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1 ALGORITHMS IN THE PAPER

1.1 Proximal Gradient Descent

The optimization problem studied in this paper is

nin F(x) = g(x) + h(x), (1)

where h(x) = A||x[[g, A > 0 is a weighting parameter.

x() = prox,, (x*) — s7g(x))

't
= arg min Q—Hv — (x™ - ng(X(k)))Hg + Allvllo
vER™ S

=T /55 (x™ — sVg(x™)), )

Algorithm 1 Proximal Gradient Descent for the £ Regu-
larization Problem (1)
Input:
The weighting parameter ), the initialization x(%).
I: fork=0,...,do
2:  Update x*+1) according to (2)
3: end for
Output: Obtain the sparse solution X upon the termina-
tion of the iterations.

1.2 Nonmonotone Accelerated Proximal Gradient
Descent with Support Projection

te1 — 1 .
u®) = 5@ g BT L) k) 3)
k
w(k) = Psupp(x(k))(u(k)), (4)
xF+D — proxsh(w(k) — ng(w(k))), (5)

tht1 =

V1+4t2 +1
+, (6)
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Algorithm 2 Nonmonotone Accelerated Proximal Gradi-
ent Descent with Support Projection for the ¢° Regular-
ization Problem (1)
Input:
The weighting parameter )\, the initialization x(%),
z() = x(M) =x() ¢, =0.
I: fork=1,...,do
2:  Update u®, w®) x(*+1) . according to (3),
(4), (5), (6) respectively.
3: end for
QOutput: Obtain the sparse solution X upon the termina-
tion of the iterations.

1.3 Monotone Accelerated Proximal Gradient
Descent with Support Projection

u® = x® B m g e 7w ey
tr [
7
w — Psupp(z(k))(u(k>)’ )
zFHD — proxsh(w(k) — ng(w(k))), 9)
V1+4t2 +1
thpr = S, (10)

an

e _ [A I EGOY) < F®)
x () otherwise.

2 PROOFS

Lemma 1. (Support shrinkage for proximal gradient de-
scent in Algorithm 1 and sufficient decrease of the objec-

tive function) If s < min{ 2}, 1}, then

supp(x* ™) C supp(x*), k > 0, (12)

namely the support of the sequence {X(]’C)};€ shrinks.
Moreover, the sequence of the objective {F(x®))},, is



Algorithm 3 Monotone Accelerated Proximal Gradient
Descent with Support Projection for the £° Regularization
Problem (1)
Input:
The weighting parameter )\, the initialization x(%),
z() =x(1) = X(O), to =0.
1: fork=1,...,do
2:  Update u®, wk) z(++1) 1 x#+1) according
to (7), (8), (9), (10), and (11) respectively.
3: end for
Qutput: Obtain the sparse solution X upon the termina-
tion of the iterations.

nonincreasing, and the following inequality holds for
k> 0:
FOH) € FO) (5 = 5) I - <)

13)

1
2s

Proof of Lemma 1. We prove this Lemma by mathemat-
ical induction.

With k& > 0, we first show that supp(x*+1)) C
supp(x(*)), i.e. the support of the sequence shrinks. To
see this, let x(*+1) = x(k) — 5V g(x(),

Since |ly — Dx®|3 = 20, let ¥ = —sVg(x*)) =
—25(D"Dx* — DTy), then

~(k
%] < 1q®) o < 56,

where j is the index for any zero element of x(*), namely
1< j < dj ¢ supp(x™). Now [£{"] < vV2Xs,
and it follows that xgkﬂ) = 0 due to the update rule (2).
Therefore, the zero elements of x(¥) remain unchanged
in x(*+1), and supp(x**+1) C supp(x¥) for k > 0.

