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Abstract

Finding the reduced-dimensional structure is
critical to understanding complex networks. Ex-
isting approaches such as spectral clustering
are applicable only when the full network is
explicitly observed. In this paper, we focus
on the online factorization and partition of im-
plicit large lumpable networks based on obser-
vations from an associated random walk. We
formulate this into a nonconvex stochastic fac-
torization problem and propose an efficient and
scalable stochastic generalized Hebbian algo-
rithm (GHA). The algorithm is able to process
random walk data in a streaming fashion and
learn a low-dimensional representation for each
vertex. By applying a diffusion approxima-
tion analysis, we show that the continuous-time
limiting process of the stochastic algorithm
converges globally to the “principal compo-
nents” of the Markov chain. We also establish
a finite-sample error bound that matches the
nonimprovable state-of-art result for online fac-
torization. Once learned the low-dimensional
state representations, we further apply cluster-
ing techniques to recover the network partition.
We show that when the associated Markov pro-
cess is lumpable, one can recover the partition
exactly with high probability given sufficient
data. We apply the proposed approach to model
the traffic flow of Manhattan as city-wide ran-
dom walks. By using our algorithm to analyze
the taxi trip data, we discover a latent partition
of the Manhattan city that closely matches the
traffic dynamics.

1 INTRODUCTION

Network data arise in many applications and research
areas, including but not limited to social science, eco-

nomics, transportation, finance, power grid, artificial
intelligence, etc. Examples include protein-protein in-
teraction networks [JS11], phone communication net-
works [New01], collaboration networks [BGLL08], and
the gravitational interaction network of dark matter par-
ticles in cosmology [Pee80, Man99, NSMB05]. Due to
the highly complex nature of these networks, many ef-
forts have been devoted to investigating their reduced-
order representations from high-dimensional data (e.g.
[Chu97, Piz08, PBMW99, CY06]).

In this paper, we focus on learning from the dynamic
“state-transition” data, which are snapshots of a random
walk associated with the implicit network. For exam-
ple, records of taxi trips can be used to reveal the traffic
dynamics of a metropolitan. Each trip can be viewed
as a fragmented sample path realized from a city-wide
Markov chain that characterizes the traffic dynamics
[LKG+12, BGL17]. None of the existing works has con-
sidered how to recover the latent network partition of an
urban area from the taxi trip data. For another example,
reinforcement learning applications such as autonomous
driving and game AI are modeled as Markov decision
processes [SB98], which unfortunately suffer from the
curse of dimensionality of the state space. Given trajecto-
ries of game snapshots or a game simulator, it is of vital
interest to identify the low-dimensional representation of
the “state” of game. For the general problem of finding
reduced-order representations, popular approaches such
as principal component analysis and spectral clustering
do not utilize the Markov nature of state-transition data.
Existing computational methods often require explicit
knowledge and pre-computation of large matrices, which
cannot scale to large-scale problems and is not even pos-
sible for online learning applications. Efficient methods
are in demand.

Motivated by the need to analyze state-transition data,
we propose an efficient and scalable approach for online
factorization and partition of implicit complex networks.
We start by employing a stochastic gradient-type algo-



rithm, namely the generalized Hebbian algorithm (GHA),
and tailor it towards processing Markov transition data.
Then we show that the GHA learns low-dimensional rep-
resentations of the network in an online fashion, and by
further applying clustering techniques, we can recover the
underlying partition structure with high probability. Our
analysis is based on a diffusion approximation approach,
which is widely used in stochastic analysis of compli-
cated discrete processes such as queueing networks (see
[HKY97] for more related literature on diffusion approxi-
mation). By properly rescaling of time, we approximate
the discrete-time dynamics generated by the GHA algo-
rithm using its continuous-time limiting process, which
is the solution to an ordinary differential equation (ODE).
Though the stochastic optimization problem is highly non-
convex, we show that the limiting stochastic process of
the GHA converges geometrically to the global optima,
even if the initial solution is chosen uniformly at random.
We further show that the process after sufficiently large
time is well approximated by an Ornstein-Uhlenbeck pro-
cess, whose stochastic fluctuation can be precisely char-
acterized. Despite of the spherical geometry and many
unstable equilibria of the optimization problem, we es-
tablish global convergence with a near-optimal sample
complexity guarantee in an asymptotic manner. Note that,
for GHA, the only theoretical analysis we are aware of
is a local convergence of a rank-1 algorithm given by
[XLS15]. Thus our global analysis for GHA is of inde-
pendent interests.

Our work is partly motivated by [WLVE08], which es-
tablishes the connection between networks and a class
of lumpable Markov chains. It proposes an optimization
framework to identify the partition structure when the
transition matrix is known a priori. Our method is also
related to the class of online eigenvalue decomposition
methods for representation learning [AZL17, LWLZ16,
XLS15, AMM16, JJK+16]. However, none of the ex-
isting methods and analysis are applicable to Markov
transition data and online network partition.

