
A PROOFS

A.1 PROOF OF PROPOSITION 3.4

Proof. (Proof of Proposition 3.4)

Consider the most basic case when there is only one
Boolean variable b in theory ✓. Let ✓

0 be an SMT(LRA)
theory defined as follow

✓
0
= ✓{b : �b} ^ (�1  �b  1)

where ✓{b : �b} is obtained by replacing all atom b by
0 < �b and replacing all its negation ¬b by �b < 0 in
theory ✓.

Recall that weight functions are defined by a set of lit-
erals L and a set of per-literal weight functions P =

{p`(x)}`2L. When a literal ` is satisfied in a world, de-
noted by x ^ b |= `, weights are defined as follows

w(x, b) =

Y

`2L
x^b|=`

p`(x).

Let L0 be a set of literals obtained by replacing Boolean
literal b by 0 < �b and replacing its negation ¬b by �b <

0 in theory ✓ as we do for theory. For the set of per-
literal weight functions P 0, we define it for introduced
real variable �b by p(�b>0) = pb and p(�b<0) = p¬b.

Then we have that for any x⇤,

w
0
(x⇤

, �b) =

⇢
w(x⇤

, b), 1 > �b > 0

w(x⇤
, ¬b), �1 < �b < 0

By definition of WMI, we write WMI(✓, w | x, b) in its
integration form as follows.

WMI(✓, w | x, b)

=

Z

✓(x,b)

w(x, b)dx +

Z

✓(x,¬b)

w(x, ¬b)dx

For the first term in the above equation, we can rewrite it
s.t. Boolean variable b is replaced by real variable �b in
the following way.

Z

✓(x,b)

w(x, b)dx =

Z 1

0

Z

✓(x,b)

w(x, b)dxd�b

=

Z

✓0(x,�b)

w
0
(x, �b)dxd�b

By doing this to the other integration term of WMI(✓, w |
x, b), and also by the definition of WMI, we finally ob-
tain that

WMI(✓, w | x, b) = WMI(✓
0
, w

0 | x0
)

where x0
= x[ {�b} is a set of real variables. The proof

above can be easily adapted to multiple Boolean variable
cases, which proves our proposition.

A.2 PROOF OF PROPOSITION 3.5

Proof. (Proof of Proposition 3.5) To start with, we con-
sider SMT(LRA) theory ✓ with no Boolean variables
with a simple weight function w where the set of literal
L = {`} has only one literal and literal weight function
p`(x) =

Qn
i=0 x

pi
i .

Claim A.1. For a monomial function f(x) =
Qn

i=0 x
pi
i ,

let ✓f =
Vn

i=0

Vpi

j=1(0  z
i
j  xi). Then we have the

monomial f(x) = MI(✓f | z;x), where z is the set of
real variables z

i
j in theory ✓f , and x is parameters of

theory ✓f .

Let ✓
0

= ✓ ^ (` ) ✓p) ^ (¬` ) ✓̂p) where p = p`

for brevity, ✓p is as defined in Claim A.1 and ✓̂p :=Vn
i=0

Vpi

j=1(0  z
i
j  1). Then we can rewrite

WMI(✓, w | x) as MI problem by Claim A.1 as follows.

WMI(✓, w | x) =

Z

✓(x)
w(x)dx

=

Z

✓(x)^`(x)
p(x)dx +

Z

✓(x)^¬`(x)
1dx

=

Z

✓(x)^`(x)
MI(✓p | z;x)dx +

Z

✓(x)^¬`(x)
1dx

=

Z

✓(x)^`(x)

Z

✓p(z)
1dzdx +

Z

✓(x)^¬`(x)^✓̂p

1dxdz

= MI(✓ ^ (`) ✓p) ^ (¬`) ✓̂p) | x, z)

Take x0
= x [ z then the proposition holds. The

proof can be easily adapted for monomials with non-
trivial coefficient by inducing more real variables z. It
also holds for more general weight functions with literal
set L = {`i}ki=1 and set of monomial per-literal weight
functions P = {p`i}ki=1, by taking theory ✓

0 as follows
which completes the proof of proposition.

✓
0
= ✓ ^

k̂

i=1

(`i ) ✓p`i
) ^

k̂

i=1

(¬`i ) ✓̂p`i
).



