇤t , bi � ai is r, µ is µj or µi⇤t
, and " is  (j, t)

r
2 log(t�sj)
Tj(t�1) or  (i⇤t , t)

s
2 log(t�si⇤t

)

Ti⇤t
(t�1) .



Of course, we also have that the expected number of times the algorithm chooses arm j during epoch L
z
j is also bounded by

the length of the epoch itself lzj � s
z
j (this bound is useful in case the epoch is very short). Combining this with (42) we have

that

E
⇥
T

z
j (l

z
j )
⇤
 min

0

BB@l
z
j � s

z
j , uj,z +

X

t2Lz
j

t>mI

(t� si⇤t )(t� sj � uj,z + 1)
h
(t� sj)

�
4
r2
 (j,t) + (t� si⇤t )

�
4
r2
 (i⇤t ,t)

i
1

CCA . (43)

Fourth step: Get upper bound for E[Rn].

Combining (43) with (40) we get that the bound on the cumulative regret is given by

E[Rn] 
X

j2MI

�j,i⇤j

+
X

j2M

EjX

z=1

�j,z min

0

BB@l
z
j � s

z
j , uj,z +

X

t2Lz
j

t>mI

(t� si⇤t )(t� sj � uj,z + 1)
h
(t� sj)

�
4
r2
 (j,t) + (t� si⇤t )

�
4
r2
 (i⇤t ,t)

i
1

CCA .

Notice that if  (j, t) = 1 , sj = 0 and lj > n 8j, t, you can recover the bound of the standard UCB algorithm used in the
stochastic case. (Note that you should use P > 2 instead of 2 when r is not 1 to create the UCB.)



The results in Proposition 1 and 2 are similar to arguments used in Auer et al. [2002] for the proof of the regret bound for
the UCB algorithm (here we have additional weighting of the upper confidence bound).

Proposition 1. The event

A =

(
bXj +  (j, t)

s
2 log(t� sj)

Tj(t� 1)
> bXi⇤t +  (i⇤t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)

)

is included in B [ C [D, where

B =

(
bXi⇤t < µi⇤t �  (i

⇤

t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)

)

C =

(
bXj > µj +  (j, t)

s
2 log(t� sj)

Tj(t� 1)

)

D =

(
µi⇤t � µj < 2 (j, t)

s
2 log(t� sj)

Tj(t� 1)

)

The inclusion A ⇢ (B [ C [D) intuitively means that if the algorithm is choosing to play suboptimal arm j at turn

t, then it is underestimating the best arm available (event B), or it is overestimating arm j (event C), or it has not

pulled enough times arm j to distinguish its performance from the one of arm i
⇤

t (event D).

For the sake of contradiction let us assume there exists ! 2 A such that ! 2 (B [C [D)C . Then, for that !, none of the
inequalities that define the events B, C, and D would hold, i.e. (using, in order, the inequality in B, then the one in D, then
the one in C):

bXi⇤t � µi⇤t �  (i
⇤

t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)

� µj + 2 (j, t)

s
2 log(t� sj)

Tj(t� 1)
�  (i⇤t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)

� bXj +  (j, t)

s
2 log(t� sj)

Tj(t� 1)
�  (i⇤t , t)

s
2 log(t� si⇤t )

Ti⇤t (t� 1)
,

which contradicts ! 2 A.
The result in Proposition 2 is similar to the one used in Auer et al. [2002] for the proof of the regret bound for the UCB

algorithm.

Proposition 2. When

Tj(t� 1) �

&
8 (j, t) log(t� sj)

�2
j,i⇤t

'

event D in Preposition 1 can not happen.



In fact,

µi⇤t � µj � 2 (j, t)

s
2 log(t� sj)

Tj(t� 1)

� µi⇤t � µj � 2 (j, t)

vuuut
2 log(t� sj)⇠

8 (j,t) log(t�sj)
�2

j,i⇤t

⇡

� µi⇤t � µj � 2 (j, t)

s
log(t� sj)�2

j,i⇤t

4 (j, t) log(t� sj)

= µi⇤t � µj ��j,i⇤t = 0.