Notation: We denote [n] = {1, 2, . . . , n}. Given
two matrices U ∈ Rm×r1 ,V ∈ Rm×r2 with or-
thonormal columns, where 1 ≤ r1 ≤ r2 ≤
m, we denote the principle angle between two ma-
trices by Θ (U ,V ) = diag

[
cos−1

(
σ1(U>V )

)
,

cos−1
(
σ2(U>V )

)
, . . ., cos−1

(
σr1(U>V )

) ]
, where

σi(A) is the i-th largest singular value of matrixA. We
also use cos (·) and sin (·) to act on matrices and denote
entry-wise functions. For a matrix V , we denote by V∗j
its j-th column vector and by Vi∗ its i-th row vector. We
denote by V∗1:r the sub-matrix of the first r columns. We
denote by ‖·‖F the Frobenius norm of a matrix, and de-
note by ‖·‖2 the Euclidean norm of a vector or the spectral
norm of a matrix. We denote by ei ∈ Rs the i-th standard

unit vector for any s ≥ i: (ei)i = 1 and (ei)j = 0 for
j 6= i. We also denote by 0m×n ∈ Rm×n the matrix with
all 0 entries.

2 PRELIMINARIES

Let us review the basics of networks and the associated
Markov chains.

Networks and Associated Markov Chains: Let G =
(S,E) be a connected network with m vertices (a
weighted directed graph), where S = {s1, s2, . . . , sm}
denotes the vertex set, E = {wi,j ≥ 0 : i, j ∈ [m]} de-
notes the edge set, andwi,j denotes the weight of the edge
(si, sj).

Consider the random walk that is naturally associated
with the network G: We denote by P = (pi,j) ∈ Rm×m
its probability transition matrix, where each state of the
Markov chain corresponds to a vertex in G. Since G is
a connected network, all states of the Markov chain are
recurrent. The Markov chain generated by the network G
satisfies P

[
s(t) = sj

∣∣s(t−1) = si
]

= pi,j . Suppose that
G is undirected (i.e., wij = wji), then ∀i, j : pi,j =
wi,j
wi

and wi =
∑
j∈[m] wi,j . The stationary distribution

of the Markov chain is µi = wi∑
j∈[m] wj

. The correspond-
ing Markov chain is reversible and satisfies the following
detailed balance condition
∀i 6= j, µipi,j = µjpj,i and

∑
i∈[m] µipi,j = µj , (1)

i.e., DP = PD, where D = diag (µ1, µ2, . . . , µm).
Note that our subsequent analysis does not require the
undirectedness assumption of the underlying network. In
this paper, we focus on connected and undirected net-
works where µi > 0 for all i ∈ [m]. For a non-connected
network, our method still applies with the caveat that it re-
covers the structure of a connected component determined
by the initial state.

Our Problem of Interest Given a sample trajectory
{s(0), s(1), . . . , s(t), . . .} of state transitions of the un-
known Markov chain, our objective is to develop an on-
line learning method to extract reduced-order information
about the Markov chain and recover the latent network
partition.

We are interested in complex networks that can be ap-
proximated using reduced-order representations. To be
general, we consider networks with associated Markov
chains having a spectral gap or being nearly low-rank,
which is defined as follows:

Definition 1 (Nearly Low-Rank Markov Chains). A
Markov chain with transition matrix P is nearly low-
rank if there exist matrices F1,F2 ∈ Rm×m, where
rank(F1) = r and ‖F2‖2 < σr (F1) such that

DP = F1 + F2 and F>1 F2 = 0m×m, (2)



and F1 = UΣV >, where Σ = diag (σ1, σ2, . . . , σr) is
a diagonal matrix with 1 ≥ σ1 ≥ σ2 ≥ . . . ≥ σr >
0, and U ,V ∈ Rm×r are matrices with orthonormal
columns.

Consider the following representation matrix

M := D−1V ∈ Rm×r, (3)

each row of which can be viewed as an r-dimensional
representation of a vertex of G. The matrix M gives a
set of approximate “principal components” of the Markov
chain, which has a similar spirit as spectral clustering
[Chu97]. Note that Markov chains that are nearly low-
rank are not necessarily reversible. When a Markov chain
is both nearly low-rank and reversible, the conditions in
Definition 1 shall hold with U = V .

In particular, we also consider an important special case
of nearly low-rank Markov chains - “lumpable” Markov
chains, which is introduced by [MS01] and formally in
[WLVE08] as follows.

Definition 2 (Special Case: Lumpable Markov chains
[WLVE08]). A reversible Markov chain on states S with
transition matrix P is lumpable with respect to the parti-
tion S = S1∪S2 . . .∪Sr if the top r eigenvectors ofDP
are piecewise constant with respect to the S1, . . . , Sr.

