
Supplementary Material of “Efficient Multitask Feature and Relationship Learning”

In this supplementary material we provide all the missing proofs to the propositions, lemmas and theorems in our main
paper “Efficient Multitask Feature and Relationship Learning”.

A PROOFS

A.1 Proof of Proposition 4.1

Proposition 4.1. (5) can be solved in closed form in O(m3
d
3 +mnd

2) time; the optimal solution W
⇤ is: vec(W ⇤) =�

Im ⌦ (XT
X) + ⌘ ⌃2 ⌦ ⌃1

��1 vec(XT
Y).

To prove this claim, we need the following facts about tensor product:
Fact A.1. Let A be a matrix. Then ||A||F = ||vec(A)||2.
Fact A.2. Let A 2 Rm1⇥n1 , B 2 Rn1⇥n2 and C 2 Rn2⇥m2 . Then vec(ABC) = (CT ⌦A)vec(B).
Fact A.3. Let S1 2 Rm1⇥n1 , S2 2 Rn1⇥p1 and T1 2 Rm2⇥n2 , T2 2 Rn2⇥p2 . Then (S1 ⌦ S2)(T1 ⌦ T2) =
(S1S2)⌦ (T1T2).
Fact A.4. Let A 2 Rn⇥n and B 2 Rm⇥m. Let {µ1, . . . , µn} be the spectrum of A and {⌫1, . . . , ⌫m} be the spectrum
of B. Then the spectrum of A⌦B is {µi⌫j : 1  i  n, 1  j  m}.

We can show the following result by transforming W into its isomorphic counterpart:

Proof.

||Y �XW ||2F + ⌘ ||⌃1/2
1 W⌃1/2

2 ||2F
= ||vec(Y �XW)||22 + ⌘ ||vec(⌃1/2

1 W⌃1/2
2)||22 (By Fact A.1)

= ||vec(Y)� (Im ⌦X)vec(W)||22 + ⌘ ||(⌃1/2
2 ⌦ ⌃1/2

1)vec(W)||22 (By Fact A.2)

= vec(W)T
⇣
(Im ⌦X)T (Im ⌦X) + ⌘(⌃1/2

2 ⌦ ⌃1/2
1)T (⌃1/2

2 ⌦ ⌃1/2
1)

⌘
vec(W)

� 2vec(W)T (Im ⌦X
T)vec(Y) + vec(Y)T vec(Y)

= vec(W)T
�
(Im ⌦X

T
X) + ⌘(⌃2 ⌦ ⌃1)

�
vec(W)

� 2vec(W)T (Im ⌦X
T)vec(Y) + vec(Y)T vec(Y) (By Fact A.3)

The last equation above is a quadratic function of vec(W), from which we can read off that the optimal solution W
⇤

should satisfy:
vec(W ⇤) =

�
Im ⌦ (XT

X) + ⌘⌃2 ⌦ ⌃1

��1
vec(XT

Y) (12)

W
⇤ can then be obtained simply by reformatting vec(W ⇤) into a d⇥m matrix. The computational bottleneck in the

above procedure is in solving an md ⇥md system of equations, which scales as O(m3
d
3) if no further structure is

available. The overall computational complexity is O(m3
d
3 +mnd

2). ⌅

A.2 Proof of Proposition 4.2

To analyze the convergence rate of gradient descent in this case, we start by bounding the smallest and largest eigenvalue
of the quadratic system.
Lemma A.1 (Weyl’s inequality). Let A,B and C be n-by-n Hermitian matrices, and C = A+B. Let a1 � · · · � an,
b1 � · · · � bn and c1 � · · · � cn be the eigenvalues of A,B and C respectively. Then the following inequalities hold
for r + s� 1  i  j + k � n, 8i = 1, . . . , n:

aj + bk  ci  ar + bs

Let �k(A) be the k-th largest eigenvalue of matrix A.

