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1 ALGORITHMS IN THE PAPER

1.1 Proximal Gradient Descent

The optimization problem studied in this paper is

min
x∈IRn

F (x) = g(x) + h(x), (1)

where h(x) , λ‖x‖0, λ > 0 is a weighting parameter.

x(k+1) = proxsh(x(k) − s∇g(x(k)))

= arg min
v∈IRn

1

2s
‖v − (x(k) − s∇g(x(k)))‖22 + λ‖v‖0

= T√2λs(x
(k) − s∇g(x(k))), (2)

Algorithm 1 Proximal Gradient Descent for the `0 Regu-
larization Problem (1)
Input:

The weighting parameter λ, the initialization x(0).
1: for k = 0, . . . , do
2: Update x(k+1) according to (2)
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

1.2 Nonmonotone Accelerated Proximal Gradient
Descent with Support Projection

u(k) = x(k) +
tk−1 − 1

tk
(x(k) − x(k−1)), (3)

w(k) = Psupp(x(k))(u
(k)), (4)

x(k+1) = proxsh(w(k) − s∇g(w(k))), (5)

tk+1 =

√
1 + 4t2k + 1

2
, (6)

Algorithm 2 Nonmonotone Accelerated Proximal Gradi-
ent Descent with Support Projection for the `0 Regular-
ization Problem (1)
Input:

The weighting parameter λ, the initialization x(0),
z(1) = x(1) = x(0), t0 = 0.

1: for k = 1, . . . , do
2: Update u(k), w(k), x(k+1), tk+1 according to (3),

(4), (5), (6) respectively.
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

1.3 Monotone Accelerated Proximal Gradient
Descent with Support Projection

u(k) = x(k) +
tk−1

tk
(z(k) − x(k)) +

tk−1 − 1

tk
(x(k) − x(k−1)),

(7)

w(k) = Psupp(z(k))(u
(k)), (8)

z(k+1) = proxsh(w(k) − s∇g(w(k))), (9)

tk+1 =

√
1 + 4t2k + 1

2
, (10)

x(k+1) =

{
z(k+1) if F (z(k+1)) ≤ F (x(k))

x(k) otherwise.
(11)

2 PROOFS

Lemma 1. (Support shrinkage for proximal gradient de-
scent in Algorithm 1 and sufficient decrease of the objec-
tive function) If s ≤ min{ 2λ

G2 ,
1
L}, then

supp(x(k+1)) ⊆ supp(x(k)), k ≥ 0, (12)

namely the support of the sequence {x(k)}k shrinks.
Moreover, the sequence of the objective {F (x(k))}k is



Algorithm 3 Monotone Accelerated Proximal Gradient
Descent with Support Projection for the `0 Regularization
Problem (1)
Input:

The weighting parameter λ, the initialization x(0),
z(1) = x(1) = x(0), t0 = 0.

1: for k = 1, . . . , do
2: Update u(k), w(k), z(k+1), tk+1, x(k+1) according

to (7), (8), (9), (10), and (11) respectively.
3: end for

Output: Obtain the sparse solution x̂ upon the termina-
tion of the iterations.

nonincreasing, and the following inequality holds for
k ≥ 0:

F (x(k+1)) ≤ F (x(k))−
( 1

2s
− L

2

)
‖x(k+1) − x(k)‖22.

(13)

Proof of Lemma 1. We prove this Lemma by mathemat-
ical induction.

With k ≥ 0, we first show that supp(x(k+1)) ⊆
supp(x(k)), i.e. the support of the sequence shrinks. To
see this, let x̃(k+1) = x(k) − s∇g(x(k)).

Since ‖y − Dx(k)‖22 = x0, let q(k) = −s∇g(x(k)) =
−2s(D>Dx(k) −D>y), then

|x̃(k+1)
j | ≤ ‖q(k)‖∞ ≤ sG,

where j is the index for any zero element of x(k), namely
1 ≤ j ≤ d, j /∈ supp(x(k)). Now |x̃(k+1)

j | <
√

2λs,

and it follows that x(k+1)
j = 0 due to the update rule (2).

Therefore, the zero elements of x(k) remain unchanged
in x(k+1), and supp(x(k+1)) ⊆ supp(x(k)) for k ≥ 0.

Since

x(k+1) = arg min
v∈IRd

1

2s
‖v − x̃(k+1)‖22 + h(v),

let v = x(k), we have

1

2s
‖x(k+1) − x̃(k+1)‖22 + h(x(k+1))

≤ 1

2s
‖s∇g(x(k))‖22 + h(x(k)), (14)

which is equivalent to

〈∇g(x(k)),x(k+1) − x(k)〉+
1

2s
‖x(k+1) − x(k)‖22 + h(x(k+1))

≤ h(x(k)). (15)

In addition, since L is the Lipschitz constant for∇g,

g(x(k+1)) ≤ g(x(k)) + 〈∇g(x(k)),x(k+1) − x(k)〉

+
L

2
‖x(k+1) − x(k)‖22. (16)

Combining (15) and (16), we have

g(x(k+1)) + h(x(k+1)) ≤ g(x(k)) + h(x(k))

−
( 1

2s
− L

2

)
‖x(k+1) − x(k)‖22. (17)

Now (12) and (13) hold for k ≥ 0. Since the sequence
{F (x(k))}k is deceasing with lower bound 0, it must
converge.

