
Proceedings of Machine Learning Research vol 117:1–50, 2020 31st International Conference on Algorithmic Learning Theory

Optimal δ-Correct Best-Arm Selection for Heavy-Tailed Distributions

Shubhada Agrawal SHUBHADA.AGRAWAL@TIFR.RES.IN
Sandeep Juneja JUNEJA@TIFR.RES.IN
TIFR, Mumbai

Peter Glynn GLYNN@STANFORD.EDU

Stanford University

Editors: Aryeh Kontorovich and Gergely Neu

Abstract
Given a finite set of unknown distributions or arms that can be sampled, we consider the problem
of identifying the one with the largest mean using a delta-correct algorithm (an adaptive, sequen-
tial algorithm that restricts the probability of error to a specified delta) that has minimum sample
complexity. Lower bounds for delta-correct algorithms are well known. Delta-correct algorithms
that match the lower bound asymptotically as delta reduces to zero have been previously developed
when arm distributions are restricted to a single parameter exponential family. In this paper, we
first observe a negative result that some restrictions are essential, as otherwise under a delta-correct
algorithm, distributions with unbounded support would require an infinite number of samples in
expectation. We then propose a delta-correct algorithm that matches the lower bound as delta re-
duces to zero under the mild restriction that a known bound on the expectation of a non-negative,
continuous, increasing convex function (for example, the squared moment) of the underlying ran-
dom variables, exists. We also propose batch processing and identify near optimal batch sizes to
substantially speed up the proposed algorithm. The best-arm problem has many learning applica-
tions, including recommendation systems and product selection. It is also a well studied classic
problem in the simulation community.
Keywords: Multi-armed bandits, best-arm identification, sequential learning, ranking and selection

1. Introduction

Given a vector of unknown arms or probability distributions that can be sampled, we consider algo-
rithms that sequentially sample from or pull these arms and at termination identify the best-arm, i.e.,
the arm with the largest mean. The algorithms considered provide δ-correct probabilistic guaran-
tees, that is, the probability of identifying an incorrect arm is bounded from above by a pre-specified
δ > 0. Further, the δ-correct algorithms that we consider aim to minimize the sample complexity,
or, equivalently, the expected total number of arms pulled before they terminate. This best-arm
problem is well studied in the literature (see, e.g., in learning - Garivier and Kaufmann (2016);
Kaufmann et al. (2016); Russo (2016); Jamieson et al. (2014); Bubeck et al. (2011); Audibert and
Bubeck (2010); Even-Dar et al. (2006); Mannor and Tsitsiklis (2004); in earlier statistics literature
- Jennison et al. (1982); Bechhofer et al. (1968); Paulson et al. (1964); in simulation - Glynn and
Juneja (2004); Kim and Nelson (2001); Chen et al. (2000); Dai (1996); Ho et al. (1992)).

The δ-correct guarantee imposes constraints on the expected number of times each arm must
be pulled by the algorithm. These constraints are made explicit by Garivier and Kaufmann (2016)
through their transportation inequality which can be used to arrive at a max-min optimization prob-
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lem to develop efficient lower bounds on δ-correct algorithms. This line of work relies on change
of measure based analysis that goes back at least to Lai and Robbins (1985). Also see Mannor and
Tsitsiklis (2004) and Burnetas and Katehakis (1996). It is important to emphasize that the max-min
optimization problem to develop efficient lower bound on a δ-correct algorithm, requires complete
knowledge of the underlying arm distributions, and its solution is a function of these underlying
distributions. The algorithms, on the other hand, acting on a given set of arms, are unaware of the
underlying distributions, and, typically, adaptively learn them to decide on the sequence of arms to
pull, as well as the stopping time.

Garivier and Kaufmann (2016) consider the best arm problem under the assumption that each
arm distribution belongs to a single parameter exponential family (SPEF). Under this restriction,
they arrive at an asymptotically optimal algorithm having a sample complexity matching the derived
lower bound asymptotically as δ→ 0. SPEF distributions include Bernoulli, Poisson and Gaussian
distributions with known variance. However, in practice it is rarely the case (other than in the
Bernoulli setting) that the arm distributions are from SPEF, so there is a need for a general theory
as well as efficient algorithms that have wider applicability. Our paper substantially addresses this
issue.