Lemma A.2. If ⌃1 and ⌃2 are feasible in (4), then

�1(Im ⌦ (XT
X) + ⌘Imd + ⇢⌃2 ⌦ ⌃1)  �1(X

T
X) + ⌘ + ⇢u

2

�md(Im ⌦ (XT
X) + ⌘Imd + ⇢⌃2 ⌦ ⌃1) � �d(X

T
X) + ⌘ + ⇢l

2

Proof. By Weyl’s inequality, setting r = s = i = 1, we have c1  a1 + b1. Set j = k = i = n, we have cn � an + bn.
We can bound the largest and smallest eigenvalues of Im ⌦ (XT

X) + ⌘Imd + ⇢⌃2 ⌦ ⌃1 as follows:

�1(Im ⌦ (XT
X) + ⌘Imd + ⇢⌃2 ⌦ ⌃1)

 �1(Im ⌦ (XT
X)) + �1(⌘Imd) + �1(⇢⌃2 ⌦ ⌃1) (By Weyl’s inequality)

= �1(Im)�1(X
T
X) + ⌘ + ⇢�1(⌃1)�1(⌃2) (By Fact A.4)

 �1(X
T
X) + ⌘ + ⇢u

2 (By the feasibility assumption)

and

�md(Im ⌦ (XT
X) + ⌘Imd + ⇢⌃2 ⌦ ⌃1)

� �md(Im ⌦ (XT
X)) + �md(⌘Imd) + �md(⇢⌃2 ⌦ ⌃1) (By Weyl’s inequality)

= �m(Im)�d(X
T
X) + ⌘ + ⇢�m(⌃1)�d(⌃2) (By Fact A.4)

� �d(X
T
X) + ⌘ + ⇢l

2 (By the feasibility assumption)

⌅

We will first introduce the following two lemmas adapted from (Nesterov, 2013), using the fact that the spectral norm
of the Hessian matrix r2

h(W) is bounded.
Lemma A.3. Let f(W) : Rd⇥m 7! R be a twice differentiable function with �1(r2

f(W))  L. L > 0 is a constant.
The minimum value of f(W) can be achieved. Let W ⇤ = argminW f(W), then

f(W ⇤)  f(W)� 1

2L
||rf(W)||2F

Lemma A.4. Let f(W) : Rd⇥m 7! R be a convex, twice differentiable function with �1(r2
f(W))  L. L > 0 is a

constant, then 8W1,W2:

tr
�
(rf(W1)�rf(W2))

T (W1 �W2)
�
� 1

L
||rf(W1)�rf(W2)||2F

We can now proceed to show Proposition 4.2.
Proposition 4.2. Let �l = �d(XT

X) + ⌘l
2 and �u = �1(XT

X) + ⌘u
2. Choose 0 < t  2

�u+�l
. For all " > 0,

gradient descent with step size t converges to the optima within O(log(1/")) steps.

Proof. Define function g(W) as follows:

g(W) = h(W)� �l

2
||W ||2F

Since we have already bounded that �md(r2
h(W)) � �l, it follows that g(W) is a convex function and furthermore

�1(r2
g(W))  �u � �l. Applying Lemma A.4 to g, 8W1,W2 2 Rd⇥m, we have:

tr
�
(rg(W1)�rg(W2))

T (W1 �W2)
�
� 1

�u � �l
||rg(W1)�rg(W2)||2F

Plug in rg(W) = rh(W)� �lW into the above inequality and after some algebraic manipulations, we have:

tr
�
(rh(W1)�rh(W2))

T (W1 �W2)
�
� 1

�u + �l
||rh(W1)�rh(W2)||2F +

�u�l

�u + �l
||W1 �W2||2F (13)