Lemma A. (Lemma 1 in Laurent and Massart (2000))
Let Y1, Y2, . . . YD be i.i.d. Gaussian random variables
with 0 mean and unit variance, and a1, a2, . . . aD be D

positive numbers. Define Z =
D∑
i=1

ai(Y
2
i − 1) and a =

[a1, a2, . . . aD]>, then for any t > 0,

Pr[Z ≥ 2‖a‖2
√
t+ 2‖a‖∞t] ≤ e−t. (18)

Lemma B. (Spectrum bound for Gaussian random ma-
trix, Theorem II.13 in Davidson and Szarek (2001)) Sup-
pose A ∈ IRm×n (m ≥ n) is a random matrix whose
entries are i.i.d. samples generated from the standard
Gaussian distribution N (0, 1

m ). Then

1−
√
n

m
≤ IE[σn(A)] ≤ IE[σ1(A)] ≤ 1 +

√
n

m
. (19)

Also, for any t > 0,

Pr[σn(A) ≤ 1−
√
n

m
− t] < e−

mt2

2 ,

Pr[σ1(A) ≥ 1 +

√
n

m
+ t] < e−

mt2

2 . (20)

Theorem 1. Suppose D ∈ IRd×n (n ≥ d) is a random
matrix whose elements are i.i.d. samples from the stan-
dard Gaussian distribution N (0, 1). Then with probabil-

ity at least 1− e−nt2

2 − ne−t,

2λ

G2
≥ 1

L
(21)

if

n ≥
(√
d+ t+

√
(d+ 2

√
dt+ 2t)(x0 + λ|S|)

λ

)2
,

(22)

and t can be chosen as t0 log n for t0 > 0 to ensure that
(22) holds and (21) holds with high probability.

Proof of Theorem 1. According to Lemma B, for any
t > 0, with probability at least 1− e−nt2

2 ,

σmax(D) >
√
n−
√
d− t. (23)



Also, by Lemma A, for any 1 ≤ i ≤ n and t > 0, with
probability at least 1− e−t,

‖Di‖2 ≤
√
d+ 2

√
dt+ 2t. (24)

It then can be verified by union bound that with probabil-
ity at least 1− e−nt2

2 − ne−t,

2D2(x0 + λ|S|)
λ

≤ 2σ2
max(D) (25)

if

n ≥
(√
d+ t+

√
(d+ 2

√
dt+ 2t)(x0 + λ|S|)

λ

)2
,

according to (23) and (24).

Lemma 2. (Properties of the subsequences with shrink-
ing support)

(i) All the elements of each subsequence Xt (t =
1, . . . , T ) in the subsequences with shrinking sup-
port have the same support. In addition, for any
1 ≤ t1 < t2 ≤ T and any x(k1) ∈ Xt1 and
x(k2) ∈ Xt2 , we have k1 < k2, supp(x(k2)) ⊂
supp(x(k1)).

(ii) All the subsequence except for the last one, namely
Xt (t = 1, . . . , T − 1), have finite size. Moreover,
XT has infinite number of elements, and there exists
k0 ≥ 0 such that {x(k)}∞k=k0 ⊆ XT .

Proof of Lemma 2. (i) For any 1 ≤ t ≤ T , let
x(k1),x(k2) ∈ Xt and k1 6= k2. If k1 < k2, then
supp(x(k2)) ⊆ supp(x(k1)) according to the support
shrinkage property (12). If supp(x(k2)) ⊂ supp(x(k1)),
then |supp(x(k2))| < |supp(x(k1))| which contradicts
with the definition ofXt whose elements has the same sup-
port size. Similar argument holds if k1 > k2. Therefore,
all the elements of each subsequence Xt (t = 1, . . . , T )
have the same support.

For any 1 ≤ t1 < t2 ≤ T and any x(k1) ∈ Xt1 and
x(k2) ∈ Xt2 , note that k1 6= k2 and supp(x(k2)) 6=
supp(x(k1)) sinceXt1 andXt2 have different support size.
Suppose k1 > k2. According to the support shrinkage
property (12), we must have supp(x(k1)) ⊂ supp(x(k2))
and it follows that |supp(x(k1))| < |supp(x(k2))|, which
contradicts with the definition of subsequences with
shrinking support. Therefore, we must have k1 < k2,
and it follows that supp(x(k2)) ⊂ supp(x(k1)).

