
Proceedings of Machine Learning Research 116:233–245, 2020 Machine Learning for Health (ML4H) at NeurIPS 2019

1

Training without training data: Improving the
generalizability of automated medical abbreviation

disambiguation*

Marta Skreta1,2 martaskreta@cs.toronto.edu

Aryan Arbabi1,2 arbabi@cs.toronto.edu

Jixuan Wang1,2,3 jixuan@cs.toronto.edu

Michael Brudno1,2 brudno@cs.toronto.edu
1University of Toronto, Department of Computer Science
2The Hospital for Sick Children, Center for Computational Medicine
3Vector Institute for Artifical Intelligence, Toronto, Canada

Editors: Adrian V. Dalca, Matthew Mcdermott, Emily Alsentzer, Sam Finlayson, Michael Oberst,

Fabian Falck, and Brett Beaulieu-Jones

Abstract

Abbreviation disambiguation is important for automated clinical note processing due to the
frequent use of abbreviations in clinical settings. Current models for automated abbrevia-
tion disambiguation are restricted by the scarcity and imbalance of labeled training data,
decreasing their generalizability to orthogonal sources. In this work we propose a novel data
augmentation technique that utilizes information from related medical concepts, which im-
proves our model’s ability to generalize. Furthermore, we show that incorporating the
global context information within the whole medical note (in addition to the traditional
local context window), can significantly improve the model’s representation for abbrevia-
tions. We train our model on a public dataset (MIMIC III) and test its performance on
datasets from different sources (CASI, i2b2). Together, these two techniques boost the
accuracy of abbreviation disambiguation by almost 14% on the CASI dataset and 4% on
i2b2.

1. Introduction

Health care practitioners typically use abbreviations when preparing clinical records, saving
time and space with the cost of increased ambiguity. While experienced professionals are
usually able to disambiguate abbreviations based on the context, this remains a challenging
task for automated clinical note processing. Correctly disambiguating medical abbreviations
is important to build comprehensive patient profiles, link clinic notes to ontological concepts,
and allow for easier interpretation of unstructured text by fellow practitioners. However,
expanding abbreviated terms back to their long-form is nontrivial since abbreviations can
have many expansions. For example, “ra” can mean right atrium, rheumatoid arthritis or
room air depending on its context. A number of supervised learning models have been built
for abbreviation disambiguation in medical notes, including ones based on Support Vector
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Machines (SVM) and Naive Bayes classifiers (Moon et al., 2012, 2013; Wu et al., 2017).
However, these methods rely on expensive hand-labelled training data and are vulnerable
to overfitting. This is evident in studies where training and testing models on different
corpora results in performance drops of 15-40% (Moon et al., 2012, 2013; Wu et al., 2017;
Joopudi et al., 2018; Finley et al., 2016).

The difficulty and cost of creating hand-labelled medical abbreviation datasets is illus-
trated by the fact that, to the best of our knowledge, there is only one such publically
available dataset with training data and labels: CASI (Moon et al., 2014). CASI contains
75 abbreviations, which is just a small fraction of all medical abbreviations. In contrast
AllAcronyms, a crowd-sourced database that contains abbreviations and their possible ex-
pansions, lists >80,000 medical abbreviations.

Finley et al. (2016) showed that the need for manual annotation can be reduced by
reverse substitution (RS). RS auto-generates training data by replacing expansions with
their corresponding abbreviations, eliminating the need for manual annotation. They found
all the sentences containing possible expansions for an abbreviation in unstructured clinical
notes, replaced the expansion with the abbreviated form, and used the expansion as the
ground truth label. For example, “Patient was administered intravenous fluid” becomes
“Patient was given ivf”, and the label for the abbreviation “ivf” is “intravenous fluid”.

RS, however, creates imbalanced training sets because the distribution of terms in their
abbreviated and long forms is often different. For example, the terms “intravenous fluid”
and “in vitro fertilization” are possible expansions for the abbreviation “ivf”. In notes from
the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC-III) (Johnson et al.,
2016) dataset, the term ”intravenous fluid” occurs in its long form 3,132 times, while the
term ”in vitro fertilization” does not appear at all. Generating samples for all possible
expansions of “ivf” using RS thus learns a false prior that “ivf” never expands to “in vitro
fertilization.”