Contributions: Our first contribution is an impossibility result illustrating why some distributional
restrictions on arms are necessary for δ-correct algorithms to be effective. Consider an algorithm
that provides δ-correct guarantees when acting on a finite set of distributions belonging to a collec-
tion U , where U comprises distributions with unbounded support that are KL right dense (defined
in Section 2). In this set-up we show that the sample complexity of the algorithm in every instance
of it acting on a finite set of distributions in U , must be infinite. Examples of such a U include
all light-tailed distributions with unbounded support (a distribution is said to be light tailed if its
moment generating function is finite in a neighborhood of zero). Another example is a collection of
unbounded distributions supported on < that are in Lp, for some p ≥ 1. That is, for some p ≥ 1,
their absolute pth moment is finite.

To arrive at an effective δ-correct algorithm, we restrict arm distributions to the collection

L ,
{

η ∈ P(<) : EX∼η( f (|X|)) ≤ B
}

, (1)

where P(<) denotes the set of probability distributions with support in <, f (·) is a continuous,

non-negative, convex function such that f (y)/y
y→∞−−−→ ∞, and B is a known positive constant. For

instance, we may have f (y) = y1+ε for any ε > 0 or f (y) = y log y. In simulation models, upper
bounds on moments of simulation output, as in (1), can often be found by the use of Lyapunov
function based techniques (see, e.g., Glynn and Zeevi (2008)). With this mild restriction we solve
the associated optimization problem to arrive at an efficient lower bound on sample complexity for
δ-correct algorithms, which involves a max-min optimization problem. We also develop simple
line search based procedures to solve this optimization problem. Our main contribution is the
development of an asymptotically optimal δ-correct algorithm whose sample complexity matches
the derived lower bound asymptotically as δ→ 0.

Key to developing such a lower bound and the δ-correct algorithm is the functional KLinf(η, x)
defined as follows: let KL(κ1, κ2) denote the Kullback-Leibler divergence between probability dis-
tributions κ1 and κ2, and let m(κ) denote the mean of the probability distribution κ. Then, for
η ∈ P(<) and x ∈ < such that f (|x|) < B, KLinf(η, x) is the optimal value of minκ∈L KL(η, κ),
such that m(κ) ≥ x, for x ≥ m(η), and m(κ) ≤ x, for x < m(η). Call this optimization problem
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O1. Heuristically, KLinf(η, x) measures the difficulty of separating distribution η from all other
distributions in L whose mean equals x. It equals zero when x = m(η) and η ∈ L.

We develop a concentration inequality for KLinf(κ̂(n), m(κ)), where for κ ∈ L, κ̂(n) denotes
the empirical distribution corresponding to n samples from κ. This plays a key role in the proof
of δ-correctness of the proposed algorithm. A key step in the proof of the concentration inequal-
ity relies on arriving at a simpler dual representation of KLinf(·, ·). Here, we substantially extend
the representation developed by Honda and Takemura (2010) for bounded random variables to ran-
dom variables belonging to L. Honda and Takemura (2010) had focussed on the regret minimiza-
tion problem for stochastic bandits (also see Burnetas and Katehakis (1996); Honda and Takemura
(2011)).

To prove the δ-correctness of the proposed algorithm, we further develop a concentration in-
equality for ∑K

a=1 Na(n)KLinf(κ̂a(n), m(κa)) where Na(n) denotes the number of times arm a is
pulled in a total of n arm pulls, and κ̂a(n) denotes the empirical distribution for arm a based on
Na(n) samples. While Magureanu et al. (2014) have developed these inequalities for the Bernoulli
distribution, we generalize their analysis to arm distributions belonging to L.

In bounding the sample complexity of the proposed algorithm, we exploit the continuity of
KLinf(η, x) in η as well as the continuity of the solution to the max-min lower bound problem with
respect to the underlying arm distributions. We achieve this by considering the Wasserstein distance
in the space of probability distributions L. The Wasserstein distance is relatively tractable to work
with, and it can be seen that L is a compact metric space under this distance. This, in particular,
allows us to use the well-known Berge’s Maximum Theorem (stated in the Appendix A) to derive
the requisite continuity properties.