(ii) Suppose Xt is an infinite sequence for some 1 ≤ t ≤
T − 1. We can then obtain an infinite sequence from
Xt in the way described as follows. We first have some
x(k0) ∈ Xt for some k0 ≥ 0 as Xt is nonempty.

Suppose we obtain {x(k′j)}jj′=0 in the first j ≥ 0 steps
with increasing indices {k′j}, i.e. k′j < k′′j if j′ < j′′.
Since Xt is an infinite sequence, Xt \ {x(k′j)}jj′=0 is still
an infinite sequence. At the (j + 1)-th step, we can find
x(kj+1) ∈ Xt \ {x(k′j)}jj′=0 with kj+1 > kj . Therefore,
we obtain an infinite sequence {x(kj)}∞j=0 ⊆ Xt with in-
creasing increasing indices {kj}. The fact that {kj} is in-
creasing, i.e. k′j < k′′j if j′ < j′′, indicates that lim

j→∞
kj =

∞. Now we consider an arbitrary element x(k̃) ∈ Xt+1.
Because there must exists some j ≥ 0 such that k̃ ≤ kj ,
according to the support shrinkage property (12), we
must have supp(x(kj)) ⊆ supp(x(k̃)) which indicates
that |supp(x(kj))| ≤ |supp(x(k̃))|. On the other hand, as
x(kj) ∈ Xt, the definition of the subsequences with shrink-
ing support indicates that |supp(x(k̃))| < |supp(x(kj))|.
This contradiction shows that each Xt must have finite
size for t = 1, . . . , T − 1. As {x(k)}∞k=0 is an infinite se-
quence and {Xt}Tt=1 form a disjoint cover of {x(k)}∞k=0,
XT has infinite number of elements.

According to (i), XT is an infinite sequence. By the argu-
ment in the proof of (i), there exists an infinite sequence
{x(kj)}∞j=0 ⊆ XT , {kj} is increasing, and lim

j→∞
kj =∞.

For any k > k0, there must exist k′j with j′ ≥ 1 such that
kj′−1 ≤ k ≤ kj′ . According to the support shrinkage
property (12),

supp(x(kj′ )) = S∗ ⊆ supp(x(k)) ⊆ supp(x(kj′−1)) = S∗

Therefore, |supp(x(k))| = |S∗| and it follows that x(k) ∈
XT for any k ≥ k0, namely {x(k)}∞k=k0 ⊆ XT .

Denote by S∗ the support of any element in XT . If
{x(k)}∞k=0 generated by Algorithm 1 has a limit point
x∗, then the following theorem shows that the sequence
{x(k)}∞k=0 converges to x∗, and x∗ is a critical point of
F (·) whose support is S∗.

Theorem 2. (Convergence of PGD for the `0 regulariza-
tion problem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a

limit point of {x(k)}∞k=0. Then the sequence {x(k)}∞k=0
generated by Algorithm 1 converges to x∗, and x∗ is a
critical point of F (·). Moreover, there exists k0 ≥ 0 such
that for all m ≥ k0,

F (x(m+1))− F (x∗) ≤ 1

2s(m− k0 + 1)
‖x(k0) − x∗‖22.

(26)

Proof of Theorem 2. Because x∗ is a limit point of
{x(k)}∞k=0, there must have a subsequence {x(kj)} such
that x(kj) → x∗ as j → ∞. In addition, x∗ is a limit
point of {x(k)}∞k=k0 and F (x∗) = infk≥0{F (x(k))}.
We now show that supp(x∗) = S∗. To see this, we



first have supp(x∗) ⊆ S∗. Otherwise, pick arbitrary
i ∈ supp(x∗) \ S∗, then ‖x(kj) − x∗‖2 ≥ |x∗i |, contra-
dicting with fact that x(kj) → x∗.

Moreover, suppose supp(x∗) ⊂ S∗, we then pick arbi-
trary i ∈ S∗ \ supp(x∗). It can be shown that x(kj)

i → 0.
Otherwise, there exists ε > 0, for any j, there ex-
ists j′ ≥ j such that |x(kj′ )

i | ≥ ε. It follows that

‖x(kj′ ) − x∗‖2 ≥ |x
(kj′ )

i | ≥ ε, contradicting with the
fact that x(kj) → x∗.

Let ε > 0 be a sufficiently small positive number such
that sG + ε <

√
2λs. Since x

(kj)
i → 0, there exists

sufficiently large j such that |x(kj)
i | < ε. Let x̃(kj+1) =

x(kj) − s∇g(x(kj)), then

|x̃(kj+1)

i | ≤ |x(kj)

i |+ sG

< ε+ sG ≤
√

2λs.

It follows that x(kj+1)
i = 0 according to the update rule

(2), so that supp(x(kj+1)) ⊆ supp(x(kj)) \ {i}. On
the other hand, note that x(kj+1) ∈ Xt, so we have
supp(x(kj+1)) = supp(x(kj)) by Lemma 2. This contra-
diction shows that supp(x∗) ⊂ S∗ cannot hold. There-
fore, supp(x∗) = S∗.