Joopudi et al. (2018) improved on standard RS by clustering sentences for abbreviations
that performed poorly on their validation set, labelling the centroid of each cluster with the
abbreviation’s correct expansion (identified via manual curation), and applying that sense
to all sentences in the cluster. Despite improving performance, this method requires hand-
labelling, which cannot scale to thousands of abbreviations in datasets such as AllAcronyms.

An additional problem with medical abbreviation disambiguation is that the local con-
text of a word is not always sufficient to disambiguate its meaning. For example, ”rt”
could represent ”radiation therapy” or ”respiratory therapy”, and the phrase ”the patient
underwent rt to treat the condition” cannot be disambiguated without further information.
Huang et al. (2012) showed that words can be better represented by jointly considering
their local and global contexts. Kirchhoff and Turner (2016) also demonstrated that docu-
ment contexts are useful in medical abbreviation disambiguation tasks. A study by Li et al.
(2015) represented acronyms in scientific abstracts using the embeddings of words with the
highest term frequency–inverse document frequency (TF-IDF) weights within a collection
of documents. This was motivated by the idea that acronym expansions are related to the
topic of the abstract and that topics can be described by words with the highest TF-IDF
weights.

In this work we take a two-pronged approach to improving the accuracy of medical ab-
breviation disambiguation. First, we demonstrate that we can use prior medical knowledge,
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in the form of biomedical ontologies such as the Unified Medical Language System (UMLS)
to help create more balanced and more representative examples of training data for RS
approaches. Second, we demonstrate that combining local and global context of an abbre-
viation can help further improve the accuracy of abbreviation disambiguation, achieving
14% improvements in accuracy on CASI and 4% accuracy improvements on i2b2 datasets,
all while training exclusively on MIMIC-III data.

2. Datasets

We use five datasets in this study, all of which are publicly available:
(1) We use clinical notes from MIMIC-III as our training set. We collect sentences from

MIMIC III containing abbreviation expansions, as well as concepts in UMLS to augment
our training set. We also use MIMIC-III to pretrain word embeddings using FastText and
IDF weights.

(2) We augment our training sets based on relationships between expansions and con-
cepts defined by UMLS Metathesaurus.

(3) We use the medical section of AllAcronyms, a crowd-sourced database, to obtain a
list of 80,000 medical abbreviations and 200,000 potential expansions. We remove abbre-
viations that have only one disambiguation and those absent in UMLS, resulting in 30,974
abbreviations.

(4) We validate our method on CASI, a dataset of admission notes, consultation notes,
and discharge summaries from hospitals affiliated with the University of Minnesota. After
removing abbreviations with one expansion, we had 67 hand-labelled abbreviations with
approximately 500 samples per abbreviation. We use this dataset as an orthogonal test set
to measure model generalizability.

(5) As another test set we use i2b2, a collection of patient discharge summaries from
Harvard Medical School. This dataset does not have hand-labelled annotations, so we use
RS to generate labels.

3. Methods

3.1. Overview

An overview of our method is shown in Figure 1. While our method follows the overall
RS paradigm, in order to reduce the false prior of training sets generated using RS and
eliminate the need for labelling abbreviation datasets by hand, we develop a data sampling
technique that augments the training set with samples of closely related medical concepts.
Our approach is motivated by Arbabi et al. (2019), who learned embeddings using a medical
ontology to identify previously unobserved synonyms for concepts in large unstructured text
and modelled concepts missing from the training corpus using ancestors in the ontology.
First, we learn word embeddings for terms in clinical notes by training a FastText model
on MIMIC-III notes (Bojanowski et al., 2017). We then map medical concepts in UMLS
to the resulting vector space to generate a word embedding for every medical concept.
Finally, for a given abbreviation, we augment the training samples for each expansion with
sentences containing closely related medical concepts determined using embedding distance.
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Figure 1: Overview of our method. First, we embed medical concepts from UMLS using a
FastText model trained on MIMIC-III clinical notes to map related concepts close
in vector space, which we use to augment our training samples. We use MIMIC-
III notes to create training samples with RS and generate better embeddings by
incorporating global information within the notes. Finally, we train a classifier
to perforn the disambiguation task.

This method is easily scalable to previously unseen abbreviations as it does not require any
expert annotation.