We can view S1,...,Sr as ”meta states” of the Markov
chain. When the lumpability condition holds, the tran-
sitions between these sets satisfy the strong Markov
property, i.e., for arbitrary sk, sh ∈ Si, and arbitrary j,∑
s`∈Sj pk,` =

∑
s`∈Sj ph,` always holds. Intuitively

speaking, the meta states suffice to characterize the macro
dynamics of a complex Markov chain. When the Markov
chain is lumpable, it is nearly-low rank as in Definition 1
with U = V . In this case, the matrix U becomes a
block matrix. For any i, j ∈ [r], the vector U∗i restricted
on coordinates Sj has constant values across all entries.
The work [WLVE08] showed when the Markov chain is
lumpable with respect to a partition S = S1∪S2 . . .∪Sr,
one can recover the exact partition by clustering its r-
dimensional representations (rows ofM = D−1V ).

3 METHOD

Recall that we are interested in learning from Markov
transition data. In particular, consider the scenario where
we only observe state-to-state transitions of a Markov pro-
cess over S: s(1), s(2), s(3), . . . , s(n−1), s(n), . . ., without
knowing the transition matrix P in advance. For nota-
tional convenience, we simplify the notation of the states
to S = {1, 2, . . .m}.

3.1 NONCONVEX OPTIMIZATION FOR
MARKOV CHAIN FACTORIZATION

To handle the dependency of the Markov process, we
need to downsample the data. Specifically, we divide the
trajectory of n state transitions into b blocks with block
size τ for some τ ≥ 2:

s(1), s(2), ..., s(τ)︸ ︷︷ ︸
the 1−st block

, s(τ+1), s(τ+2), ..., s(2τ)︸ ︷︷ ︸
the 2−nd block

, . . . ,

s(b−1)τ+1, s(b−1)τ+2, . . . s(bτ)︸ ︷︷ ︸
the b−th block

.

For the k-th block, we select the last two samples and
construct Z(k) ∈ Rm×m to be the matrix with one entry
equaling 1 and all other entries equaling 0, i.e.,

Z
(k)

s(kτ−1),s(kτ)
= 1 and Z

(k)
s,s′ = 0

for all (s, s′) 6=
(
s(kτ−1), s(kτ)

)
. (4)

Here we choose a large enough τ such that ∀k ≥
1, E

[
Z(k)

∣∣s(0)
]
≈ DP = F1 + F2, where F1 =

U>ΣV and F2 are given in Definition 1. Intuitively,
the choice of τ shall be related to how fast the Markov
chain mixes. We will specify the choice of τ in Section 4.

Let us formulate the Stochastic Transition Matrix Decom-
position Problem as

(U∗,V ∗) = argmax
Ũ ,Ṽ ∈Rm×r

tr
[
Ũ>EZṼ

]
subject to Ũ>Ũ = Ṽ >Ṽ = Ir, (5)

where the expectation

EZ := lim
n→∞

n−1
n∑
k=1

Z(k) = DP

is taken over the invariant distribution of the Markov
chain. Note that global optima U∗ and V ∗ are not iden-
tifiable in (5). For instance, for any orthonormal matrix
O ∈ Rr×r, U∗ = UO and V ∗ = V O are still global
optimal. Our goal is to show that our algorithm is able to
find at least one solution. By using a self-adjoint dilation,
we recast (5) into a symmetric decomposition problem as
follows
W ∗ = argmax

W∈R2m×r
tr
[
W>EAW

]
subject to W>W = Ir,

(6)

where EA =

[
0m×m EZ
EZ> 0m×m

]
∈ R2m×2m and W =

1√
2

[
U>,V >

]> ∈ R2m×r.

3.2 ALGORITHM FOR ONLINE
FACTORIZATION OF MARKOV CHAINS

To solve (6), we adopt the Generalized Hebbian Algo-
rithm (GHA) which was originally developed as a heuris-
tic for training neural nets and principal component anal-
ysis [San89]. GHA, also referred as Sanger’s rule, is



essentially a stochastic primal-dual algorithm. Specifi-
cally, let L (W ,L) be the Lagrangian function of Eq. (6)
given by

L (W ,L) = tr
[
W>EAW

]
− tr

[
L
(
W>W − Ir

)]
,

where L ∈ Rr×r is the Lagrangian multiplier matrix. By
checking the Karush-Kuhn-Tucker (KKT) conditions of
the problem maxW minL L (W ,L), we obtain

EAW ∗ +W ∗L∗ = 0 and W ∗>W ∗ − Ir = 0, (7)

whereL∗ is the optimal Lagrangian multiplier. The above
KKT conditions further imply

L∗ = −W ∗>EAW ∗. (8)

GHA is essentially a stochastic approximation method for
the solving the equations (7) and (8). Specifically, we use
the k-th block of transition data to compute the sample
matrix

A(k) =

[
0m×m Z(k)

Z(k)> 0m×m

]
∈ R2m×2m. (9)

Then the k-th iteration of GHA takes the form
Dual Update :

L(k) = W (k)>A(k+1)W (k)︸ ︷︷ ︸
Markov sample of W (k)>EAW (k)

(10)

Primal Update :

W (k+1) = W (k) + η (A(k+1)W (k) −W (k)L(k))︸ ︷︷ ︸
Markov sample of ∇WL(W (k),Λ(k))

(11)

where η > 0 is the learning rate. Combing (10) with
(11), we get a dual-free update of GHA as follows,

W (k+1) = W (k) + η(A(k)W (k) −W (k)W (k)>A(k)W (k)).