According to Lemma 2, there exists k0 ≥ 0 such that
{x(k)}∞k=k0 ⊆ XT . We will prove that {x(k)}∞k=k0 con-
verges to x∗ in the sequel.

It follows that for any u,v,

g(v) ≤ g(u) + 〈∇g(u),v − u〉+
L

2
‖v − u‖22. (27)

Due to the convexity of g, for any v ∈ IRn and k ≥ 0,

g(x(k+1)) + 〈∇g(x(k+1)),v − x(k+1)〉 ≤ g(v). (28)

In addition, we have

x(k+1) = proxsh(x(k) − s∇g(x(k)))

= arg min
v∈IRd

1

2s
‖v − (x(k) − s∇g(x(k)))‖22 + h(v). (29)

It follows from (29) that

1

s
(x(k+1) − (x(k) − s∇g(x(k)))) + ∂h(x(k+1)) = 0

⇒ −∇g(x(k))− 1

s
(x(k+1) − x(k)) ∈ ∂h(x(k+1)). (30)

Since x(k+1) = T√2λs(x
(k) − s∇g(x(k))), we have

[∂h(x(k+1))]j = 0 for any j ∈ supp(x(k+1)). It fol-
lows that for any vector v ∈ IRd such that supp(v) =
supp(x(k+1)), the following equality holds:

h(v) = h(x(k+1)) + 〈−∇g(x(k))− 1

s
(x(k+1) − x(k)),

v − x(k+1)〉. (31)

Based on (27) and (28), for any k ≥ k0 and arbitrary
v ∈ IRd we have

F (x(k+1)) = g(x(k+1)) + h(x(k+1))

≤ g(x(k)) + 〈∇g(x(k)),x(k+1) − x(k)〉

+
L

2
‖x(k+1) − x(k)‖22 + h(x(k+1))

≤ g(v) + 〈∇g(x(k)),x(k) − v〉+ 〈∇g(x(k)),x(k+1) − x(k)〉

+
L

2
‖z(k+1) −w(k)‖22 + h(z(k+1))

= g(v) + 〈∇g(x(k)),x(k+1) − v〉+
L

2
‖x(k+1) − x(k)‖22

+ h(x(k+1)). (32)

When supp(v) = supp(x(k+1)), according to (31) and
(32),

F (x(k+1)) ≤ g(v) + 〈∇g(x(k)),x(k+1) − v〉

+
L

2
‖x(k+1) − x(k)‖22 + h(x(k+1))

= g(v) + 〈∇g(x(k)),x(k+1) − v〉

+
L

2
‖x(k+1) − x(k)‖22 + h(v)

+ 〈∇g(x(k)) +
1

s
(x(k+1) − x(k)),v − x(k+1)〉

= F (v) +
1

s
〈x(k+1) − x(k),v − x(k+1)〉

+
L

2
‖x(k+1) − x(k)‖22

= F (v) +
1

s
〈x(k+1) − x(k),v − x(k)〉

− 1

s
‖x(k+1) − x(k)‖22 +

L

2
‖x(k+1) − x(k)‖22

= F (v) +
1

s
〈x(k+1) − x(k),v − x(k)〉

−
(1

s
− L

2

)
‖x(k+1) − x(k)‖22

≤ F (v) +
1

s
〈x(k+1) − x(k),v − x(k)〉

− 1

2s
‖x(k+1) − x(k)‖22. (33)

Now supp(x∗) = supp(x(k+1)) = S∗, we can let v =
x∗ in (33), leading to

F (x(k+1))− F (x∗)

≤ 1

s
〈x(k+1) − x(k),x∗ − x(k)〉 − 1

2s
‖x(k+1) − x(k)‖22

=
1

2s

(
‖x(k) − x∗‖22 − ‖x(k+1) − x∗‖22

)
. (34)

Summing (34) over k = k0, . . . ,m with m ≥ k0,
m∑

k=k0

F (x(k+1))− F (x∗)



≤
m∑

k=k0

1

2s

(
‖x(k) − x∗‖22 − ‖x(k+1) − x∗‖22

)
=

1

2s

(
‖x(k0) − x∗‖22 − ‖x(m+1) − x∗‖22

)
. (35)

Since {F (x(k))}k is non-increasing, we have
m∑

k=k0

F (x(k+1))− F (x∗) > (m− k0 + 1)F (x(m+1))−

F (x∗). It follows from (35) that

F (x(m+1))− F (x∗)

≤ 1

2s(m− k0 + 1)

(
‖x(k0) − x∗‖22 − ‖x(m+1) − x∗‖22

)
≤ 1

2s(m− k0 + 1)
‖x(k0) − x∗‖22. (36)

Now we show that x∗ is a critical point of F (·). It follows
from (30) that −∇g(x(kj−1)) − 1

s (x(kj) − x(kj−1)) ∈
∂h(x(kj)) for kj ≥ 1. In addition, since ∂F (x(kj)) =

∇g(x(kj)) + ∂h(x(kj)), we have

∇g(x(kj))−∇g(x(kj−1))− 1

s
(x(kj) − x(kj−1)) ∈ ∂F (x(kj)).