C Useful results
The result in Proposition 3 is similar to the one used in Auer et al. [2002] for the proof of the regret bound for the "-greedy
algorithm.

Proposition 3. Let µi > µj and let us define the following events:

A =
n
bXj > bXi

o
,

B =

⇢
bXi < µi �

�(i, j)
2

�
,

C =

⇢
bXj > µj +

�(i, j)
2

�
.

Then,

A ⇢ (B [ C) . (44)

Intuitively, the inclusion in (44) means that we play arm j when we underestimate the mean reward of the best arm, or
when we overestimate that of arm j. Assume for the sake of contradiction that there exists an element ! 2 A that does not
belong to B [ C. Then, we have that ! 2 (B [ C)C

) ! 2

✓⇢
bXi < µi �

�(i, j)

2

�
[

⇢
bXj > µj +

�(i, j)

2

�◆C

(45)

) ! 2

⇢
bXi � µi �

�(i, j)

2

�
\

⇢
bXj  µj +

�(i, j)

2

�
. (46)

By definition we have µi �
�(i,j)

2 = µi �
µi�µj

2 = µi+µj

2 = µj +
�(i,j)

2 . From the inequalities given in (46) it follows that

bXi � µi �
�(i, j)

2
= µj +

�(i, j)

2
� bXj ,

but this contradicts our assumption that ! 2 A =
n
bXj >

bXi

o
.

Therefore, all elements of A belong to B [ C.



D Numerical results
D.1 Dataset
The dataset can be found on the Yahoo Webscope program. It contains files recording 15 days of article recommendation
history. Each record shows information about the displayed article id, user features, timestamp and the candidate pool of
available articles at that time. The displayed article id shows the arm that recommenders pick each turn. User features were
not used, since our algorithms look for articles generally liked by everyone. Timestamp tells the time that an event happens;
along with the candidate pool of available articles, we can scan through the records and find out each article’s lifespan.

D.2 Evaluation methodology
A unique property of this dataset is that the displayed article is chosen uniformly at random from the candidate article pool.
Therefore, one can use an unbiased offline evaluation method Li et al. [2011] to compare bandit algorithms in a reliable way.
However, in the initialization phase, we applied a simpler and faster method (Algorithm 4), since initialization only plays 25
turns in a game and we care more about what happens later on.

In order to apply these evaluation methods, after parsing the original text log into structured data frame, we made an event
stream generator out of it. The event stream generator has a member method “next event()” that gives us the next record in
the data frame. The fields in the record give information about the event. For example, in the initialization phase we checked
the “article” field of the records to see if that article had been played before.

Algorithm 4: Initialization
event stream Stream

number of turns as initialization m

i 0
while i < m do
Record Stream.next event()
if Record.article was not seen before then

update expectation of Record.article

i i+ 1
end if

end while

D.3 Parameter tuning
AG-L filters out a portion of articles that expire soon. This portion is a tunable parameter. We tested different values with a
smaller size dataset and finally used 0.1 as the threshold. In UCB-L’s upper confidence bound,  (j, t) = c log(lj � t+1) and
c is a tunable parameter. After tuning, we set c = 0.011 for later experiments.

D.4 UCB score function
The original expression for the modified upper confidence bound in UCB-L is X̂j +  (j, t)

q
2 log(t�sj)
Tj(t�1) . In the experiment,

we used X̂j + (j, t)
q

2 log(t�sj+1)
Tj(t�1) to avoid an invalid value when an article is chosen the turn it becomes available (t = sj).