Note that the columns of W (k) are not necessarily or-
thogonal. But whenW (0) has orthonormal columns, then
W (k) tends to have orthonormal columns as η → 0. The
formal procedure is presented in Algorithm 1.

Algorithm 1 GHA for Online Factorization of Markov
Chains

1: Input: A stream of Markov transition data
s(1), s(2), s(3), . . . , s(n−1), s(n), . . .

2: Initialize:
Sample matrix G ∈ R2m×r with i.i.d. entries from
N (0, 1);
W (0) ← QR(G), k ← 0;

3: Repeat:
4: For every τ state transitions, obtainA(k) using Eqs. (4),(9);
5: W (k+1) ←
6: W (k)+η

[
A(k+1)W (k) −W (k)W (k)>A(k+1)W (k)

]
;

7: k ← k + 1;
8: Until stopping condition is satisfied
9: Output [Û ; V̂ ]←

√
2W (k)

Algorithm 1 is a globally convergent method which does
not require any warm-up initialization or prior knowledge.
The initial solutionW (0) is drawn uniformly from the set

of all orthonormal matrices by applying a QR decompo-
sition to a matrix with i.i.d. Gaussian entries. Algorithm
1 makes update online and uses O(mr) space, while a
batch method needs O(m2) space to store the explicit
transition matrix.

3.3 RECOVERING NETWORK PARTITION
FROM RANDOM WALKS

Recall that in Definition 1 them×r matrixM = D−1V
gives a reduced-order representation for each vertex of
the network. As long as we can estimateD,V , we would
be able to partition the network by applying a clustering
algorithm such as the k-means. We describe the overall
procedure:

Algorithm 2 Recovering The Network Partition from
Random Walks

1: Run Algorithm 1 on the Markov transition data and obtain
[Û ; V̂ ].

2: Let µ̂ be the empirical estimate of the stationary distri-
bution, i.e., µ̂i =

∑n
k=1 I(s

(k) = i)/n. Let D̂ =

diag(µ̂1, µ̂2, . . . , µ̂m). Now each row of M̂ = D̂−1V̂
gives an approximate r-dimensional representation for the
corresponding state/vertex.

3: Find a set of centers C = {c1, c2, . . . , cr} ⊂ Rr by solv-
ing the following problem:

Ĉ = argminC
∑m
i=1 minc∈C d

2(M̂i∗, c), (12)

where d(M̂si∗, cj) = ||M̂si∗ − cj ||2 is the Euclidean
distance.

4: Output the partition by assigning each state to its closest
center.

4 THEORY
We analyze the convergence of Algorithm 1 for solving
the nonconvex factorization problem. We use the idea of
diffusion approximation (e.g. [HKY97]). (1) We show
that the dynamics of our algorithm can be approximated
by an ordinary differential equation (ODE); (2) To analyze
the convergence rate, we show that after proper rescaling
of time, the algorithm’s dynamics can be characterized by
the solution of a Stochastic Difference Equation (SDE).
The SDE allows us to analyze the error fluctuation when
the iterates are within a small neighborhood of the global
optimum.

4.1 REDUCING DEPENDENCY BY DOWN
SAMPLING

Recall our goal is to estimate Markov chain factorization
from random walks. In the online learning setting, the
data comes in a stream and are highly dependent. To
handle the dependency, our algorithm replies on down



sampling the data points. Next we introduce some im-
portant measures for a Markov chain. For notational
convenience, we denote µ(Ω) =

∑
i∈Ω µi for any subset

of states Ω ⊂ S. We introduce the merging conductance
[Mih89] of a Markov chain by

Φ = min
Ω⊂[m]

∑
j∈Ω,`∈Ωc

∑
i∈[m]

µjpj,iµ`p`,i
µi∑

j∈Ω µj

subject to µ(Ω) ≤ 1/2,

where Ωc is the complement of Ω. The parameter Φ is a
generalization of the Cheeger’s constant, which character-
izes the bottleneck of a network. For recurrent Markov
chains that are rapidly mixing, Φ can be treated as a con-
stant. Besides, we let

µmax = max
i∈[m]

µi, µmin = min
i∈[m]

µi.