(37)

Due to the fact that ‖x(k) − x(k−1)‖2 → 0 as k → ∞,
when j →∞ we have

‖∇g(x(kj))−∇g(x(kj−1))− 1

s
(x(kj) − x(kj−1))‖2

≤ L‖x(kj))− x(kj−1)‖2 +
1

s
‖x(kj) − x(kj−1)‖2

→ 0. (38)

Also, as j →∞,

F (x(kj)) = g(x(kj)) + h(x(kj)) = g(x(kj)) + λ|S∗|
→ g(x∗) + λ|S∗| = g(x∗) + h(x∗) = F (x∗). (39)

Based on (37), (38) and (39), 0 ∈ ∂F (x∗) and x∗ is a
critical point of F (·).

In addition, k0 is upper bounded. Note that the sequence
experiences only a finite number (at most |S|) of strict
support shrinkages. The iterations of PGD between two
consecutive strict support shrinkages are equivalent to
those of regular gradient descent on g. Suppose the
last support shrinkage happens in k1-th iteration with
k1 ≥ 0, and let S1 = supp(x(k1)). Let x′ be the solu-
tion to the problem minx,supp(x)=S1

g(x). Let the q-th
(q ∈ S1) element of the variable incurs support shrink-
age, and {x′(t)} be the sequence generated by performing
gradient descent on g staring with x(k1) . We can al-
ways choose s such that

√
2λs 6= |x′q|. Because {x′(t)}

converges to x′, the support shrinkage at the q-th el-
ement of the variable must happen within finite itera-
tions. To see this, since

√
2λs 6= x′q, there exists a small

δ > 0 such that (x′q − δ,x′q + δ) ⊂ (−
√

2λs,
√

2λs) or
(x′q − δ,x′q + δ) ⊂ [−

√
2λs,
√

2λs]{, where A{ is the
complement set of A. Since {x′(t)} converges to x′, after
T iterations {x′(t)}t>T must fall in (x′q − δ,x′q + δ). If
(x′q− δ,x′q + δ) ⊂ (−

√
2λs,
√

2λs), then support shrink-
age happens after T iterations. If (x′q − δ,x′q + δ) ⊂
[−
√

2λs,
√

2λs]{, support shrinkage must happen within
T iterations, otherwise |x′(t)| >

√
2λs for t > T and

support shrinkage never happens at the q-th element of
the variable, contradicting with the given fact. Therefore,
each support shrinkage happens with finite iterations. Be-
cause shrinkage can happen at most |S| times, k0 is upper
bounded by a finite number.

Lemma C. For any two vectors u,v ∈ IRd, ‖u −
PR(v)‖2 ≤ ‖u− v‖2 where supp(u) ⊆ R.

Proof. We have

‖u− v‖22
= ‖PR(u− v)‖22 + ‖P{1,...,d}\R(u− v)‖22
≥ ‖PR(u− v)‖22 = ‖u−PR(v)‖22. (40)

It follows that ‖u−PR(v)‖2 ≤ ‖u− v‖2.

Lemma 3. (Support shrinkage for nonmonotone acceler-
ated proximal gradient descent with support projection in
Algorithm 2) The sequence {x(k)}k generated by Algo-
rithm 2 satisfies

supp(x(k+1)) ⊆ supp(x(k)), k ≥ 1, (41)

namely the support of the sequence {x(k)}∞k=1 shrinks.

Proof of Lemma 3. We prove this Lemma by mathemat-
ical induction, and we will prove that

supp(x(k̄+1)) ⊆ supp(x(k̄)), k̄ ≥ 1. (42)

When k̄ = 1, using argument similar to the proof of
Lemma 1 we can show that supp(x(2)) ⊆ supp(x(1)),
i.e. the support of x shrinks after the first iteration.

Now (42) are verified for k̄ = 1. Suppose (42) holds for
all k̄ ≤ k′ with k′ ≥ 1. We now consider the case that
k̄ = k′ + 1.

Note the support projection operation in the update rule
(4) for w(k), and supp(w(k′+1)) ⊆ supp(x(k′+1)). Let
q(k′+1) = −s∇g(w(k′+1)) and x̃

(k′+2)
j = w(k′+1) −



s∇g(w(k′+1)). Then x
(k′+2)
j = 0 due to the update rule

(5) for any j /∈ supp(w(k′+1)) and

|x̃(k′+2)
j | ≤ ‖q(k′+1)‖∞ ≤ sG ≤

√
2λs. (43)

Because s ≤ 2λ
G2 , the zero elements of w(k′+1) remain un-

changed in x(k′+2), and it follows that supp(x(k′+2)) ⊆
supp(w(k′+1)) ⊆ supp(x(k′+1)). Therefore, (42) holds
for k̄ = k′ + 1. It follows that (42) holds for all k̄ ≥ 1.