Since

1
x* D = argmin — ||v — x*FY |2 + h(v),
veRd 28

k) we have

let v = x(
1
2s

1 .
< 5 IsVgx™)IE + Ax™), (14)

Hx(k-&-l) _ i(k+1)H§ + h(x(k+1))

which is equivalent to

. o1 .
(Vg ™), 5B —x®) 4 B x4 (D)

2s
< h(x™). (15)
In addition, since L is the Lipschitz constant for Vg,

g(x"*Y) < g(xM) + (Vg(x®), x"HD - x®)

L
+ §||x<’“+1> —x®)2. (16)

Combining (15) and (16), we have
g(x(k+1)) +h(x(k+1)) < g(x(k)) + h(x(k))

1 L
— (5~ §)|\x(’““) —x®|3. (17)
Now (12) and (13) hold for £ > 0. Since the sequence

{F(x*))}} is deceasing with lower bound 0, it must
converge. O

Lemma A. (Lemma 1 in Laurent and Massart (2000))

Let Y1,Y5,...Yp be i.i.d. Gaussian random variables

with 0 mean and unit variance, and a1, aq, . ..ap be D
D

positive numbers. Define Z = Y a;(Y> — 1) and a =
i=1

[a1,az,...ap]", then for any t > 0,

Pr[Z > 2||all2V + 2|ja]joot] < €7t (18)

Lemma B. (Spectrum bound for Gaussian random ma-
trix, Theorem I7.13 in Davidson and Szarek (2001)) Sup-
pose A € R™*"™ (m > n) is a random matrix whose
entries are i.i.d. samples generated from the standard

Gaussian distribution N'(0, L). Then

1-— \/g < Elon(A)] <E[o1(A)] <1+ \/g (19)

Also, forany t > 0,

Pr[o,(A) <1-— ,/ﬁ —t]<e T,
m

Prlo(A) 2 14/ +1] < e 0)

Theorem 1. Suppose D € RY*"™ (n > d) is a random
matrix whose elements are i.i.d. samples from the stan-
dard Gaussian distribution N'(0,1). Then with probabil-

2
. _nt _
ity atleast1 —e™ "2 —ne t

2A 1
@71 @b
if
nZ(\/g_f_ﬂ_\/(d+2x/@+it)(mo+)\s))27
(22)

and t can be chosen as tylogn for ty > 0 to ensure that
(22) holds and (21) holds with high probability.

Proof of Theorem 1. According to Lemma B, for any

nt2

t > 0, with probability at least 1 —e™ "2,

Omax(D) > v —Vd —t. (23)




Also, by Lemma A, forany 1 < ¢ < nandt¢ > 0, with
probability at least 1 — e~¢,

ID|ly < \/d+2Vdt + 2t. (24)

It then can be verified by union bound that with probabil-
n 2
ity atleast 1 — e~ "2~ — ne ™",

2D%(0 + AIS)) _ ,

)\ max

(D) (25)

if

. (\/EHJF\/(d+2\/%+it)(ffo+)\|s|))2’

according to (23) and (24). O

Lemma 2. (Properties of the subsequences with shrink-
ing support)

(i) All the elements of each subsequence X; (t =
1,...,T) in the subsequences with shrinking sup-
port have the same support. In addition, for any
1 < t1 <ty < T and any x(k1) ¢ Xy, and
x(k2) € X, we have ky < ko, supp(x(F2)) C
supp(x(+2)).

(ii) All the subsequence except for the last one, namely
Xe(t =1,...,T — 1), have finite size. Moreover,
Xr has infinite number of elements, and there exists
ko > 0 such that {xM}32, C .

Proof of Lemma 2. (i) For any 1 < t < T, let
x(k) x(k2) e X, and ky # ko. If k1 < ko, then
supp(x#2)) C supp(x(*1)) according to the support
shrinkage property (12). If supp(x(¥2)) C supp(x(*1)),
then |supp(x(¥2))| < |supp(x(¥*))| which contradicts
with the definition of X; whose elements has the same sup-
port size. Similar argument holds if k1 > ko. Therefore,
all the elements of each subsequence X; (t = 1,...,T)
have the same support.