In, e.g., Garivier and Kaufmann (2016); Kalyanakrishnan et al. (2012), the proposed algorithms
solve the lower bound problem at every iteration. However, solving the corresponding max-min
optimization problem can be computationally demanding particularly in the generality that we con-
sider. We instead solve this problem in batches and arrive at near optimal batch sizes, that result in
a provably substantial computational reduction.

Best arm problems arise in many settings in practice. For instance, one can view the selection of
the best product version to roll out for production and sale, after a set of expensive pilot trials among
many competing versions to be a best arm problem. In simulation theory, selecting the best design
amongst many (based on output from a simulation model) is a classic problem, with applications to
manufacturing, road and communications network design, etc. In these and many other settings, the
underlying distributions can be very general and may not be modelled well by a SPEF distribution.
Roadmap: In Section 2 we review some background material and present an impossibility result
illustrating the need for distributional restrictions on arms. In Section 3, an efficient lower bound for
δ-correct algorithms for the best arm problem is provided when the arm distributions are restricted
to L. The algorithm that matches this lower bound asymptotically as δ→ 0 is developed in Section
4. Enroute, we develop certain concentration inequalities associated with KLinf. Discussion on
optimal batch size and a numerical experiment are shown in Section 5. While key ideas in some of
the proofs are outlined in the main body, proof details are all given in the Appendices.

2. Background and the impossibility result

Let U denote the universe of probability distributions for which we aim to devise a δ-correct algo-
rithm. We assume that each distribution in U has finite mean. Let the Kullback-Leibler divergence
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between distributions η and κ be denoted by KL(η, κ) =
∫

log
(

dη
dκ (x)

)
dη(x). For p, q ∈ (0, 1),

let ρ(p, q) denote the KL-divergence between Bernoulli distributions with mean p and q, respec-

tively, that is, ρ(p, q) = p log
(

p
q

)
+ (1− p) log

(
1−p
1−q

)
.

Recall that m(η) =
∫

x∈< xdη(x), denotes the mean of any distribution η ∈ U . LetMU denote
the collection of all ν = (ν1, . . . , νK) such that each νi ∈ U . Consider a vector of distributions
µ = (µ1, . . . , µK) from MU . Without loss of generality, henceforth we assume that the highest-
mean arm in µ is arm 1, that is, m(µ1) > maxi 6=1 m(µi). Let Ã denote the collection of all
distributions ν = (ν1, . . . , νK) such that each νi ∈ U and m(ν1) ≤ maxi 6=1 m(νi).

Under a δ-correct algorithm acting on µ, for δ ∈ (0, 1), the following transportation inequality
is shown by Kaufmann et al. (2016):

K

∑
i=1

Eµ(Ni(τ)) KL(µi, νi) ≥ ρ(δ, 1− δ) ≥ log
(

1
2.4δ

)
(2)

for any ν ∈ Ã, where Ni(t) denotes the number of times arm i is pulled by the algorithm in t trials,
and τ = ∑K

i=1 Ni(τ) denotes the algorithm termination time. Intuitively, this specifies a lower
bound on the expected number of samples that need to be generated from each arm i under µ, for an
algorithm to separate it from a distribution ν belonging to the set of alternative hypotheses Ã, with
probability at least 1− δ.

The following lemma helps in proving our negative result in Theorem 3.

Lemma 1 Given η with an unbounded support on the positive real line, for any finite a > 0 and
b > m(η), there exists a distribution κ such that

KL(η, κ) ≤ a and m(κ) ≥ b. (3)

Definition 2 A collection of probability distributions U is referred to as KL right dense, if for every
η ∈ U , and every a > 0, b > m(η), there exists a distribution κ ∈ U such that (3) holds.

Observe that a necessary condition for U to be KL right dense is that each member does not
have a real-valued upper bound on its support.