Let W ⇤ = argminW h(W). Within each iteration of the algorithm, we have the update formula as W
+ = W �

trh(W), we can bound ||W+ �W
⇤||2F as follows

||W+ �W
⇤||2F = ||W �W

⇤ � trh(W)||2F
= ||W �W

⇤||2F + t
2||rh(W)||2F � 2ttr

�
(W �W

⇤)Trh(W)
�

 (1� 2t
�u�l

�u + �l
)||W �W

⇤||2F + t(t� 2

�u + �l
)||rh(W)||2F (By inequality 13)

 (1� 2t
�u�l

�u + �l
)||W �W

⇤||2F (For 0 < t  2/(�u + �l))

Apply the above inequality recursively for T times, we have

||W (T) �W
⇤||2F  �

T ||W (0) �W
⇤||2F

where � = 1� 2t �u�l
�u+�l

. For t = 2/(�u + �l), we have

� = 1� 4�u�u/(�l + �u)
2 =

✓
�u � �l

�u + �l

◆2

Now pick 8" > 0, setting the upper bound �
T ||W (0) �W

⇤||2F  " and solve for T , we have

T � log1/�(C/") = O(log1/�(1/")) = O( log(1/"))

where C = ||W (0) �W
⇤||2F is a constant, and  = �u/�l is the condition number. ⌅

A.3 Detailed Proof on Optimization of ⌃1 and ⌃2

In this section we show the detailed derivation on how to solve (7) efficiently.

As mentioned in the main paper, since ⌃2 2 Sm++, it follows that W⌃2W
T 2 Sd+. Without loss of generality, using

spectral decomposition, we can reparametrize ⌃1 = U⇤UT , where ⇤ = diag(�1, . . . ,�d) with u � �1 � �2 · · · �
�d � l and U 2 Rd⇥d with U

T
U = UU

T = Id. Similarly, we can represent W⌃2W
T = V NV

T where V 2 Rd⇥d,
V

T
V = V V

T = Id and N = diag(⌫1, . . . , ⌫d) with 0  ⌫1  · · ·  ⌫d. Note that the eigenvectors in N corresponds
to eigenvalues in increasing order rather than decreasing order, for reasons that will become clear below. Realizing that
U is an orthonormal matrix, we have:

log |⌃1| = log |U⇤UT | = log |⇤|, tr(⌃1W⌃2W
T) = tr(⇤UT

V NV
T
U) (14)

Set K = U
T
V . Since both U and V are orthonormal matrices, K is also an orthonormal matrix. We can further

transform (14) to be tr(⇤UT
V NV

T
U) = tr((⇤K)(KN)T). Note that the mapping between U and K is bijective

since V is a fixed orthonormal matrix. Using K and ⇤, we can equivalently transform the optimization problem (7) into
the following new form:

min
K,⇤

tr((⇤K)(KN)T)�m log |⇤|, s.t. l diag(1d)  ⇤  u diag(1d),K
T
K = KK

T = Id (15)

where 1d is a d-dimensional vector of all ones. At first glance it seems that the new form of optimization is more
complicated to solve since it is even not a convex problem due to the quadratic equality constraint. However, as we will
see shortly, the new form helps to decouple the interaction between K and ⇤ in that K does not influence the second
term �m log |⇤|. This implies that we can first partially optimize over K, finding the optimal solution as a function of
⇤, and then optimize over ⇤. Mathematically, it means:

min
K,⇤

�m log |⇤|+ tr((⇤K)(KN)T) , min
⇤

�m log |⇤|+min
K

tr((⇤K)(KN)T) (16)

So that we can first consider the minimization over K: tr((⇤K)(KN)T) =
Pd

i=1

Pd
j=1 �iK

2
ij⌫j = �

T
P⌫, where

we define P = K �K, � = (�1, · · · ,�d)T and ⌫ = (⌫1, · · · , ⌫d)T . Since K is an orthonormal matrix, we have the

following two equations:
Pd

j=1 Pij =
Pd

j=1 K
2
ij = 1, 8i 2 [d],

Pd
i=1 Pij =

Pd
i=1 K

2
ij = 1, 8j 2 [d], which

implies that P is a doubly stochastic matrix

min
K

tr((⇤K)(KN)T) = min
P

�
T
P⌫ (17)