Forany 1 < t; < ty < T and any x*1) € X}, and
x(k2) ¢ A, , note that k1 # ko and supp(x(F2)) #
supp(x(#1)) since X}, and X}, have different support size.
Suppose k1 > ka. According to the support shrinkage
property (12), we must have supp(x(*1)) C supp(x(¥2))
and it follows that [supp(x*1))| < |supp(x(#2))|, which
contradicts with the definition of subsequences with
shrinking support. Therefore, we must have k; < ko,
and it follows that supp(x(¥2)) C supp(x(*1)).

(i1) Suppose &} is an infinite sequence for some 1 < ¢ <
T — 1. We can then obtain an infinite sequence from
A in the way described as follows. We first have some
x (ko) € X, for some ko > 0 as X, is nonempty.

Suppose we obtain {x(k})}§,20 in the first j > 0 steps
with increasing indices {£}, i.e. kj < K7 if j* < j".
Since A} is an infinite sequence, X; \ {x(k.;)};/zo is still
an infinite sequence. At the (j + 1)-th step, we can find
x(kit1) € x; \ {x(k;‘)};,zo with k;j 11 > k;. Therefore,
we obtain an infinite sequence {x(kj)}}?‘;o C A, with in-
creasing increasing indices {k;}. The fact that {k;} is in-
creasing, i.e. kj < k;’ if j/ < j”,indicates that lim k; =
J]—00

oo. Now we consider an arbitrary element x(*) € X, ;.
Because there must exists some j > 0 such that k <k,
according to the support shrinkage property (12), we
must have supp(x(¥)) C supp(x(¥)) which indicates
that [supp(x*3))| < |supp(x(¥))|. On the other hand, as
x(ki) X, the definition of the subsequences with shrink-
ing support indicates that [supp(x*))| < |supp(x(*s))|.
This contradiction shows that each X; must have finite
size fort = 1,...,T — 1. As {x(®)}22 , is an infinite se-
quence and {X;}7_; form a disjoint cover of {x(*)}2° |
X7 has infinite number of elements.

According to (i), X'r is an infinite sequence. By the argu-
ment in the proof of (i), there exists an infinite sequence

{x(k-f)}]‘?‘;o C Xr, {k;} is increasing, and lim k; = oo.
j—o0o

For any k > ko, there must exist k; with 5/ > 1 such that
kj_1 < k < kj. According to the support shrinkage
property (12),

supp(x*i')) = 8* C supp(x®) C supp(x*i'-1)) = §*

Therefore, [supp(x(*))| = |S*| and it follows that x(*) ¢
Xr for any k > ko, namely {x(k)}%’:k0 C Xr.

O

Denote by S* the support of any element in Xp. If
{x(*) o generated by Algorithm 1 has a limit point
x*, then the following theorem shows that the sequence
{x(®)}2° | converges to x*, and x* is a critical point of
F(-) whose support is S*.

Theorem 2. (Convergence of PGD for the ¢° regulariza-
tion problem (1)) Suppose s < min{é—’;, %} and xX* is a

limit point of {x®)}2° . Then the sequence {x*)1°
generated by Algorithm 1 converges to x*, and x* is a
critical point of F(-). Moreover, there exists ko > 0 such
that for all m > k,

(26)

1 (ko) _

F(x") - F(x") < [Ix

~ 2s(m —ko+1)

Proof of Theorem 2. Because x* is a limit point of
{x(®)}2 . there must have a subsequence {x(¥1)} such
that x(¥7) — x* as j — oo. In addition, x* is a limit
point of {x(¥}>¢ “and F(x*) = infio{F(x*))}.
We now show that supp(x*) = S*. To see this, we



first have supp(x*) C S*. Otherwise, pick arbitrary
i € supp(x*) \ S*, then ||x(*3) — x*|| > |x|, contra-
dicting with fact that x(%) — x*.

Moreover, suppose supp(x*) C S*, we then pick arbi-
trary ¢ € S* \ supp(x*). It can be shown that xgkj) — 0.
Otherwise, there exists ¢ > 0, for any j, there ex-
ists 7/ > j such that |xl(-kj')\ > ¢. It follows that
[x®i) — x*|| > |x§kj/ | > ¢, contradicting with the
fact that x(%3) — x*,

Let € > 0 be a sufficiently small positive number such
that sG + € < v2\s. Since xgkj) — 0, there exists
sufficiently large j such that [x\*)| < c. Let x(%+1) =
x(k3) — sV g(x(¥i)), then

%) < x| sa
<e+sG < V2As.