Theorem 3 Under a δ-correct algorithm operating on KL right dense U , for any µ ∈ MU ,

EkNk(τ) = ∞, for all 2 ≤ k ≤ K. (4)

The proof follows easily from (3) in Lemma 1, since given µ ∈ MU such that arm 1 has
the maximum mean, for any k ≥ 2, one can easily find ν ∈ Ã such that νi = µi for i 6= k,
m(νk) > m(µ1), and KL(µk, νk) is arbitrarily small. (4) now follows from (2).

When only information available about a distribution is that its mean exists, Bahadur and Savage
(1956) prove a related impossibility result that there does not exist an effective test of hypothesis
for testing whether the mean of the distribution is zero (also see Lehmann and Romano (2006)).
However, to the best of our knowledge, Theorem 3 is the first impossibility result in the best arm
setting (or, equivalently, the ranking and selection setting; see Glynn and Juneja (2018) for further
discussion in the best arm settings).
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3. Lower bound for a δ-correct algorithm

Theorem 3 suggests that some restrictions are needed on U for δ-correct algorithms to provide
reasonable performance guarantees. To this end, we limit our analysis to δ-correct algorithms acting
on the class L defined in (1) earlier. LetML denote the collection of vectors ν = (ν1, . . . , νK), such
that each νi ∈ L. Let µ ∈ ML. Recall that without loss of generality, m(µ1) > maxj≥2 m(µj).
LetA denote the collection of all distributions ν = (ν1, . . . , νK) such that each νi ∈ L and m(ν1) ≤
maxi 6=1 m(νi). From (2) it follows that for any δ-correct algorithm acting on µ:

Eµ(τ) inf
ν∈A

K

∑
i=1

Eµ(Ni(τ))

Eµ(τ)
KL(µi, νi) ≥ log

(
1

2.4δ

)
.

Let ΣK denote probability simplex in <K. It follows that Eµ(τ) is bounded from below by
log
( 1

2.4δ

)
times the inverse of

sup
t∈ΣK

inf
ν∈A

K

∑
i=1

ti KL(µi, νi), (5)

and hence the problem of computing the lower bound on Eµ(τ) reduces to solving the above max-
min problem. To characterize the solution to (5), we need some definitions.

Recall that for η ∈ P(<) and x ∈ < such that f (|x|) < B , KLinf(η, x) is defined as the value
of O1. As mentioned in the introduction, we study the continuity of KLinf(η, x) as a function of η
in the Wasserstein metric.

Wasserstein metric: (see, e.g., Villani (2003)). Recall that the Wasserstein metric dW(·, ·)
between probability distributions κ and η on < is given by:

dW(κ, η) = inf
γ∈Γ(κ,η)

∫
<

∫
<

d(x, y)dγ(x, y), (6)

where Γ(κ, η) denotes the collection of measures on <2 with marginals κ, η on the first and second
coordinates, respectively, and d(·, ·) is any metric on <. For simplicity, we consider d(x, y) =
|x− y|. We endow P(<) with the corresponding Wasserstein metric, dW . Then, (P(<), dW) is
a metric space (see Section 7.1 Villani (2003)). L as a subset of P(<), is also a metric space
with dW being the metric. Hence, we can define continuity of functions from (L, dW) to (<, d).
Furthermore, for x and y in <K, dK(x, y) = ∑K

i=1 d(xi, yi) is a metric on <K. Thus,ML endowed
with dW defined with d = dK in (6), is a metric space and we can define continuous functions from
(ML, dW) to (<k, dK). Lemma 4 lists some properties of the set L and KLinf that give insights into
geometrical structure of KLinf and are useful for our analysis. These are proved in Appendix B.1.

Lemma 4 The set L is uniformly-integrable and compact in the Wasserstein metric. Moreover,
for x ∈ < such that f (|x|) < B and η ∈ P(<), KLinf(η, x) is increasing for x > m(η),
and decreasing for x < m(η). It is continuous and convex in η, and convex and twice differ-

entiable in x. Furthermore, for η ∈ L, it satisfies KLinf(η, x) ≤ f−1(B)
f−1(B)−x , KLinf(η, m(η)) =

0, and ∂ KLinf(η,m(η))
∂x = 0.