Using this training set we train a convolutional neural network (CNN) to perform the
classification task, which is to predict the correct expansion for an abbreviation given its
neighboring words (local context) and the global context of the document, as represented
by IDF-weighted word embeddings.

3.2. Word embeddings

To represent input words, we train word embeddings in an unsupervised manner on the
MIMIC-III corpus using FastText in order to map semantically similar words close in vector
space. The advantage of FastText is that it learns word embeddings by representing each
word as a bag of character n-grams (Bojanowski et al., 2017). This is useful for creating
good representations of rare words or words not found in the training corpus since we
consider sub-word information. We join multi-word medical concepts from UMLS with a
“ ” symbol to represent them as a single token. We use this model to embed all medical
concepts in UMLS.

3.3. Training set sampling

For each expansion for a given abbreviation, we augmented the training samples with the
10 most related medical concepts. We determined the degree of relatedness by measuring
the Euclidean distance between the expansion phrase and all concepts in UMLS that are
also present in MIMIC-III. We randomly sampled each relative in proportion to its distance
from the expansion with replacement according to the following probability:

psampling =
e
−dr
T

ΣRe
−dR
T
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where dr is the Euclidean distance between the expansion and relative and T is the tem-
perature of the distribution. R refers to the 10 closest medical concepts. If sentences for an
expansion were present in the training corpus, we treated the expansion as a relative with
a distance of ε (a hyperparameter which we set to 0.001).

We used temperature as a “sharpening” function to change the entropy of the sampling
probability (Berthelot et al., 2019). As T approaches 0, the entropy of the distribution
decreases and the probabilities approach a one-hot distribution. As T goes to ∞, entropy
increases and the probability of sampling any relative becomes the same. For each abbrevia-
tion, we searched for an optimal temperature value that minimized the loss on the validation
set using Bayesian optimization on the MIMIC-III validation set. We constrained the upper
and lower bound search spaces for the temperature value to be between 2−1 and 2, as we
found that smaller values overfit to MIMIC-III and reduced generalizability, while larger
ones added too much noise through less relevant neighbours. For each abbreviation, we per-
formed 15 iterations of Bayesian optimization using the Tree-structured Parzen Estimator
algorithm (Bergstra et al., 2011).

A schematic of our sampling technique can be viewed in Figure 2. As a baseline, we
tested our model on the training set only acquired using RS (i.e. it was not augmented using
related medical concepts). As a second baseline, we tested our model on the training set that
was sampled with replacement, in that the expansions were sampled with replacement so
that we had an equivalent number of training samples per expansion. This was to ensure that
any change in performance could only be attributable to incorporating auxiliary medical
knowledge, and not unbalanced training datasets from rare abbreviations.

3.4. Sentence embeddings

We map an input sentence to a vector representation using a simple encoder similar to the
one used by Arbabi et al. (2019). The network consists of one convolution layer with a filter
size of one word, followed by ELU activation (Clevert et al., 2015). Max-pooling-over-time
pooling is used to combine the output into a single vector, v:

v = maxt(ELU(W1x
(t) + b))

where x(t) is the word embedding of the term at index t. W1 and b correspond to the
weight matrices and bias vectors, respectively, which we learn through training.

A fully connected layer with ReLU activation followed by L2 normalization is used to
map v to the final encoded sentence representation:

e =
ReLU(W2v)

||ReLU(W2v)||2
The embedded sentence is a representation of the local context. To incorporate the

global context of a sample, g, we take the weighted average of the embedding vectors for
each word in the document. The embeddings are weighted using IDF weights trained on
the MIMIC-III corpus. The vector g is calculated as follows:

g =

∑d
i=1 ui ∗ w(ti)∑d

i=1w(ti)
, i 6= j
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Figure 2: Illustration of data augmentation technique for the training set. For each expan-
sion, we sample sentences for the 10 closest medical concepts using RS propor-
tionally to their Eucledian distance in the embedding space from the expansion.
It is shown above the dotted line connecting the expansion to its relative. The
probability of sampling is indicated about the arrow. dr is the Euclidean distance
between the expansion and relative and T is the temperature of the distribution.
R refers to the 10 closest medical concepts. In the event that an expansion is
present in the training corpus, we sample it with a distance of ε, which we set to
0.001. We add the each sample to our training set by replacing the relative with
the abbreviation and using the target expansion as the label. An example is this
is shown below the colour bar.

where j is the index of the abbreviation, i is the index of the i -th word in the document,
and d is the number of words in the document; ui is the word embedding and w(ti) is the
IDF-weighting of the i -th word.