In order to solve the minimization over the doubly stochastic matrix P , we need to introduce the following theorems.
Lemma A.5 ((Bertsimas and Tsitsiklis, 1997)). Consider the minimization of a linear program over a polyhedron P .
Suppose that P has at least one extreme point and that there exists an optimal solution. Then there exists an optimal
solution that is an extreme point of P .
Definition A.1 (Birkhoff polytope). The Birkhoff polytope Bd is the set of d⇥ d doubly stochastic matrices. Bd is a
convex polytope.
Lemma A.6 (Birkhoff-von Neumann theorem). Let Bd be the Birkhoff polytope. Bd is the convex hull of the set of
d⇥ d permutation matrices. Furthermore, the vertices (extreme points) of Bd are the permutation matrices.

Combine the above two theorems, it is clear to see that there exists an optimal solution P to the optimization problem
(17) that is a d⇥ d permutation matrix. This implies that we can reduce (17) to a minimum-weight perfect matching
problem on a weighted complete bipartite graph.
Definition A.2 (Minimum-weight perfect matching). Let G = (V,E) be an undirected graph with edge weight
w : E ! R+. A perfect matching in G is a set M ✓ E such that no two edges in M have a vertex in common and
every vertex from V occurs as the endpoint of some edge in M . A matching M is called a minimum-weight perfect
matching if it is a perfect matching that has the minimum weight among all the perfect matchings of G.

For any �, ⌫ 2 Rd
+, we can construct a weighted d by d bipartite graph G = (V�, V⌫ , E;w) as follows:

• For each �i, construct a vertex v�i 2 V�, 8i.
• For each ⌫j , construct a vertex v⌫j 2 V⌫ , 8j.
• For each pair (v�i , v⌫j), construct an edge e(v�i , v⌫j) 2 E with weight w(e(v�i , v⌫j)) = �i⌫j .

The following lemma relates the solution of the minimum weight matching to the solution of (17):
Lemma A.7. The minimum value of (17) is equal to the minimum weight of a perfect matching on G = (V�, V⌫ , E, w).

Surprisingly, we do not even need to run standard graph matching algorithms to solve our matching problem. Instead,
Thm. A.1 gives a closed form solution.
Theorem A.1. Let � = (�1, . . . ,�d) and ⌫ = (⌫1, . . . , ⌫d) with �1 � · · · � �d and ⌫1  · · ·  ⌫d. The minimum-
weight perfect matching on G is ⇡

⇤ = {(v�i , v⌫i) : 1  i  d} with the minimum weight w(⇡⇤) =
Pd

i=1 �i⌫i.

The permutation matrix that achieves the minimum weight is P
⇤ = Id since ⇡

⇤(�i) = ⌫i. Note that P = K � K,
it follows that the optimal K⇤ is also Id. Hence we can solve for the optimal U⇤ matrix by solving the equation
U

⇤T
V = Id, which leads to U

⇤ = V . Now plug in the optimal K⇤ = Id into (16). The optimization w.r.t. ⇤
decomposes into d independent problems, each of which being a simple scalar optimization problem:

minimize
�

dX

i=1

�i⌫i �m log �i

subject to l  �i  u, 8i = 1, . . . , d (18)

Depending on whether the value m/⌫i is within the range [l, u], the optimal solution �
⇤
i for each scalar minimization

problem may take different forms. Define a hard-thresholding operator T[l,u](z) as follows:

T[l,u](z) =

8
><

>:

l, z < l

z, l  z  u

u, z > u

(19)

Using this hard-thresholding operator, we can express the optimal solution �
⇤
i as �⇤

i = T[l,u](m/⌫i), which finishes the
proof.

A.3.1 Proof of Lemma A.7

Lemma A.7. The minimum value of (17) is equal to the minimum weight of a perfect matching on G = (V�, V⌫ , E, w).