We then choose block length τ in Algorithm 1 as follows:

τ ≥
[

2

Φ2
log

(√
µmax

µmin

1

η

)]
.

As shown in the full version[YBZW17], by choosing
such a down-sampling block length, our data samples
are sufficiently close to i.i.d. samples drawn from the
stationary distribution of the underlying Markov chain.
This allows us to approximate algorithm by another auxil-
iary procedure of fully independent samples. In the next
two sub-sections, we show the limiting procedure of the
algorithm based on this down-sampling rate.

4.2 ODE CHARACTERIZATION OF
ALGORITHM 1

Let R ∈ R2m×2m be the matrix of eigenvectors of EA
in (6). We consider a transformation byR:

W
(k)

= R>W (k) and A
(k)

= R>A(k)R.

Let Λ = diag(σ1, σ2, . . . , σ2m) = EA with that σ1 ≥
σ2 ≥ . . . σ2m. To demonstrate an ODE characterization
for the trajectory of the algorithm, we introduce a continu-
ous time t. Recall where η is the learning rate. We denote
W (t) = W

(bt/ηc)
. For notation simplicity, we may drop

(t) if it is clear from the context. For r+ 1 ≤ i ≤ 2m, we
define the cosine subspace angle as

γ
(η)
i (t) =

∥∥e>i R>W∥∥
2

=
∥∥e>i W∥∥

2
,

where ei ∈ R2m is the i-th standard unit vector. We use
(η) as a superscript to emphasize the dependence on η. To
show a global convergence of γ(η)

i (t), we characterize its
upper bound in the following lemma.

Lemma 1 (Principle Angle Upper Bound). Let E =
(e1, e2, . . . , er) ∈ R2m×r. Suppose that W has or-
thonormal columns and E>W is full rank. For any
X ∈ R2m×s with s ≥ 1, we have

∥∥X>W∥∥
F
≤∥∥∥X>W ·

(
E>W

)−1
∥∥∥

F
.

Accordingly, we define

γ̃
(η)
i =

∥∥∥e>i W ·
(
E>W

)−1
∥∥∥

2
.

SinceW (0) has orthonormal columns, for any fixed t > 0,
the columns of W (t) are orthonormal almost surely as
η → 0. Thus γ̃(η)

i becomes a uniform upper bound of γ(η)
i

almost surely as η → 0. The next theorem establishes the
continuous time limit for γ̃(η)

i .

Theorem 1 (ODE Convergence). Given W
(0)

with or-
thonormal columns and that E>W

(0)
is invertible, for

all r < i ≤ 2m, γ̃(η)
i (t) converges weakly to the solution

of the following ODE,

dγ̃2
i (t)/dt = biγ̃

2
i (t)

as η → 0, where bi is some constant satisfying bi ≤
2(σi − σr).

Theorem 1 suggests the global convergence of the algo-
rithm. Specifically, the solution to the above ODE is,

γ̃i(t) = γ̃i(0)ebit/2 ≤ γ̃i(0)e(σi−σr)t, ∀ r < i ≤ 2m,

which implies γ(η)
i (t) → 0 for any r < i ≤ 2m as

η → 0 and t → ∞. Since
∥∥sin Θ

(
E,W (t)

)∥∥2

F
=∑

i>r γ
(η)2
i (t), we obtain∥∥∥sin Θ
(
Û(t),U

)∥∥∥2

F
+
∥∥∥sin Θ

(
V̂ (t),V

)∥∥∥2

F

≤ 2
∥∥sin Θ

(
E,W (t)

)∥∥2

F

≤ 2
∑
i>r

γ̃i(0)e(σr+1−σr)t → 0. (13)

4.3 SDE CHARACTERIZATION OF
ALGORITHM 1

Our ODE approximation of the algorithm shows that after
sufficiently many iterations with sufficiently small η, the
algorithm solution can be arbitrarily close to the true
subspace, span(R∗1,R∗2, . . . ,R∗r). To obtain the “rate
of convergence”, however, we need to study the variance
of the trajectory at time t. Note that such a variance is of
order O(η), and vanishing under the limit of η → 0. To
characterize the variance, we need to rescale the updates
by a factor of η−1/2, i.e., after rescaling, the variance is
of order O(1). Specifically, the rescaled update is defined
as

ζ
(η)
i (t) = η−1/2 ·W (bt/ηc)> · ei ∈ Rr.

Note that given W (k) such that span(W (k)) =
span(R∗1,R∗2, . . . ,R∗r), we have

E
(
W (k+1)|W (k)

)
= W (k).

We consider a regime, where the algorithm has already
run for sufficient many iterations such that∥∥ sin Θ

(
R∗1:r,W

(N1)
)∥∥2

F
=
∥∥ sin Θ

(
E,W

(N1))∥∥2

F
≤ η1/c,



for some constant c > 1. By restarting the counter,
we denote W

(0)
:= R

>
W (N1). Now we define

W
(0)>

ΛW
(0)

= Γ> · Λ̃r ·Γ, where Γ ∈ Rr×r is an or-
thonormal matrix and Λ̃r = diag (σ′1, σ

′
2, . . . , σ

′
r), with

σ′1 ≥ σ′2 ≥ . . . ≥ σ′r ≥ 0.