It follows that xgkj ) _ g according to the update rule
(2), so that supp(x%it1D) C supp(x*3)) \ {i}. On
the other hand, note that x(kit+1) X, so we have
supp(x*i+t1)) = supp(x(¥3)) by Lemma 2. This contra-
diction shows that supp(x*) C S* cannot hold. There-
fore, supp(x*) = S*.

According to Lemma 2, there exists ko > 0 such that
{x(k)}z‘;ko C Xp. We will prove that {x(k)}g‘;ko con-
verges to x* in the sequel.

It follows that for any u, v,

9(v) < g(u) + (Vglw), v —w) + v —ulp. @)

Due to the convexity of g, for any v € R™ and k > 0,

g(x" ) 4 (Vg (x* ), v —xFV) < g(v).  (28)

In addition, we have
x) = prox,, (x*) — sVg(xM)

= arg min iHv — (x® — sVg(x®NZ + h(v). (29)
veRY 2s
It follows from (29) that
1

g(x(k'H) — (x(k) — SVg(x(k)))) + 3h(x<k+1)) =0

= —Vg(x®) - %(x(k-H) —x®) e an*). (30

Since xk+1) = T s (x*) — sVg(xM)), we have
[Oh(xk+1)]; = 0 for any j € supp(x**tV). It fol-
lows that for any vector v € IR such that supp(v) =
supp(x#+1), the following equality holds:

h(v) = B 4D) 4 (=Vg(x) - S - x),

v —xFFy, (1)

Based on (27) and (28), for any £ > k¢ and arbitrary
v € R? we have
F(x(k'H)) _ g(x(k+1)) + h(x(k+1))
< g(x™) + (Vg(x™), x*H —x M)
L
+ I =x M + aGE)
< 9(v) + (Vg(x ™), xY = v) 4 (Tg(x ™), x D - x)

L
+ 5125 w3 + ()

= g(v) + (V™) x Y vy o S - xO8
+ h(x®H). (32)
When supp(v) = supp(x**t1)), according to (31) and
(32),
F(X(k+1)) <g(v)+ <Vg(x<k)),x(k+1) —v)
L
+ §||x(k+1) _ x(k)Hg + h(x(k+1))
=g(v) + (Vg(x™),x* —v)
L
+ 5 I = x5+ ()
1
Ta(x™) + L(xE+D _ 50y 4 _ 5 (k+D
(Vg0 4 (D =) v x4
1
- F L) _ ) | O
(v) + 2 (D ),y )
L
+ 5 [ = <P

1
= F(v) + —(x" —x®) v — x(*)
s

1 L
_ g”x(kJrl) _ X(k>||§ + §||x(k+1) _ X(k)Hg

=F(v)+ 1<x(k+1) —x® v — x®)y
s

L k k
= (5= P =
< F(v)+ 1<X(k+1) - X(k), v — x(k)>
s
1

Now supp(x*) = supp(x*+1)) = S*, we can let v =
x* in (33), leading to

F(x") - F(x")

(k)

< Lixtn _y

x"—x®)y i||x(k+1) —x®)3
S 2s
1 * *
= §(|\x<k> — x5 — [Ix*TY —x*)3). (34)

Summing (34) over k = kg, ..., m with m > ko,

m

> FEMY) - F(x")

k=kq



- 1 k * k *
22— (™ = x5 = ™ = x75)
k=ko
1 * *
= oo (K™ = x"|g — [x"*0 = x"|3). (35)
Since {F(x®)},, is non-increasing, we have

Z F(xFH) — F(x*) > (m — ko + 1) F(x("HV) —

k=ko
F(x*). It follows from (35) that
F(x™) — F(x*)
1 (ko) * 12 (m+1) * 12
< o) — -
= 25(m_ko_’_l)(ux x|z — [Ix X ||2)
1 *
[[x*0) — x*|3. (36)