Proof. By Lemma A.5 and Lemma A.6, the optimal value is achieved when P is a permutation matrix. Given a
permutation matrix P , we can understand P as a bijective mapping from the index of rows to the index of columns.
Specifically, construct a permutation ⇡P : [d] ! [d] from P as follows. For each row index i 2 [d], ⇡P (i) = j iff
Pij = 1. It follows that ⇡P is a permutation of [d] since P is assumed to be a permutation matrix. The objective
function in (17) can be written in terms of ⇡P as

�
T
P⌫ =

dX

i=1

�i⌫⇡P (i)

which is exactly the weight of the perfect matching on G(V�, V⌫ , E, w) given by ⇡P :

w(⇡P) = w({(i,⇡P (i)) : 1  i  d}) =
dX

i=1

�i⌫⇡P (i)

Similarly, in the other direction, given any perfect matching ⇡ : [d] ! [d] on the bipartite graph G(V�, V⌫ , E, w),
we can construct a corresponding permutation matrix P⇡: P⇡,ij = 1 iff ⇡(i) = j, otherwise 0. Since ⇡ is a perfect
matching, the constructed P⇡ is guaranteed to be a permutation matrix.

Hence the problem of finding the optimal value of (17) is equivalent to finding the minimum weight perfect matching
on the constructed bipartite graph G(V�, V⌫ , E, w). Note that the above constructive process also shows how to recover
the optimal permutation matrix P⇡⇤ from the minimum weight perfect matching ⇡

⇤. ⌅

A.3.2 Proof of Theorem A.1

Note that � = (�1, . . . ,�d) and ⌫ = (⌫1, . . . , ⌫d) are assumed to satisfy �1 � · · · � �d and ⌫1  · · ·  ⌫d. To make
the discussion more clear, we first make the following definition of an inverse pair.
Definition A.3 (Inverse pair). Given a perfect match ⇡ of G(V�, V⌫ , E, w), (�i,�j , ⌫k, ⌫l) is called an inverse pair if
i  j, k  l and (v�i , v⌫l) 2 ⇡, (v�j , v⌫k) 2 ⇡.
Lemma A.8. Given a perfect match ⇡ of G(V�, V⌫ , E, w) and assuming ⇡ contains an inverse pair (�i,�j , ⌫k, ⌫l).
Construct ⇡0 = ⇡\{(v�i , v⌫l), (v�j , v⌫k)} [{((v�i , v⌫k), (v�j , v⌫l)}. Then w(⇡0)  w(⇡).

Proof. Let us compare the weights of ⇡ and ⇡
0. Note that since i  j, k  l, we have �i � �j and ⌫k  ⌫l.

w(⇡0)� w(⇡) = (�i⌫k + �j⌫l)� (�i⌫l + �j⌫k)

= (�i � �j)(⌫k � ⌫l)

 0

Intuitively, this lemma says that we can always decrease the weight of a perfect matching by re-matching an inverse

�i �j

⌫k ⌫l

�i �j

⌫k ⌫l

Figure 5: Re-matching an inverse pair (�i,�j , ⌫k, ⌫l) = {(v�i , v⌫l), (v�j , v⌫k)} on the left side to a match with smaller
weight {(v�i , v⌫k), (v�j , v⌫l)}. Red color is used to highlight edges in the perfect matching.

pair. Fig. 5 illustrates this process. It is worth emphasizing here that the above re-matching process only involves four
nodes, i.e., v�i , v⌫l , v�j and v⌫k . In other words, the other parts of the matching stay unaffected. ⌅

Using Lemma A.8, we are now ready to prove Thm. A.1:
Theorem A.1. Let � = (�1, . . . ,�d) and ⌫ = (⌫1, . . . , ⌫d) with �1 � · · · � �d and ⌫1  · · ·  ⌫d. The minimum-
weight perfect matching on G is ⇡⇤ = {(v�i , v⌫i) : 1  i  d} with the minimum weight w(⇡⇤) =

Pd
i=1 �i⌫i.