Theorem 3. (Convergence of Nonmonotone Accelerated
Proximal Gradient Descent for the `0 regularization prob-
lem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a limit

point of {x(k)}∞k=0 generated by Algorithm 2. There ex-
ists k0 ≥ 1 such that

F (x(m+1))− F (x∗) ≤ 4

(m+ 1)2
V (k0) (44)

for all m ≥ k0, where

V (k0) ,
( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22

+ t2k0−1

(
F (x(k0))− F (x∗)

))
. (45)

Proof of Theorem 3. According to Lemma 3, there ex-
ists k0 ≥ 0 such that {x(k)}∞k=k0 ⊆ XT . It follows that
supp(x∗) = S∗.

When supp(v) = supp(x(k+1)) for k ≥ k0, we have

F (x(k+1)) ≤ g(v) + 〈∇g(w(k)),x(k+1) − v〉

+
L

2
‖x(k+1) −w(k)‖22 + h(x(k+1))

= g(v) + 〈∇g(w(k)),x(k+1) − v〉

+
L

2
‖x(k+1) −w(k)‖22 + h(v)

+ 〈∇g(w(k)) +
1

s
(x(k+1) −w(k)),v − x(k+1)〉

= F (v) +
1

s
〈x(k+1) −w(k),v − x(k+1)〉

+
L

2
‖x(k+1) −w(k)‖22

≤ F (v) +
1

s
〈x(k+1) −w(k),v −w(k)〉

− 1

s
‖x(k+1) −w(k)‖22 +

L

2
‖x(k+1) −w(k)‖22

= F (v) +
1

s
〈x(k+1) −w(k),v −w(k)〉

−
(1

s
− L

2

)
‖x(k+1) −w(k)‖22. (46)

Now using similar arguments in the proof of Lemma 3,
let v = x(k) and v = x∗ in in (46), we have

F (x(k+1)) ≤ F (x(k)) +
1

s
〈x(k+1) −w(k),

x(k) −w(k)〉 −
(1

s
− L

2

)
‖x(k+1) −w(k)‖22, (47)

and

F (x(k+1)) ≤ F (x∗) +
1

s
〈x(k+1) −w(k),

x∗ −w(k)〉 −
(1

s
− L

2

)
‖x(k+1) −w(k)‖22. (48)

(47)×(tk − 1)+ (48), we have

tkF (x(k+1))− (tk − 1)F (x(k))− F (x∗)

≤ 1

s
〈x(k+1) −w(k), (tk − 1)(x(k) −w(k)) + x∗ −w(k)〉

− tk
(1

s
− L

2

)
‖x(k+1) −w(k)‖22. (49)

Multiplying both sides of (49) by tk, since t2k−tk = t2k−1,
we have

t2k
(
F (x(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

s
〈tk(x(k+1) −w(k)), (tk − 1)(x(k) −w(k))+

x∗ −w(k)〉 −
(1

s
− L

2

)
‖tk(x(k+1) −w(k))‖22

≤ 1

s
〈tk(x(k+1) −w(k)), (tk − 1)(x(k) −w(k))

+ x∗ −w(k)〉 − 1

2s
‖tk(x(k+1) −w(k))‖22

=
1

2s

(
‖(tk − 1)x(k) − tkw(k) + x∗‖22

− ‖(tk − 1)x(k) − tkx(k+1) + x∗‖22
)
. (50)

Since w(k) = Psupp(x(k))(u
(k)), it follows that (tk −

1)x(k) − tkPsupp(x(k))(u
(k)) + x∗ = (tk − 1)x(k) −

tkw
(k) + x∗. By Lemma C and (50), we have

t2k
(
F (x(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

2s

(
‖(tk − 1)x(k) − tku(k) + x∗‖22

− ‖(tk − 1)x(k) − tkx(k+1) + x∗‖22
)
. (51)

Define U(k+1) = (tk − 1)x(k) − tkx(k+1) + x∗, then
U(k) = (tk−1 − 1)x(k−1) − tk−1x(k) + x∗. It can be
verified that U(k) = (tk−1)x(k)−tku(k)+x∗ according
to the update rule (3) for u(k). Then according to (51),
we have

t2k
(
F (x(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

2s

(
‖U(k)‖22 − ‖U(k+1)‖22

)
. (52)

Summing (52) over k = k0, k0,+1, . . . ,m for m ≥ k0,
we have

t2m
(
F (x(m+1))− F (x∗)

)
− t2k0−1

(
F (x(k0))− F (x∗)

)



≤ 1

2s

(
‖U(k0)‖22 − ‖U(m+1)‖22

)
≤ 1

2s
‖U(k0)‖22

=
1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22. (53)

It follows from (53) that

F (x(m+1))− F (x∗)

≤ 1

2st2m
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22

+
t2k0−1

t2m

(
F (x(k0))− F (x∗)

)
<

1

t2m

( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22

+ t2k0−1

(
F (x(k0))− F (x∗)

))
≤ 4

(m+ 1)2

( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1x

(k0) + x∗‖22

+ t2k0−1

(
F (x(k0))− F (x∗)

))
,

4

(m+ 1)2
V (k0), (54)

where the last inequality is due to the fact that tk ≥ k+1
2

for k ≥ 1.