P
~ 2s(m — ko + 1)

Now we show that x* is a critical point of F'(-). It follows
from (30) that —Vg(x(kfl)) — L(xka) —xki=D)y €

Oh(x( ) for k; > 1. In addition, since OF (x(%i)) =
Vg(x*i)) + 3h(x(ki)), we have
Vo(x* 1)) — vg(xki—0) = L) _ 5=y ¢ gp(x®)),

S
(37

Due to the fact that ||x®) — x(*=D |, — 0as k — oo,
when j — co we have

[Vg(x®)) — vg(xti—D)y — é(xucj) (k=Y
< L”X(k]‘)) _ X(kj—l)”2 + lnx(kj) o X(kj71)||2
S
Also, as 7 — oo,
F(x®)) = g(x"9)) + n(x*)) = g(x"9)) + A|87|
= g(x7) + AIS7| = g(x7) + h(x") = F(x). (39

Based on (37), (38) and (39), 0 € 0F(x
critical point of F'(+).

*) and x* is a

In addition, kg is upper bounded. Note that the sequence
experiences only a finite number (at most |S|) of strict
support shrinkages. The iterations of PGD between two
consecutive strict support shrinkages are equivalent to
those of regular gradient descent on g. Suppose the
last support shrinkage happens in k;-th iteration with
ki1 > 0,and let S; = supp(x(kl)). Let x’ be the solu-
tion to the problem miny ¢,pp(x)=s, 9(X). Let the g-th
(¢ € S1) element of the variable incurs support shrink-
age, and {x'(")} be the sequence generated by performing
gradient descent on g staring with x*1) . We can al-
ways choose s such that v/2\s # |x;, |- Because {x'}

converges to x’, the support shrinkage at the ¢-th el-
ement of the variable must happen within finite itera-
tions. To see this, since v/2\s # x , there exists a small
§ > 0 such that (x}, — d,x; +6) C (— V2Xs,v/2)s) or
(x;, — d,x;, +0) C [—v/2Xs, v/2Xs]C, where AL is the
complement set of A. Since {x'(¥)} converges to x/, after
T iterations {x'(")};~ 7 must fall in (x], — 6,x}, + ). If
(x; —0,x,+0) C (—V/2)s,+/2)\s), then support shrink-
age happens after 7" iterations. If (x| — d,x; + ) C
[—Vv/2Xs, v/2As]C, support shrinkage must happen within
T iterations, otherwise |x'()| > v/2Xs for t > T and
support shrinkage never happens at the ¢-th element of
the variable, contradicting with the given fact. Therefore,
each support shrinkage happens with finite iterations. Be-
cause shrinkage can happen at most |S| times, k& is upper
bounded by a finite number.

O

Lemma C. For any two vectors u,v € R% |u —
Pr(v)|2 < ||lu — v||2 where supp(u) C R.
Proof. We have

[ —vl3

= [Pr(u— V)3 + [P, apr(a—v)3

> [Pr(u—v)|3 = u—-Pr(v)[. (40)
It follows that |ju — Pr(v)|2 < [Ju — v||2. O

Lemma 3. (Support shrinkage for nonmonotone acceler-
ated proximal gradient descent with support projection in

Algorithm 2) The sequence {x*)},. generated by Algo-
rithm 2 satisfies

supp(x**1) C supp(x*), k > 1, (41)

namely the support of the sequence {x(k) 192 | shrinks.

Proof of Lemma 3. We prove this Lemma by mathemat-
ical induction, and we will prove that

supp(x 1) C supp(x ),k > 1 (42)

When k = 1, using argument similar to the proof of
Lemma 1 we can show that supp(x(®) C supp(x"),
i.e. the support of x shrinks after the first iteration.

Now (42) are verified for k = 1. Suppose (42) holds for
all k£ < k' with ¥’ > 1. We now consider the case that
k=K +1.