We then concatenate g with the encoded sentence vector, v and normalize it to produce
the final encoded sample embedding:

e =
ReLU(W2[v; g])

||ReLU(W2[v; g])||2
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Figure 3: Overview of our abbreviation disambiguation model. Sentences containing a tar-
get concept are passed through a convolutional neural network (CNN) and max-
pooled over time to generate an encoding of the local context. Global context
takes the IDF-weight average of word embeddings in the entire document. We
combine global context with the output from the sentence encoder and pass it
through a fully-connected layer (FC). We maximize the dot-product of the en-
coded sentence and expansion embedding.

3.5. Classification using a convolution neural network

Our model is trained to minimize the distance between a target expansion embedding and
its context (Figure 3). Our model represents expansion embeddings with an embedding
matrix, H, where each row, Hc, corresponds to the embedding of an expansion for a given
abbreviation. To do the classification task of assigning an expansion label, c, to an input
sentence, e, we take the dot-product of H and e and apply a softmax function, such that:

p(c|e) =
exp(Hce)

Σc′exp(Hc′e)

We label the abbreviation with the expansion having the largest probability p(c|e).

4. Experiments

We trained our model on sentences from MIMIC-III. We collect sentences containing ex-
pansions from CASI and medical concepts from UMLS using RS. In total, 105,161 concepts
in UMLS are found in MIMIC-III. To learn word vectors, we trained the FastText model
as described in Bojanowski et al. (2017). For the classification task, we built one model for
each abbreviation. To train our model, we used a maximum of 500 samples per expansion
and a context window of 8 words. On average, each abbreviation has 3.46 expansions. We
train our models on 60% of the sample set, validate it on 20%, and keep 20% as a held-out
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test set. We train all concept embedding models for 100 epochs with a learning rate of 0.01.
We use early stopping on the validation loss to prevent overfitting.

We consider two forms of accuracy: Micro accuracy is the total number of abbreviations
correctly disambiguated divided by the total number of samples in the test set across all
abbreviations with two or more possible expansions. Macro accuracy is the average of
individual abbreviation accuracies.

We report the performance of our classifier on three different training sets. The first
training set (Control) consists of samples solely acquired using RS without any alterations.
The second (SWR) is similar to the first training set, except that we sample training sen-
tences with replacement such that each expansion has an equivalent number of training
samples. The third training set (Full) incorporates our novel data sampling technique by
including medical relatives of expansions into the training set. We sample concepts with
replacement so that all expansions have an equivalent number of training samples. We
also train each model both using only local neighborhood of the abbreviation and with
incorporating global context information for each sample (+ global). We use bootstrap-
ping to obtain the mean for each abbreviation by resampling our predicted values and true
values 999 times. A Wilcoxon signed rank test was used to compare the macro accuracy
results of different models (micro accuracy is a point estimate). We evaluated our model
on three datasets: a held-out test set consisting of RS samples of abbreviation expansions
from MIMIC-III, an orthogonal dataset of 67 abbreviations from CASI with gold-standard
annotations and 403 abbreviations from i2b2 generated. We generated the i2b2 samples by
finding sentences with expansions from AllAcronyms using RS.

5. Results

Table 1 shows the micro and macro accuracies of our concept embedding model using our
data augmentation technique on test sets from MIMIC-III and CASI. p-values and per-
formance differences between all models are displayed in Figure 4. We find that training
abbreviation with both local and global contexts gives significantly better performance than
training on local alone. We also find that augmenting the training set with related medical
concepts marginally decreases the performance of our model when tested on MIMIC-III.
This was expected, as we are augmenting the data with noisy labels, and the abbreviations
that we are now better able to predict do not actually appear in MIMIC-III. However, this
makes the model more generalizable to orthogonal datasets, as there is an 8% (p=0.02)
increase in accuracy on CASI compared to the control. Incorporating global context in-
creased this value to 14% (p=5e-07). Notably, the improvement achieved on CASI by
adding global context grew, from 3% when using the control model to 5.5% when using
the full model. This demonstrates that the global context in which related terms appeared
aided disambiguation, even if the local context may have been different.