Proof. (Proof of Claim A.1) By definition of theory ✓f ,

MI(✓f | z;x) =

Z

✓f (z)
1dz

=

nY

i=1

piY

j=1

Z xi

0
1dz

i
j

=

nY

i=1

piY

j=1

xi =

nY

i=1

x
pi
i = f(x).

A.3 REDUCTION TO MI WITH POLYNOMIAL
WEIGHTS

The reduction from WMI problems to MI problems in
Proposition 3.5 can also be done for arbitrary polyno-
mial weight functions but can increase treewidth of pri-
mal graphs. We give a formal description on this reduc-
tion as follows.

Let ✓ be an SMT(LRA) theory with no Boolean vari-
ables with weight functions where the set of literal L =

{`} has only one literal and literal weight function is
a polynomial, denoted by p(x) =

Pk
i=1 ↵ifi(x) with

each fi a monomial function.

It has been shown in the proof of Proposition 3.5 in Sec-
tion A.2 that for each monomial function fi, there ex-
ist two SMT(LRA) theories ✓i and ✓̂i such that MI(✓i |
zi;x) = fi(x) and MI(✓̂i | zi;x) = 1.

Let’s define theories ✓
0
i = ✓i ^ (0 < vi < ↵i) and ✓̂

0
i =

✓̂i ^ (0 < vi < 1) with parameter variables vi. Also
define an indicator variable � with real domain [0, k] and
literals `i = i � 1 < � < i with i 2 {1, 2, · · · , k}.
Then we have that for an SMT(LRA) theory ✓

0 defined
as follows, it holds that WMI(✓, w | x) = MI(✓0 | x, z)

with z denoting all auxiliary variables.

✓
0
= ✓ ^ (` () _ki=1`i)

k̂

i=1

(`i ) ✓
0
i)

k̂

i=1

(¬`i ) ✓̂
0
i)

Why the WMI problem and the MI problem are equal
can be proved by the following observations.

WMI(✓, w | x) =

Z

✓(x)
w(x)dx (4)

=

Z

✓(x)^`(x)
p(x)dx +

Z

✓(x)^¬`(x)
1dx (5)

For the first term in Equation 5, we have that

Z

✓(x)^`(x)
p(x)dx =

kX

i=1

Z

✓(x)^`(x)
↵ifi(x)dx

=

kX

i=1

Z

✓(x)^`(x)^`i

↵ifi(x)dxd�

=

kX

i=1

Z

✓(x)^`(x)^`i^✓i

1dxdz

= MI(✓0 ^ ` | x, z)

Also for the second term in Equation 5, it equates to
MI(✓0 ^ ¬` | x, z). Therefore, reduction from the WMI
problem to the MI problem holds. Although the reduc-
tion process we show here is for theories with one poly-
nomial weight function, this process can be generalized
to theories with multiple polynomial weight functions
with little modification.

A.4 PROOF OF PROPOSITION 4.1

Proof. (Proof of Proposition 4.1) It follows from defi-
nition of WMI. Denote the set of real variables x\{y} by
x̂. From the definition of WMI in Equation 2.2, we can
obtain the following partial derivative of WMI of theory
✓ w.r.t. variable y.

@

@x
WMI(✓, w | x, b) |y=y⇤

=

X

µ2Bm

Z

✓(y⇤,x̂,µ)

w(y
⇤
, x̂, µ)dx̂

where the variable y is fixed to value y
⇤ in weight func-

tion, µ are total truth assignments to Boolean variables as
defined before. The weight function is integrated over set
{x̂⇤ | ✓(y

⇤
, x̂⇤

, µ) is true}. We define p(y) as follows

p(y) :=

X

µ2Bm

Z

y,✓(x̂,µ)

w(y, x̂, µ)dx̂

Since weight functions w are piecewise polynomial,
function p(y) is a univariate piecewise polynomial p(y),
and WMI(✓, w | x, b) is an integration over p(y), which
finishes our proof.

A.5 PROOF OF THEOREM 4.4

Claim A.2. For each path in the primal graph that starts
with the root and ends with a leaf, and each real variable
in path with height i, its number of polynomial pieces is
O(n · c

i+1
).