Note the support projection operation in the update rule
(4) for w*)_ and supp(w*'+1)) C supp( (K'+1)) | Let
q(k +1) _ _Svg(w(k +1)) and % (k T2) _ '+



sVg(w* +1)). Then x§k,+2) = 0 due to the update rule
(5) for any j ¢ supp(w* +1)) and

K] < g7 Y| < 5G < V2Rs.  (43)
Because s < é—’}, the zero elements of w(*'+1) remain un-
changed in x(*'+2)_and it follows that supp(x(* +2)) C

supp(w(k/“)) C supp(x*" 1)), Therefore, (42) holds
for k = k' + 1. It follows that (42) holds for all k£ > 1.

O

Theorem 3. (Convergence of Nonmonotone Accelerated
Proximal Gradient Descent for the ¢ regularization prob-
lem (1)) Suppose s < min{é—é, %}, and x* is a limit

point of {x*) 172, generated by Algorithm 2. There ex-
ists ko > 1 such that

1 Sy (ko) (44)

(m+1)y _ prxc*
PO - () <

Sfor all m > ko, where
1
(ko) & (1

v B (28”

2,y (F(x*)) - F(x*))). 45)

(tro—1 — D)x*o™t — gy x4 x7||3

Proof of Theorem 3. According to Lemma 3, there ex-
ists ko > 0 such that {x(k)}iozk0 C Xr. It follows that
supp(x*) = S*.

When supp(v) = supp(x**1) for k > ko, we have
F(x*) < g(v) + (Vg(w®),x"HD —v)
L
+ 5 I = w4+ R
= g(v) + (Vg(w™),x*D —v)
L
+ 5 I = w5 4 h(v)
4 (Vgw®) 4 L) _ gy ety
S
=F(v)+ 1<x(k+1) —w® v — xEFy
S
oD w3
< F(v) + 1<x<k+1) —w® v w®)
S
_ EHXM” —w® )2 4 §||x<k+l> — w2
=F(v)+ l(x(kﬂ) —w® v —wk)
S
1 L
— (2 = I —w OB, (46)
Now using similar arguments in the proof of Lemma 3,

let v = x*) and v = x* in in (46), we have

Py < px®) 4 10 _ 0,
S

1 L
X(k) . w(k)> o (g _ §)||X(k+1) _ W(k>||§, 47)
and
1
F®) < Fix*) + LD _ g ®)
(x ) < F(x") + s<x w

k]

" 1 L
x = wl) = (L= D) Y - W s

(A7) x (t, — 1)+ (48), we have

e F(x*) — (1, — 1) FP) — F(x")

< §<x<k+1> —w® (e — 1)(x® —w®) £ x* —w®)
1 L
=t (5 = ) I = w (49)

Multiplying both sides of (49) by ¢, since ti —tp=1t3_4,
we have

2 (Fx*) - F(xY) — £, (F®) - F(x"))
< %(tk(x(k“) —w®), (tr = 1) (x® — w®)+

* k 1 L k k
X = w) = (= Dl — w3

<1
S

<tk(x(k+l) _ w(k)), (tk _ 1)(x(k) _ W(k))
* 1

7 = w) — e —w )3
1 *

= 5 (It — Dx™ — tw™ 4 x73

— I(tr = 1)x™ — tx® T 4 x7|3). (50)

Since w*) = P_, 00y (u®), it follows that (t;, —
1)X(k) — tkpsupp(x(k))(u(k)) +x* = (t — 1)X(k) —
trw®) 4+ x*. By Lemma C and (50), we have
t(F(x") = P(x")) — 7 (Fx™) - F(x"))
1 .
< 5 (It = Dx® — ™ + x| 3

— Itk — D)x® — tx*TY 4 x73). (51)

Define U+ = (¢, — 1)x®) — ¢;,x*+1) 4 x*, then
Uk = (tg—1 — l)x("?’l) — tr_1x%) 4+ x*. It can be
verified that U®) = (t;, —1)x® —¢; u(®) 4 x* according
to the update rule (3) for u®) . Then according to (51),
we have