D.5 Timestamp vs Turn number
In this offline evaluation setting, a considerable portions of events are discarded if they do not match the actions that are
chosen by our algorithms. Each event has a timestamp, but there is no direct relation between an event’s timestamp and a turn
in the bandit game (we denote a generic turn number with t). Since timestamps and turn numbers are positively correlated,
we can use the set of timestamps as a proxy to rank articles by remaining life. Given the rank of remaining lifespan, AG-L
plays only the arms at the top of the rank. With this proxy, we are able to simulate the AG-L algorithm pretending we know
the exact lifespan of an article (in addition to the case where we estimate the lifespans of the articles).

For UCB-L however, the ranking of the arms is not sufficient. UCB-L needs to know the exact turns sj at which an article
j is available or turn lj at which it stops to be available. Since we can not map timestamps to turns, we only simulated the
case of UCB-L estimating the life of articles.



At the beginning of the game, we can not estimate correctly lifespans because we have not yet seen an expired article.
If our estimated life length L̂ is too small, then it can happen that L̂ + sj � t + 1  0 , yielding an invalid value for
 (j, t) = c log(lj � t+ 1) = c log(L̂+ sj � t+ 1). In these cases we set lj � t+ 1 = L̂+ sj � t+ 1 = 0 and use only X̂j

as the upper confidence bound.

D.6 Contextual algorithm
Algorithm 5 is a similar adaptation of the LinUCB algorithm introduced by Li et al. [2010] to the mortal setting. Also in this
case, the function  (j, t) regulates the amplitude of the upper confidence bound above the estimated mean according to the
remaining life of the arm. As before, new arms are initialized by using the average performance of past arms (i.e., if in the
past a lot of bad arms appeared, new arms are considered more likely to be bad, and vice-versa if lots of good arms appeared
in the past).

Algorithm 5: LinUCB-L algorithm
Input : number of rounds n, initial set of arms MI , set Mt of available arms at time, rewards range [a, b],

dimension d (context space dimension + arms space dimension)
Initialization: For each j 2MI , Aj = Id, bj = 0d⇥1

for t = 1 to n do
Get context xt (or xt,j if each arm gets its context);
for j = 1 to mt do

Set ✓̂j = A
�1
j bj ;

Set UCBj = ✓̂
T
j xt +  (j, t)

q
x
T
t A

�1
j xt;

end
Play arm j = argmaxi UCBi;
Get reward Xj(t);
Update Aj = A

�1
j + xtx

T
t ;

Update bj = bj + rtxt;
end

We have noticed that the contextual algorithm was not useful for the features made available in the Yahoo! Webscope
Dataset, so for the experiments we used the non-contextual version presented in the main paper.



E Notation summary

• Mt as the set of all available arms at turn t;

• MI the set of arms that are initialized;

• mt: number of arms available at time t;

• n: total number of rounds;

• Xj(t): random reward for playing arm j at time t;

• µ⇤: mean reward of the optimal arm (µ⇤ = max1jm µj);

• �(i, j): difference between the mean reward of arm i and arm j (�(i, j) = µi � µj);

• X̂j : current estimate of µj ;

• Ij : set of turns when arm j is played;

• Tj(t� 1): r.v. of the number of times arm j has been played before round t starts;

• Ht�1: set of all possible histories h (after deterministic initialization) of the game up to turn t� 1;

• Us(h, is): upper bound on the probability that arm is was pulled at time s given the history of pulls h up to time s� 1;

• us(h, is): upper bound on the probability that arm is is considered to be the best arm at time s given the history of pulls h
up to time s� 1;

• fM(h,s)(g(p)): the PDF (or PMF) of the maximum of the estimated mean rewards at time s given that each arm has been
pulled according to history h up to time s� 1;

• g(p): linear transformation g(p) = b+ (a� b)p;

• Ut(h, j): upper bound on the probability that arm j was pulled at time t given the history of pulls h up to time t� 1;

• ut(h, j): upper bound on the probability that arm j is considered to be the best arm at time t given the history of pulls h up
to time t� 1;

• Rn: total regret at round n.
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