Lemma 4. (Support shrinkage for accelerated proximal
gradient descent with support projection in Algorithm 3)
The sequence {z(k)}∞k=1 and {x(k)}∞k=1 generated by Al-
gorithm 3 satisfy

supp(z(k+1)) ⊆ supp(z(k)), (55)

supp(x(k+1)) ⊆ supp(x(k)), (56)

namely the support of both sequences shrinks.

Proof of Lemma 4. We prove this Lemma by mathemat-
ical induction, and we will prove that for all k̄ ≥ 1,

supp(z(k̄+1)) ⊆ supp(z(k̄)). (57)

When k̄ = 1, we first show that supp(z(2)) ⊆ supp(z(1)),
i.e. the support of z(k) shrinks after the first iteration.

It is now verified that (57) hold for k̄ = 1. Suppose (57)
holds for all k̄ ≤ k′ with k′ ≥ 1. We now consider the
case that k̄ = k′ + 1.

Let q(k′+1) = −s∇g(w(k′+1)) and x̃
(k′+2)
j =

w(k′+1) − s∇g(w(k′+1)). Then x
(k′+2)
j = 0 due to the

update rule (9) for any j /∈ supp(w(k′+1)) and

|x̃(k′+2)
j | ≤ sG ≤

√
2λs. (58)

Because s ≤ 2λ
G2 , the zero elements of w(k′+1) remain

unchanged in z(k
′+2). According to the support projec-

tion operation in (8), supp(w(k′+1)) ⊆ supp(z(k
′+1)) =

S′. It follows that supp(z(k
′+2)) ⊆ supp(w(k′+1)) ⊆

supp(z(k
′+1)). Therefore, (57) holds for k̄ = k′ + 1. It

follows that (57) holds for all k̄ ≥ 1.

Now we prove (56), i.e. that for all k ≥ 1,
supp(x(k+1)) ⊆ supp(x(k)).

We have already shown that for all k ≥ 1, supp(x(k)) =

supp(z(k̃)) for some k̃ ≤ k. Note that x(k+1) =
z(k+1) or x(k+1) = x(k). In the latter case, we triv-
ially have supp(x(k+1)) = supp(x(k)). In the former
case, supp(x(k+1)) = supp(z(k+1)) ⊆ supp(z(k̃)) =
supp(x(k)) because k̃ ≤ k < k + 1. Therefore, (56)
holds for all k ≥ 1.

Theorem 4. (Convergence of Monotone Accelerated
Proximal Gradient Descent for the `0 regularization prob-
lem (1)) Suppose s ≤ min{ 2λ

G2 ,
1
L}, and x∗ is a limit

point of {x(k)}∞k=0 generated by Algorithm 3. There ex-
ists k0 ≥ 1 such that

F (x(m+1))− F (x∗) ≤ 4

(m+ 1)2
W (k0) (59)

for all m ≥ k0, where

W (k0) ,
( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1z

(k0) + x∗‖22

+ t2k0−1(F (x(k0))− F (x∗))
)
. (60)

Proof of Theorem 4. According to Lemma 4, it can be
verified that {x(k)}∞k=0 forms at most T1 ≤ |S|+1 subse-
quences with shrinking support {Xt}T1

t=1, and {z(k)}∞k=0

also forms at most T2 ≤ |S|+1 subsequences with shrink-
ing support, denoted by {Zt}T2

t=1.

Based on Lemma 2, there exists k1 ≥ 0 such that
{x(k)}∞k=k1 ⊆ XT1

. Similarly, there exists k2 ≥ 0 such
that {z(k)}∞k=k2 ⊆ ZT2

. According to Lemma 2, Let
all the elements of XT1

have support S1, and all the
elements of ZT2

have support S2. We will show that
S1 = S2. To see this, let k0 = max{k1, k2}, then
there exists k′ ≥ k0 such that x(k′) = z(k

′). Due to
the fact that {x(k)}∞k=k1 ⊆ XT1

and {z(k)}∞k=k2 ⊆ ZT2
,

S1 = supp(x(k′)) = supp(z(k
′)) = S2.

Let S1 = S2 = S∗, then all the elements of {x(k)}∞k=k0
and {z(k)}∞k=k0 have the same support S∗. It follows that
supp(x∗) = S∗.