2 (F*D) - Px) -, (F®) - F(x"))
1
< 5. (U5 — [UEH ). (52)
Summing (52) over k = kg, ko, +1,...,m form > ko,
we have

£, (P D) = F(x")) = 8,1 (F(x*) = F(x))



IN

1
L (o3 — Uty
1 k

Lyt )3

IN

1 - *
= l(tko—1 — D)x"07Y — o _ixFo) x50 (53)

2s

It follows from (53) that

Fx™) — F(x*)
1

< ﬁ”(t’vofl —)x*omt — gy x4 x7|3

+ t%’T‘l (F(x*)) — F(x"))

m

1 /1 (ko—1)
< g (g5 lmomr = Dx

+ 1, (F) = F(x")))

— tho—1x %) 4 x"|[3

4 1 . S
< m(gll(tml = 1xoT =g x4 x| 3

+ 8,1 (F) = P(x)))
A 4

A (ko)
My 1)2V , (54)
where the last inequality is due to the fact that ¢;, > %
fork > 1.

O

Lemma 4. (Support shrinkage for accelerated proximal
gradient descent with support projection in Algorithm 3)

The sequence {z™)}2° | and {x*) 1% | generated by Al-
gorithm 3 satisfy

“), (55)
“), (56)

namely the support of both sequences shrinks.

Proof of Lemma 4. We prove this Lemma by mathemat-
ical induction, and we will prove that for all £ > 1,
(’5+1))

supp(z C supp(z(E)). (57)

When k = 1, we first show that supp(z(?)) C supp(z(!),
i.e. the support of z(*) shrinks after the first iteration.

It is now Veriﬁed that (57) hold for k = 1. Suppose (57)
holds for all £ < k' with &’ > 1. We now consider the
case thatk = &' + 1.

Let g+t = *SVSJ(W(k,H)), and ig‘kurg) -
wk+1) _ ng(W(k'H))_ Then xg,k 2 — 0 due to the

update rule (9) for any j ¢ supp(w* 1)) and

XM < 5@ < V2, (58)

Because s < é—é, the zero elements of w(*'+1) remain
unchanged in z(K'+2) According to the support projec-
tion operation in (8), supp(w* 1)) C supp(z(* +1)) =
S'. 1t follows that supp(z*'+2) C supp(w*'*1)) C
supp(z* 1), Therefore, (57) holds for k = k' + 1. It
follows that (57) holds for all & > 1.

Now we prove (56), i.e.
supp(x*)) C supp(xM).

that for all £k > 1,

We have already shown that for all k£ > 1, supp(x(k)) =
supp(z®)) for some k < k. Note that x(*t1) =
z(k+1) or x(k+1) — x(¥)  In the latter case, we triv-
ially have supp(x**1)) = supp(x(*)). In the former
case, supp(x(**1) = supp(z**)) C supp(z¥)) =
supp(x(k)) because k < k < k + 1. Therefore, (56)
holds for all k > 1. O

Theorem 4. (Convergence of Monotone Accelerated
Proximal Gradient Descent for the ¢° regularization prob-
lem (1)) Suppose s < min{é—)g, %}, and x* is a limit

point of {x¥)}° | generated by Algorithm 3. There ex-
ists ko > 1 such that

4

F&) = PO <

W (ko) (59)
for all m > kg, where

wko) & ( (tkg—1 — 1)X<k071) - tko—lz(k[]) + X*Hg

1
;SII
+ 1 (F(x"™)) — F(x"))). (60)

Proof of Theorem 4. According to Lemma 4, it can be
verified that {x(¥)}2° ' forms at most 77 < |S|+ 1 subse-
quences with shrinking support {X;}72,, and {z*)}2° |
also forms at most T» < |S|+1 subsequences with shrink-
ing support, denoted by {Z;}72,.