Let B =
{
x ∈ <K : for i ≤ K, xi = m(νi) for some νi ∈ L, and x1 ≤ maxi 6=1 xi

}
. Observe

that the max-min problem (5) may be re-expressed as

sup
t∈ΣK

inf
x∈B

K

∑
i=1

ti KLinf(µi, xi). (7)
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The inner optimization problem in (7) can be further simplified. Given µ ∈ ML, let V(µ) denote
the optimal value of the expression in (7) (or, equivalently, (5)) and let T(µ) denote the set of t ∈ ΣK
that maximize (7). Furthermore, recall that m(µ1) > maxj 6=1 m(µj). For j ∈ {2, . . . , K}, and µ

fixed, consider functions gj : <3 → < and Gj : <2 → < given by

gj(y, z, x) , y KLinf(µ1, x) + z KLinf(µj, x), and Gj(y, z) , inf
x∈[m(µj),m(µ1)]

gj(y, z, x). (8)

The following theorem characterizes the solution to V(µ), given that µ is known.

Theorem 5 The set T(µ) is a singleton. Moreover, the optimal value of the max-min problem (7),

V(µ) = max
t∈ΣK

min
j>1

Gj(t1, tj). (9)

Further, the max-min problem (7) is solved by t∗ ∈ ΣK that uniquely satisfies

1. ∀i, t∗i > 0 and ∑i t∗i = 1 ,

2.
K
∑

j=2

KLinf(µ1,xj(t∗1 ,t∗j ))
KLinf(µj,xj(t∗1 ,t∗j ))

= 1, where xj(y, z) denotes the unique arg infx∈[m(µj),m(µ1)] gj(y, z, x).

3. G2(t∗1 , t∗2) = Gj(t∗1 , t∗j ), for j ∈ {3, . . . , K}.

Moreover, the optimal value, V(µ) equals G2(t∗1 , t∗2), and the optimal proportion vector, t∗ :
ML → ΣK, is a continuous function (in the Wasserstein metric) of µ.

The above characterization is analogous to that in Theorem 1, Glynn and Juneja (2004) where
they considered the fixed budget best-arm problem. It is easily seen that the fixed budget setting also
lends itself to solving a max-min problem analogous to (5), where the arguments µi and νi in each
KL term are switched. The above characterization also generalizes that in Garivier and Kaufmann
(2016) for SPEF of distributions. Observe that when η belongs to SPEF and L is restricted to
the same SPEF, KLinf(η, x) corresponds to KL(η, κ) where κ denotes the corresponding SPEF
distribution with mean x.

Remark 6 The proposed algorithm discussed in Section 4, relies on solving the max-min problem
(7) repeatedly with µ replaced by its empirical estimator. Since this estimator may not necessarily
belong toML, it is important to note that the lower bound in (5) and the results in Theorem 5 hold
for every µ ∈ (P(<))K. Furthermore, since the max-min problem (7) needs to be solved multiple
times in our proposed algorithm, efficiently solving it for the optimal proportions t∗(ν) for any
ν ∈ (P(<))K is crucial to it.

Remark 7 (Numerically solving the max-min problem:) Let c∗ = V(µ) denote the common
value of Gj(t∗1 , t∗j ) for j ∈ {2, . . . , K}. We develop an algorithm that relies on repeated single
dimensional line-searches to solve for t∗ and c∗. Appendix B.3 contains the details of the algorithm
and proofs of its convergence to the correct value. To get an idea of the computational effort needed
in solving (7), let τ0 denote the average time taken to compute KLinf using efficient solvers (The-
orem 12 below shows that KLinf has a dual representation, where it is a solution to a two variable
concave program). Let εL denote the tolerance for each line search. Then, numerically solving
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for t∗(µ) and V(µ) takes time τ0(K − 1)×O
(

log3 1
εL

)
. To decrease this computation time, we

pre-compute values of KLinf(µi, y) for each y along a grid, for each µi. For y not in this set, we
linearly interpolate from the computed values. This substantially reduces the computation time of
the algorithm to (K− 1)×O

(
log3 1

εL

)
+ τ̃0, where τ̃0 is time for the pre-processing step.