Proof. We will prove by induction.

• Base case. The base case is d = 2. In this case there are only two valid perfect matchings, i.e.,
{(v�1 , v⌫1), (v�2 , v⌫2)} or {(v�1 , v⌫2), (v�2 , v⌫1)}. Note that the second perfect matching {(v�1 , v⌫2), (v�2 , v⌫1)}
is an inverse pair. Hence by Lemma A.8, w({(v�1 , v⌫1), (v�2 , v⌫2)}) = �1⌫1 + �2⌫2  �1⌫2 + �2⌫1 =
w({(v�1 , v⌫2), (v�2 , v⌫1)}).

• Induction step. Assume Thm. A.1 holds for d = n. Consider the case when d = n+ 1. Start from any perfect
matching ⇡. Check the matches of node v�n+1 and v⌫n+1 . Here we have two subcases to discuss:

– If v�n+1 is matched to v⌫n+1 in ⇡. Then we can remove nodes v�n+1 and v⌫n+1 from current graph, and this
reduces to the case when n = d. By induction assumption, the minimum weight perfect matching on the new
graph is given by

Pn
i=1 �i⌫i, so the minimum weight on the original graph is

Pn
i=1 �i⌫i + �n+1⌫n+1 =Pn+1

i=1 �i⌫i.
– If v�n+1 is not matched to v⌫n+1 in ⇡. Let v⌫j be the match of v�n+1 and v�i be the match of v⌫n+1 , where
i 6= n+ 1 and j 6= n+ 1. In this case we have i < n+ 1 and j < n+ 1, so (�i,�n+1, ⌫j , ⌫n+1) forms an
inverse pair by definition. By Lemma A.8, we can first re-match v�n+1 to v⌫n+1 and v�i to v⌫j to construct a
new match ⇡

0 with w(⇡0)  w(⇡). In the new matching ⇡
0 we have the property that v�n+1 is matched to

v⌫n+1 , and this becomes the above case that we have already analyzed, so we still have the minimum weight
perfect matching to be

Pn+1
i=1 �i⌫i.

Intuitively, as shown in Fig. 5, an inverse pair corresponds to a cross in the matching graph. The above inductive
proof basically works from right to left to recursively remove inverse pairs (crosses) from the matching graph. Each
re-matching step in the proof will decrease the number of inverse pairs at least by one. The whole process stops until
there is no inverse pair in the current perfect matching. Since the total number of possible inverse pairs, the above
process can stop in finite steps. We illustrate the process of removing inverse pairs in Fig. 6. ⌅

�1 �2 · · · �d

⌫1 ⌫2 · · · ⌫d

�1 �2 · · · �d

⌫1 ⌫2 · · · ⌫d

�1 �2 · · · �d

⌫1 ⌫2 · · · ⌫d

Figure 6: The inductive proof works by recursively removing inverse pairs from the right side of the graph to the left
side of the graph. The process stops until there is no inverse pair in the matching. Red color is used to highlight edges
in the perfect matching.

	INTRODUCTION
	PRELIMINARY
	NOTATION AND SETUP
	MATRIX-VARIATE NORMAL DISTRIBUTION
	MULTITASK FEATURE AND RELATIONSHIP LEARNING

	ILL-POSED OPTIMIZATION
	MULTICONVEX OPTIMIZATION
	OPTIMIZATION OF W
	OPTIMIZATION OF 1 AND 2

	NONLINEAR EXTENSION
	EXPERIMENTS
	CONVERGENCE ANALYSIS AND COMPUTATIONAL EFFICIENCY
	REAL-WORLD DATASETS
	SETUP AND RESULTS

	CONCLUSIONS
	PROOFS
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Detailed Proof on Optimization of 1 and 2
	Proof of Lemma A.7
	Proof of Theorem A.1