Algorithm 2 Polynomial pieces and degree enumeration algorithms

a) PE EDGE – For Two Variable Theory
Input: ✓: SMT(LRA) theory with two real variables
I : interval and degree tuples of variable x

Output: Iy: pieces and degrees for variable y

1: B  collect integration bounds on variable x

2: Y  y values where two bounds in B meet
3: for all interval [l, u] resulting from Y do
4: ✓

0  ✓ ^ (l  y  u)

5: if ✓
0 is SAT then

6: {l(y), u(y), d} get bound degree(x,✓0,I)
7: d

0  argmaxd get degree(l(y), u(y), d)})

8: Iy  Iy [ ([l, u], d
0
)

9: Return Iy

b) PE NODE – For Tree Primal Graph
Input: ✓: SMT theory with tree primal graph
G: primal graph for theory ✓

Output: Iy: interval and degree tuples of root variable y

1: if root y has no child then
2: Iy  get bound degree(✓)
3: return Iy

4: ✓y,c’s, ✓Gc ’s partition SMT(LRA) theory ✓

5: for all child c do
6: Ic  PE NODE(✓c, Gc)

7: I
c
y  PE EDGE(✓y,c, Ic)

8: Return Iy = shatter
�
{I

c
y}c

�

Proof. The proof can be done by mathematical induc-
tion. Denote the real variable with height i in the path by
xi For i = 0, since the number of LRA literals is c, then
there are at most c critical points for real variable x0 and
therefore there are at most c + 1 polynomial pieces for
x0.

Suppose that the claim holds for i, that is, the number of
polynomial pieces for xi is O(n ·ci+1

). To obtain critical
points for variable xi+1, we collect integration bounds
on variable xi whose size is O(n · c

i+1
) by assumption.

Since the critical points of variable xi+1 are obtained by
solving b1 = b2 w.r.t. variable xi+1 for b1, b2 in bounds
on variable xi, where there are at most c bounds contain-
ing xi+1 and the rest bounds are numerical ones, there
are at most O(n · c

i+2
) solutions. Therefore, the num-

ber of polynomial pieces for xi+1 is O(n · c
i+2

), which
finishes our proof.

Proof. (Proof of Theorem 4.4) Let p be an arbitrary
path in the pseudo tree T that starts with the root and ends
with a leaf. Denote the maximum polynomial degree in
weight functions by d. By Claim A.2 for each variable,
it has at most O(n · c

hp) polynomial pieces. Moreover
from Prop. 4.1, polynomials defined over each pieces
have at most n(d + h) polynomial degree. Therefore the
set of values chosen to do instantiation on a certain real
variable has size O(n

3 · c
hp) and each path p induces a

search space with size O((n
3 · c

hp)
ht) since length of

each path is bounded by ht.

The pseudo tree T is covered by l such directed paths.
The union of their individual search spaces covers the
whole search space, where every distinct full path in the
search space appears exactly once. Therefore, the size of
the search space is bounded by O(l · (n

3 · c
hp)

ht).

B CACHING

Our algorithm allows caching in two sense. The first is
the caching of pieces, i.e. intervals and polynomial de-
grees obtained from child nodes, which can be consid-
ered as constraints from child nodes. The pieces of a cer-
tain nodes is decided both by instantiation values from
its father node as well as pieces from child nodes. Al-
though we instantiate root nodes with distinct values, the
constraints from child nodes for a certain node remains
unchanged as long as they have the same father-child re-
lation in subtree.

Another case where caching is possible is values of p(y)

as defined in Prop. 4.1 at instantiations of variable x.
This is possible because for a certain node, its pieces re-
sulting from different instantiation values of its grand-
father node might intersects. This is especially helpful
when there is a long path in primal graphs and caching
can save a lot computational effort.

C PIECE ENUMERATION
ALGORITHM

We summarize piece enumeration algorithms for two
variable theory and for theory with tree primal graphs
as described in Section 4.2 in Algorithm 2. Both
get bound degree and get degree are trivial operations
for specifying integration bounds and polynomial degree.
They are applied when the magnitude order of integra-
tion bounds are fixed and thus they can be done by scan-
ning through related theories.