Based on Lemma 2, there exists k1 > 0 such that
{x(l‘c)}zozk1 C Xr,. Similarly, there exists k2 > 0 such
that {z(¥)}2°,  C Zr,. According to Lemma 2, Let
all the elements of X1, have support S;, and all the
elements of Z7, have support So. We will show that
S1 = S,. To see this, let kg = max{ky, k2}, then
there exists &/ > kg such that x*) = z*) Due to
the fact that {x(k)}z":k1 C Xy, and {z(’“)}z@:k2 C Zp,
S1 = supp(x*)) = supp(z¥)) = Ss.

Let S; = Sy = S*, then all the elements of {x(*)}7°
and {z¥)}2°, “have the same support S*. It follows that
supp(x*) = S*.

When supp(v) = supp(z**1)) with & > k¢, we have
F(z"*) < g(v) + (Vg(w™), 24V —v)

Lg/ . .
+ a4 — w3+ hat )



= g(v) + (Vg(w)), 2D —v)
Lg/ .
B WO )
1 X X
+ (Vg(w'™) + g(z(kﬂ) —w®) v — gDy
=F(v)+ 1<z(k+1) —w® v - z(k+1))
Lg/ . .
AR
1 . X
< F(v)+ E<Z(k+1) —w® v —w®)
1 (k1) wyn2 , Lsty (1) (k)2
= L) w3 4 Bt s
s
— F(v) + 1<Z(k+1) —w® v w®)
s
1 Lg
— (= )" - w® . 1)

S 2

Note that supp(x(*)) = supp(x*) = S* for k > k.
Using similar arguments in the proof of Lemma 3, let

v = x®) and v = x* in (61) in the proof of Lemma 4,
we have
) < P(x®) + %(z(kﬂ) —w® ) (0
1 L
—(C = = w3, (62)
s 2
and

* 1 o o *
F(Z(k+1)) < F(x ) + 7<z(k+1) _ w(k),x _ w(k)>
s

- w3,

ENERNE AV
(5 =)= (63)

(62)x (tr, — 1)+ (63), we have

teF(zF)) = (1 —
< Ligtern _
S

1)F(X(k)) —

w(k), (tr — 1)(x(k) _

F(x")

w(k)) +x" — w(k)>

1 L
(- Dyt (64)
s 2
It follows that
e (F) = F(c)) = (0= D (F&P) = F(x))
< 1<z(k+1) —w® (e = )" - w4 x" - w®)

S

w3,

1 L
—te(5 = )2 - (65)

Multiplying both sides of (65) by ¢, since t7 —t;, = t7_,,
we have
th(F (") —

F(x")) = tia (F®) = F(x"))

1 *

< g<tk(z(k+1) — WY (e — )P — w4 x — wk))y
1 L .

— (5 =3tz D — w3

< = (ti(@®T — w®y, (- 1)(x™

W(k)) +x"— w(k‘)>

HC/:;M—'

55 Itk (2" — w3

%(H(tk —1)x® — w4+ x5

— It = 1)x® = 12T+ x7|3). (66)

Note that supp((t, — 1)x*) + x*) C S* and (w¥)) =
Ps- (u®), according to Lemma C and (66), we have
t2 (F(Z(k+1)) _ F(x*)) _ ti—l(F(XUC)) _
L et — 1)x®
< 2 (”(t’C Dx

— |t — Dx®) — gz 4 x*||§)

F(x*))

— tpu™ 4 x*||2

(67)
Define A+ = (t, — 1)x*®) — t,z2*+1) 4 x*, then

AP = (tp_y — Dx®=D —t;12() £ x*, It can be ver-
ified that A®) = (¢, — 1)x*) — t,u® + x*. Therefore,

tr(F(z") — P(x7)) — th . (F(x™) —

1 k k
< o (1A — A%+D]3).

F(x*))

(68)

Summing (68) over k = ko, ..., m for m > kg, we have

to (F(2™ ) — F(x")) — 3,1 (F(x") — F(x"))

simMW%wN“Was%M%%

— %H(tko,l ~Dx®0D g 00 L xf20 (69)
Since tj, > £+ for k > 1, it follows from (69) that
F(z") - F(xY)

< Gy (g5 i = D07 iz

+thy 1 (F(x™)) — F(x7)))

2 G w
O
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