Figure 5 is a histogram displaying the performance difference between our best model
(Full + global) and the control model for CASI abbreviations. Notably, the performance
improved for 38 abbreviations. The abbreviations that benefited most from our model were
the ones where an expansion did not appear in the training corpus or appeared at a very
low frequencies. For example, our model increased the performance for the abbreviation
“na” by 75% compared to the control. This is because the phrase “narcotics anonymous”, a
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Figure 4: Matrix showing performance differences and p-values between all models on (a)
CASI and (b) MIMIC-III test sets. The colour intensity of each square reflects
the performance difference between the corresponding model on the vertical axis
and model on the horizontal axis. p-values were obtained using a Wilcoxon signed
rank test and are displayed inside each square.
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Figure 5: Histogram showing the accuracy difference between the best model and control
model performance (%) on CASI abbreviations. The x-axis shows buckets of 5%,
where each unit is the bucket mean (i.e. x=0 buckets data from an accuracy
difference of -2.5% to +2.5%).

Table 1: Micro and macro accuracy of (%) of our model on 67 CASI abbreviations trained
on data generated using RS (control), RS where we sample training data with
replacement (SWR), and RS with replacement and augmentation with related
medical concepts (Full). For CASI we use the full dataset as testing. For MIMIC
we use the 20% held out fraction with RS labels.

Sampling Method
MIMIC TEST CASI TEST

Macro Accuracy Micro Accuracy Macro Accuracy Micro Accuracy

Baseline 0.913 0.866 0.621 0.625
Baseline + global 0.944 0.917 0.651 0.654
SWR 0.897 0.854 0.629 0.631
SWR + global 0.942 0.912 0.671 0.674

Full 0.888 0.836 0.705* 0.704
Full + global 0.929 0.899 0.760** 0.760

*p<0.03 (Wilcoxon signed rank test compared with Control model)
**p<5e-7 (Wilcoxon signed rank test compared with Full model)

possible expansion for “na”, only appears twice in MIMIC III. Upsampling that phrase and
incorporating related concepts such as ”alcoholics anonymous” and ”nicotine use” enabled
us to create a better representation for it.

Table 2 shows the performance of our model tested on a larger test set of 403 abbrevi-
ations (chosen based on lexicographic order), using another orthogonal dataset, i2b2, with
labels generated using RS. While the full model still outperforms the control, the perfor-
mance gain is more modest (4%). The smaller improvement on i2b2 may be indicative that
this dataset more closely resembles MIMIC, in terms of the frequency of different disam-
biguations. For example in the case of “ivf”, there are significantly fewer examples of fully
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Table 2: Micro and macro accuracy of (%) on 403 i2b2 abbreviations trained on data gen-
erated using RS (control) and our best model from Table 1 (Full + global).

i2b2 TEST

Data sampling tech-
nique

Macro Accuracy Micro Accuracy

Control 0.689 0.521
Full + global 0.729* 0.577

*p=6e-11 (Wilcoxon signed rank test compared with Control model)

spelled out cases of ”in vitro fertilization” than ”intravenous fluids” in both MIMIC (zero
versus 2503) and i2b2 (2 versus 49). At the same time ”in vitro fertilization” is the more
common expansion in CASI (294 versus 181). This could be indicative either in a difference
between the datasets, or human behavior: the RS method relies on the long form of an
abbreviation to be written out fully, and this may be less likely with abbreviations that are
either clearer in the context, or are longer.

6. Conclusion

Our contributions in this paper are twofold. First, we demonstrate the usefulness of prior
medical knowledge, in particular the UMLS ontology, to develop a novel data sampling
technique that creates good representations for abbreviations that are missing or infrequent
in the training corpus. For all samples we are also able to generate better representations
by considering the global context in which an abbreviation appears. Because of these
improvements, our overall framework demonstrates 14% higher accuracy of abbreviation
disambiguation on the auxiliary CASI dataset with hand-labelled abbreviations.

Another advantage of our method over previous work is that it can scale to thousands
of abbreviations as it requires no hand labelling, which we demonstrate by utilizing it on
both MIMIC (training/testing) and i2b2 (orthogonal testing) datasets for 403 abbreviations,
showing 4% accuracy improvement relative to control models.
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