Denote ζ(η)
i,j (t) = η−1/2

(
e′>j Γ ·W (bt/ηc)> · ei

)
, for

i = r + 1, r + 2, . . . , 2m and j = 1, 2, . . . , r, where
e′j ∈ Rr denotes the j-th standard unit vector in Rr. We
establish the following theorem.

Theorem 2 (SDE Convergence). Given∥∥∥sin Θ
(
E,W

(bt/ηc))∥∥∥2

F
≤ O(η1/c) for all t ≥ 0,

then for any i > r and j ∈ [r], the trajectory of ζ(η)
i,j (t)

weakly converges to the solution of the following SDE,
as η → 0,

dζi,j = Ki,jζi,jdt+Gi,jdBi,j (14)
where Bi,j is the standard Brownian motion (not nec-
essarily i.i.d. across i, j) and constants Ki,j ≤ (σi −
σr),

∑2m
i>r G

2
i,j ≤ B for any j ∈ [r], with some ab-

solute constant B.

Notice that (14) is a Fokker-Plank equation, which admits
the following solution,

ζi,j(t) = ζi,j(0) exp [Ki,jt]

+Gi,j

∫ t

0

exp [Ki,j(s− t)] dBi,j(s). (15)

Therefore, we show that each ζ(η)
i,j (t) weakly converges

to an Ornstein-Uhlenbeck (OU) process, which is widely
studied in existing literature [Meu09]. Since the drifting
term is driven by Ki,j < 0, the OU process eventually
becomes a pure random walk, i.e., the first term of R.H.S.
in (15) goes to 0. Recall that ζ(η)

i,j (t) characterizes the sin
angle of the subspaces, i.e.,∥∥∥sin Θ

(
E,W

(bt/ηc)
)∥∥∥2

F
= η

∑2m
i>r

∑r
j=1 ζ

(η)2
i,j (t). (16)

Thus the fluctuation of ζ(η)
i,j (t) is essentially the error fluc-

tuation of the algorithm after sufficiently many iterations.
By (15), we obtain

E
∥∥ sin Θ

(
E,W

(bt/ηc)
)∥∥2

F
� η

2m∑
i>r

r∑
j=1

G2
i,j

∫ t

0

exp [2Ki,jt] dt

= O
(

ηr

|Ki,j |

)
= O

(
ηr

σr(F1)− ‖F2‖2

)
.

Given the error parameter ε > 0, we need η to sat-
isfy O

(
ηr

σr(F1)−‖F2‖2

)
� ε. Combining with a Markov

inequality and Equation (13), we obtain the following
lemma,
Lemma 2 (Error Analysis of the Limiting Process). Given
a sufficiently small ε > 0, let

N = O

(
rB

ε
(
σr(F1)− ‖F2‖2

)2 log

∑
i>r γ̃

2
i (0) ·B

ε
(
σr(F1)− ‖F2‖2

))

and t = Nη. Let [Û(t), V̂ (t)]←W (t). We then have

lim
ε→0

P
[∥∥ sin Θ

(
Û(t),U

)∥∥2

F
+
∥∥sin Θ

(
V̂ (t),V

)∥∥2

F
> ε
]
≤ 1

10
.

Remark 1. With standard characterizations of the ran-
dom matrices (e.g. [Tao12]), we obtain the value of∑
i>r γ̃

2
i (0) = poly(m) with probability close to 1 when

m is large. If the ODE and SDE faithfully approximates
the algorithm at sufficiently small η, i.e., the approxi-
mation error of ODE/SDE to the algorithm updates is
smaller than the desired precision ε, then the number of
down-sampling steps of the algorithm is

N = O

(
rB

ε
(
σr(F1)− ‖F2‖2

)2 log

∑
i>r γ̃

2
i (0) ·B

ε
(
σr(F1)− ‖F2‖2

)) .
Remark 2. To analyze the algorithm more rigorously, we
also show a discrete analysis of the algorithm with a slight
modification in the full version[YBZW17].

4.4 RECOVERY OF NETWORK PARTITION BY
CLUSTERING

We have established bounds for obtaining sate embed-
dings in the last two sections. Next we show that one
can recover the partition structure of the underlying net-
work, provided that the Markov chain is lumpable and the
sample size is sufficiently large.