When supp(v) = supp(z(k+1)) with k ≥ k0, we have

F (z(k+1)) ≤ g(v) + 〈∇g(w(k)), z(k+1) − v〉

+
LS′

2
‖z(k+1) −w(k)‖22 + h(z(k+1))



= g(v) + 〈∇g(w(k)), z(k+1) − v〉

+
LS′

2
‖z(k+1) −w(k)‖22 + h(v)

+ 〈∇g(w(k)) +
1

s
(z(k+1) −w(k)),v − z(k+1)〉

= F (v) +
1

s
〈z(k+1) −w(k),v − z(k+1)〉

+
LS′

2
‖z(k+1) −w(k)‖22

≤ F (v) +
1

s
〈z(k+1) −w(k),v −w(k)〉

− 1

s
‖z(k+1) −w(k)‖22 +

LS′

2
‖z(k+1) −w(k)‖22

= F (v) +
1

s
〈z(k+1) −w(k),v −w(k)〉

−
(1

s
− LS′

2

)
‖z(k+1) −w(k)‖22. (61)

Note that supp(x(k)) = supp(x∗) = S∗ for k ≥ k0.
Using similar arguments in the proof of Lemma 3, let
v = x(k) and v = x∗ in (61) in the proof of Lemma 4,
we have

F (z(k+1)) ≤ F (x(k)) +
1

s
〈z(k+1) −w(k),x(k) −w(k)〉

−
(1

s
− L

2

)
‖z(k+1) −w(k)‖22, (62)

and

F (z(k+1)) ≤ F (x∗) +
1

s
〈z(k+1) −w(k),x∗ −w(k)〉

−
(1

s
− L

2

)
‖z(k+1) −w(k)‖22. (63)

(62)×(tk − 1)+ (63), we have

tkF (z(k+1))− (tk − 1)F (x(k))− F (x∗)

≤ 1

s
〈z(k+1) −w(k), (tk − 1)(x(k) −w(k)) + x∗ −w(k)〉

− tk
(1

s
− L

2

)
‖z(k+1) −w(k)‖22. (64)

It follows that

tk
(
F (z(k+1))− F (x∗)

)
− (tk − 1)

(
F (x(k))− F (x∗)

)
≤ 1

s
〈z(k+1) −w(k), (tk − 1)(x(k) −w(k)) + x∗ −w(k)〉

− tk
(1

s
− L

2

)
‖z(k+1) −w(k)‖22. (65)

Multiplying both sides of (65) by tk, since t2k−tk = t2k−1,
we have

t2k
(
F (z(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

s
〈tk(z(k+1) −w(k)), (tk − 1)(x(k) −w(k)) + x∗ −w(k)〉

−
(1

s
− L

2

)
‖tk(z(k+1) −w(k))‖22

≤ 1

s
〈tk(z(k+1) −w(k)), (tk − 1)(x(k) −w(k)) + x∗ −w(k)〉

− 1

2s
‖tk(z(k+1) −w(k))‖22

=
1

2s

(
‖(tk − 1)x(k) − tkw(k) + x∗‖22

− ‖(tk − 1)x(k) − tkz(k+1) + x∗‖22
)
. (66)

Note that supp((tk − 1)x(k) + x∗) ⊆ S∗ and (w(k)) =
PS∗(u

(k)), according to Lemma C and (66), we have

t2k
(
F (z(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

2s

(
‖(tk − 1)x(k) − tku(k) + x∗‖22

− ‖(tk − 1)x(k) − tkz(k+1) + x∗‖22
)
. (67)

Define A(k+1) = (tk − 1)x(k) − tkz
(k+1) + x∗, then

A(k) = (tk−1− 1)x(k−1)− tk−1z(k) +x∗. It can be ver-
ified that A(k) = (tk − 1)x(k) − tku(k) + x∗. Therefore,

t2k
(
F (z(k+1))− F (x∗)

)
− t2k−1

(
F (x(k))− F (x∗)

)
≤ 1

2s

(
‖A(k)‖22 − ‖A(k+1)‖22

)
. (68)

Summing (68) over k = k0, . . . ,m for m ≥ k0, we have

t2m
(
F (z(m+1))− F (x∗)

)
− t2k0−1

(
F (x(k0))− F (x∗)

)
≤ 1

2s

(
‖A(k0)‖22 − ‖A(m+1)‖22

)
≤ 1

2s
‖A(k0)‖22

=
1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1z

(k0) + x∗‖22. (69)

Since tk ≥ k+1
2 for k ≥ 1, it follows from (69) that

F (z(m+1))− F (x∗)

≤ 4

(m+ 1)2

( 1

2s
‖(tk0−1 − 1)x(k0−1) − tk0−1z

(k0) + x∗‖22

+ t2k0−1(F (x(k0))− F (x∗))
)

,
4

(m+ 1)2
W (k0). (70)
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