4. The δ-correct algorithm

We now propose a δ-correct algorithm and show that its sample complexity matches the lower bound
up to the first order as δ→ 0. Recall that a δ-correct algorithm has a sampling rule that at any stage,
based on the information available, decides which arm to sample next. Further, it has a stopping
rule, and at the stopping time it announces the arm with the largest mean while ensuring that the
probability of incorrect assessment is at most a pre-specified δ ∈ (0, 1).

It can be shown that if the distribution of the K arms, µ, is not known, but there exists an
oracle that informs us the optimal t∗(µ) that solves (7), then sampling arms to closely match the
proportions in t∗(µ) leads to an asymptotically optimal algorithm (this can be seen, for instance, by
using the stopping rule that is analogous to ours, and essentially repeating the arguments in our proof
where approximations to t∗(µ) are used). This suggests that the fraction of times a good algorithm
pulls an arm j should converge to t∗j (µ). We propose a sampling rule to ensure this. Our stopping
rule (discussed above (10)) relies on a generalized likelihood ratio statistic taking sufficiently large
value.

Sampling rule: Our sampling algorithm relies on solving the max-min lower bound problem with
the vector of empirical distributions used as a proxy for the unknown true distribution µ. The
computed optimal proportions then guide the sampling strategy. Garivier and Kaufmann (2016)
and Juneja and Krishnasamy (2019) follow a similar plug-in strategy for SPEF distributions, where
empirically observed means are used as a proxy for true means. The proposed algorithm conducts
some exploration to ensure that no arm is starved with insufficient samples. Because solving the
max-min lower bound problem can be computationally demanding, we solve it periodically after
fixed, well chosen m > 1 samples (which is allowed to be a function of δ), where m may be
optimised to minimize the overall computation effort.

The specific algorithm, AL1, is as follows:

1. Initialize by allocating m samples in round-robin way to generate at least
⌊m

K

⌋
samples from

each arm. Set l = 1 and let lm denote the total number of samples generated.
2. Compute optimal proportions t∗(µ̂(lm)). Check if the stopping criteria (shown above (10))

is met. If not,
3. Compute starvation sa for each arm as sa := (((l + 1)m)1/2 − Na(lm))+.
4. If m ≥ ∑a sa, generate sa samples from each arm a. Specifically, first generate s1 samples

from arm 1, then s2 samples from arm 2 and so on. In addition, generate max {m−∑a sa, 0}
independent samples from probability distribution t∗(µ̂(lm)) ∈ ΣK. For each arm i, count
the number of occurrences of i in the generated samples and sample arm i that many times.

5. Else, if ∑a sa > m, generate ŝa samples from each arm a, where {ŝa}K
a=1 are a solution to

the load balancing problem: min (maxa {sa − ŝa}) s.t. sa ≥ ŝa ≥ 0 ∀a ∈ {1, . . . , K} , and
∑a ŝa = m. Again, first generate ŝ1 samples from arm 1, then ŝ2 samples from arm 2 and so
on.
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6. Increment l by 1 and return to step 2.

In step 4 above we randomly generate samples from t∗(µ̂(lm)) ∈ ΣK. Since t∗(µ̂(lm)) ∈ ΣK
can be seen to be close to t∗(µ) ∈ ΣK with high probability, this ensures that under our algorithm,
the proportion of samples allocated to each arm are close to t∗(µ), with small amount of noise
due to randomization. Our algorithm differs from Garivier and Kaufmann (2016) where they use
a deterministic C and D tracking rules. Numerically we observe that the proposed randomized
strategy performs similarly to the deterministic C and D tracking rules proposed earlier.

Lemma 8 Set m ≥ (K + 1)2. Algorithm AL1 ensures that Na(lm) ≥ (lm)1/2 − 1 for all l ≥ 1.

When to stop: At any step of the algorithm, the generated data suggests a unique arm, say j, with the
largest mean (arbitrarily breaking ties, if any). Call this (µj has maximum mean) the null hypothesis,
and its complement (arm j does not have maximum mean) the alternate hypothesis. For a stopping
rule we consider the generalized likelihood ratio test (see Chernoff (1959)). The numerator in this
ratio has value of the likelihood under most likely K-vector of distributions with arm j having the
maximum mean, that explains the observed data. The denominator equals the value of likelihood of
observed data under most likely distribution of arms under the alternative hypothesis.