Theorem 3 (Recovery of Partition Structure for
Lumpable Markov Chains). Suppose that the estimated
eigen-matrices Û , V̂ , and empirical distribution µ̂ satisfy
|| sin Θ(Û ,U)||2F + || sin Θ(V̂ ,V )||2F ≤ ε and

max
i∈[m]

|µ̂i − µi| ≤
√
εµi. (17)

for some ε ∈ (0, 1). Let M̂ := diag(µ̂)−1V̂ and M as
defined in Definition 1. Then for any si, sj ∈ S,∣∣∣∣∥∥∥M̂si∗ − M̂sj∗

∥∥∥2

2
−
∥∥Msi∗ −Msj∗

∥∥2

2

∣∣∣∣ ≤ Cε
µ2
min
.

Moreover, suppose that the Markov chain is lumpable
with respect to the partition S1, . . . , Sr. Then the proce-
dure of Algorithm 2 exactly recovers the network partition
as long as

∀l, si ∈ Sl, sj ∈ Scl :
∥∥Msi∗ −Msj∗

∥∥2

2
> 2Cε

µ2
min
.

Theorem 3 implies that our proposed partition approach
can exactly recover the partition of a lumpable Markov
chain, as long as the random walk trajectory is long
enough to tell the blocks apart. It is possible to extend
our analysis to approximately lumpable Markov chains,
which is left for future research. The proof is given in the
full version[YBZW17].

5 EXPERIMENTS

We experiment with the proposed method on both simu-
lated and real-world data sets.



5.1 SIMULATED DATA

We first simulate random sample paths of nearly low-
rank Markov chains and test the performance of the pro-
posed generalized Hebbian algorithm. The model is gen-
erated as follows. Let P0[1:r,1:r] ∝ B, where B is a
r × r matrix with i.i.d. standard normal entries in ab-
solute values. We let P0[r+1:m,r+1:m] be a random per-
mutation matrix to ensure the ergodicity. Then we ran-
domly connect these two parts by letting P0[1:r,r+1:m] =

P0
′
[r+1:m,1:r]

iid∼ Bernoulli(0.15). Lastly, we normalize
each row to obtain a nearly r-rank stochastic matrix P ,
i.e., P[i,:] = P0[i,:]/

∑m
j=1(P0)ij .

Convergence and Comparisons. We test the perfor-
mance of the proposed algorithm on models of different
m and r, comparing with the classical Oja’s algorithm
and the direct SVD of the frequency matrix using the
same simulated sample data. We first pick a constant
stepsize for an appropriate number of iterations as the
warmup phase, then pick a decreasing stepsize ∝ 1/k
to accelerate the convergence. The same stepsizes are
also used in Oja’s algorithm for comparison due to the
similarity between two algorithms. All tests are done on
the simulated transition data for 100 independent trials
and we plot the 90% confidence error bar. Figure 2 shows
that the convergence rate of subspace angle of the pro-
posed algorithm matches the batch SVD and the Oja’s
algorithm.

We compare the GHA with batch SVD, which is to com-
pute the empirical transition matrix from all past data and
perform SVD. Figure 2 shows that the convergence speed
of the online GHA method is nearly the same as that of
batch SVD (up to a constant factor). It suggests that the
online GHA method is utilizing data as efficiently as the
batch method.

We also observe that GHA and Oja’s iteration have similar
performance when processing online random walk data.
And in some cases, the proposed GHA outperforms Oja’s
algorithm. We note that GHA has better runtime than
the Oja’s iteration because it does not perform the QR
factorization which is required per each Oja’s iteration.

Down-sampling. We test the convergence performance
of the proposed generalized Hebbian algorithm using dif-
ferent down-sampling block lengths for the case m = 10,
r = 3. Choices of stepsizes are picked as before. Fig-
ure 5 shows the comparisons of both the iteration com-
plexity and the sample complexity. As we can see, the
down-sampling step does handle the dependency of the
streaming data and accelerates the convergence in terms
of number of iterations. The overall sample complexity
has not been significantly afftected by downsampling.

Recovery of lumpable networks. We test the net-
work partition method for recovering the meta states
of lumpable Markov processes. We generate associated
Markov chains from undirected graphs, whose adjacency
matrix W = ZWZ>. Here, Z ∈ Rm×r is a randomly
generated membership matrix where each row has exactly
one non-zeros entry equaling 1;W is a symmetric matrix
with diagonal entries equaling 0 and upper triangle entries
i.i.d. draw from absolute standard normal distribution. It
can be verified the associated Markov chain is lumpable
with respect to the partition of r groups. For various value
of m and r, we test the network partition method pro-
posed in Section 3.3 on simulated sample paths. For each
setting, we repeat the experiment for 100 independent
trials and calculate the mean of clustering error rate with
90% confidence error bars. Figure 3 shows the decay of
clustering error rate as number of iterations gets larger,
compared with network partition using direct SVD of the
sample frequency matrix, consistent with the theoretical
result in Section 4.4. Figure 4 shows the dynamics of
clustering of the estimated low-rank representations for
the case m = 250, r = 5.