In this spirit, at time n, since among all K-vectors of distributions in (P(<))K with distribution
j having maximum mean, µ̂(n) = {µ̂1(n), . . . , µ̂K(n)} maximizes the likelihood of the observed
data, we take numerator to be the likelihood under µ̂(n) and the denominator to be that under
ν ∈ ML that maximizes the likelihood of given data under alternative hypothesis. Our stopping
rule corresponds to the logarithm of this ‘generalized likelihood ratio’ becoming sufficiently large.

Specifically, let Aj =
{

ν ∈ ML : m(νj) > maxi 6=j m(νi)
}

denote the set of arms with arm j
having the largest mean. Denote Ac

j to be the set
{

ν ∈ ML : m(νj) ≤ maxi 6=j m(νi)
}

. If at stage
n, m(µ̂j(n)) > maxi 6=j m(µ̂i(n)), the log (generalized likelihood ratio), Zj(n), can be seen to
equal

inf
µ′∈Ac

j

K

∑
a=1

Na(n)KL(µ̂a(n), µ′a)

(see Appendix C.2 for the proof).
Stopping rule: If at stage n, m(µ̂j(n)) > maxi 6=j m(µ̂i(n)), check if Zj(n) exceeds the thresh-

old function

β(n, δ) , log

(
Cnα

δ
(log n)K

(
log

1
δ

)2K+1
)

, (10)

where C > 0 is specified later in (16), and α ≥ 2K + 2. The algorithm stops if Zj(n) ≥ β(n, δ),
announcing arm j as the one having the largest mean. If the threshold function is not exceeded, the
algorithm continues.

We prove in Theorem 10 that β(n, δ) given by (10) ensures δ-correctness of AL1, as well as
that the sample complexity matches lower bound asymptotically as δ → 0 when the batch size
m = o(log(1/δ)). Using arguments as in proof of Theorem 5, it can be shown that if m(µ̂j(n)) >
maxi 6=j m(µ̂i(n)), then:

Zj(n) = min
b 6=j

inf
x≤y

Nj(n)KLinf(µ̂j(n), x) + Nb(n)KLinf(µ̂b(n), y), (11)

and thus our stopping rule corresponds to evaluating if (11) exceeds β(n, δ).
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Remark 9 As mentioned earlier in Remark 6, a mild nuance in our analysis is that while computing
Zj(n), the empirical distribution need not lie in ML. Also, recall that the stopping condition is
checked only after intervals of m, i.e., every time after m samples are generated.

Let τδ denote stopping time for the algorithm for a given δ. The algorithm makes an error if at time
τδ, m(µ̂j(τδ)) > maxi 6=j m(µ̂i(τδ)), for some j 6= 1. Let E denote the error event.

Theorem 10 The algorithm AL1, with β(n, δ) as in (10), and m = o(log(1/δ)), is δ-correct, i.e.,

P(E) ≤ δ. (12)

Further,

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ 1

V(µ)
. (13)

We first analyse δ-correctness of algorithm AL1 below. Analysis for the sample complexity is
presented towards the end of this section.

The proof of δ-correctness relies on the concentration inequality for KLinf(κ̂(n), m(κ)), where
for κ ∈ L, κ̂(n) denotes the empirical distribution corresponding to n samples from κ (Theorem
11). Proof of Theorem 11 in turn relies on the dual representation of KLinf(·, ·) (Theorem 12).
These results are proved in Appendix C.4 and C.3 respectively and may also be of independent
interest.

Set c1 = Eκ(|X−m(κ)|), c2 = Eκ (|B− f (|X|)|), d1 = c1
2( f−1(B)−m(κ))

, d2 = c2
2(B− f (|m(κ)|))

and B̃1 , d1 + d2.

Theorem 11 For κ ∈ L, and u ≥ 0,

P (KLinf(κ̂(n), m(κ)) ≥ u) ≤ (n + 1)2eB̃1 e−nu.