5.2 MANHATTAN TAXI DATA

We experiment using a real dataset that contains 1.1×107

trip records of NYC Yellow cabs from January 2016
[TLC17]. Each entry records the coordinates of the pick-
up and drop-off locations, distance and length of trip,
and taxifares. Now the question is can we learn a good
low-dimensional representation of different locations in
Manhattan from these taxi data? To accomplish this, we
discretize the map into a fine grid (with cell size roughly
100m) and model each taxi trip as a single state transition
of a Markov chain. For example, a taxi picks up a cus-
tomer at cell s1 and drops off the customer at cell s2, then
picks up a customer at s3... We can view s1, s2, s3 . . . , as
the path of states visited by an implicit city-wide random
walk, as shown in Figure 1.

Figure 1: State-transition sample of the NYC taxi data

In order to guarantee recurrence of the random walk, we
removed cells that are rarely visited. We end up with
2017 locations and a total of 107 effective trips. The first
200 singular values of the empirical transition matrix are
shown in Figure 7, which implies a low-rank structure of
the data. We apply Algorithm 1 and the partition proce-
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(c) m = 250, r = 3
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Figure 2: Convergence of GHA, compared with batch SVD and Oja’s iteration. The convergence rate of the proposed GHA
matches SVD in all cases. GHA has similar performance as Oja’s iteration in (a) and (c), and outperforms Oja’s iteration in the case
of (b) and (d).
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Figure 3: Clustering Error Rate of Algorithm 2. (a)-(d) shows the performance of the proposed network partition method on
different Markov chain models, in comparison with the clusters obtained using batch SVD and K-means.
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Figure 4: Clusters obtained by Algorithm 2. (a)-(d) plots the first two coordinates of the clustering results of the estimated
low-rank representations after certain number of iterations. The ground truth of the meta state of the lumpable Markov chain are
colored in same color. The respective clustering error rates are 65.2%, 34.8%, 4% and 0%.
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Figure 5: Convergence of GHA, with different down-sampling block lengths. τ = 1 represents the case with no down-sampling.
(a) shows the convergence performance of different down-sampling block lengths in terms of number of iterations; (b) shows the
convergence performance of different down-sampling block lengths in terms of number of samples processed.



(a) GHA: 4 clusters; (b) GHA: 10 clusters; (c) GHA: 15 clusters; (d) SVD: 4 clusters.

Figure 6: The meta-states partition of Manhattan traffic network based on taxi trip records. Each color or symbol represents a
meta-state. (a)-(c) are states partition using our online algorithm. (d) is obtained via a direct SVD over a full aggregated matrix.
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Figure 7: Singular values of the empirical transition matrix
from the NYC taxi data

dure of Section 3.3 to the taxi trip data and illustrate the
results in Figure 6(a)–6(c). Our method reveals a very
informative partition of the Manhattan city according to
traffic dynamics (it roughly matches with the comercial
areas in Manhattan). We compare our online algorithm
with a batch partition procedure and observe that they gen-
erate highly similar results (Figure 6(d)) when r = 4. A
practically impressive observation is: our algorithm uses
less than 1 Mbytes memory for r = 4, 10, 15. In contrast,
the batch partition uses about 200 Mbytes memory even
for r = 4.

6 CONCLUSIONS AND DISCUSSIONS
We have developed an online learning method for analyz-
ing dynamic transition data generated by a random walk
on a network. Out method finds the low-dimensional rep-
resentation of an implicit network and reveals its latent

partition structure. Our method has superior space and
computation complexity. We show that it achieves near-
optimal global convergence and sample complexity by
using an ODE-SDE argument.

Our algorithm and analysis can be adapted to work
for the more general online singular value decomposi-
tion poblem, which has been considered by [JJK+16,
LWLZ16, AZL17, XLS15, AMM16, CYLZ17]. The
most critical distinction between our result and existing
ones is that ours applies to random walk data and network
partition. We summarize other technical improvements
of our results:
(1) All the existing analyses require i.i.d samples, while
ours applies to dependent Markov samples; (2) [JJK+16,
LWLZ16, AZL17, CYLZ17] analyzed Oja’s algorithm
for PCA problem, which conducts QR factorization in
each iteration. Our algorithm does not require such de-
composition - each iteration uses only vector-to-vector
inner products; (3) [XLS15] analyzed a similar algorithm
as ours but their results require a sufficiently near-optimal
initial solution, which is not available in our problems.
(4) [AMM16] investigated a method based on convex re-
laxation of SVD but they achieves a sub-optimal sample
complexity - Õ(1/ε2). Moreover, their algorithm needs
to compute an expensive Fantope projection with a com-
putational complexity O(m3) per iteration.

In summary, Markov transition data carries rich informa-
tion about the underlying structure of complex networks
and stochastic systems. We hope this work will moti-
vate more research in this area and faster algorithms for
applications in networks and reinforcement learning.
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