Let η ∈ P(<), and Supp(η) denote the support of the measure η. Let

R2 = {(λ1, λ2) : λ1 ≥ 0, λ2 ≥ 0, and ∀y ∈ <, 1− (y− x)λ1 − (B− f (|y|))λ2 ≥ 0} .

Note that for (λ1, λ2) ∈ R2, due to strict convexity of f , there can be at most one y0 such that
1− (y0 − x)λ1 − (B− f (|y0|))λ2 = 0.

Theorem 12 For η ∈ P(<) and x such that x ≥ m(η) and f (|x|) < B,

KLinf(η, x) = max
(λ1,λ2)∈R2

Eη (log (1− (X− x)λ1 − (B− f (|X|))λ2)) . (14)

Maximum in RHS above is attained at a unique (λ∗1 , λ∗2) in R2. For x > m(η), or x = m(η)
and η 6∈ L any probability measure κ∗ ∈ L achieving infimum in the primal problem O1, satisfies
m(κ∗) = x, Eκ∗( f (|X|)) = B, and

dκ∗

dη
(y) =

1
1− (y− x)λ∗1 − (B− f (|y|))λ∗2

, for y ∈ Supp(η).

Furthermore, if
∫

y∈Supp(η) dκ∗(y) < 1, then Supp(κ∗) \ Supp(η) = {y0}, where

1− (y0 − x)λ∗1 − (B− f (|y0|))λ∗2 = 0.

9
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In the Appendix C.5.2 we briefly discuss how the algorithm and the analysis simplify if it is
known apriori that the underlying distributions have a known bounded support.

Proof of (12) in Theorem 10: Recall that the algorithm makes an error if at the stopping time
τδ, m(µ̂j(τδ)) > maxi 6=j m(µ̂i(τδ)) for some j 6= 1. Let the event

{
µ̂(lm) ∈ Aj

}
be denoted by

Ẽl(j). Then the error event E is contained in the event∃l
⋃
j 6=1

⋂
b 6=j

inf
x≤y

Nj(lm)KLinf(µ̂j(lm), x) + Nb(lm)KLinf(µ̂b(lm), y) ≥ β(lm, δ), Ẽl(j)


 ,

which is a subset of∃l
⋃
j 6=1

{
Nj(lm)KLinf(µ̂j(lm), m(µj)) + N1(lm)KLinf(µ̂1(lm), m(µ1)) ≥ β(lm, δ), Ẽl(j)

} .

The above event, and hence the event E , is further contained in{
∃l

K

∑
a=1

Na(lm)KLinf(µ̂a(lm), m(µa)) ≥ β(lm, δ)

}
. (15)

Let El =
{

∑K
a=1 Na(lm)KLinf(µ̂a(lm), m(µa)) ≥ β(lm, δ)

}
. To prove that the probability of

making an error is bounded by δ, it is sufficient to prove that ∑∞
l=1 P (El) is less than δ. For this, we

upper bound P(El) using Theorem 13 below.
Let ca

1 = Eµa(|X− x|), ca
2 = Eµa (|B− f (|X|)|), da

1 =
ca

1
2( f−1(B)−m(µa))

, and da
2 =

ca
2

2(B− f (|µa|))
be non-negative constants and let B̃a , ca

1 + ca
2.

Theorem 13 For µ ∈ ML, n ∈N, and Γ > K + 1,

P

(
K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ eK+1

(
4n2Γ2 log(n)

K

)K

e−Γ
K

∏
a=1

eB̃a .

Using Theorem 13 with n = lm and Γ = β(lm, δ),

P (E) ≤
∞

∑
l=1

P(El) ≤
∞

∑
l=1

(
4l2m2e log(lm)β2(lm, δ)

K

)K

e−β(lm,δ)+1
K

∏
a=1

eB̃a .

Choosing α ≥ 2K + 2 in expression (10) for β(n, δ), ensures that the summation in the above
expression is finite. Further, choosing the constant C as:

∞

∑
l=1

(
4eβ2(lm, δ)

)K e
K
∏

a=1
eB̃a

KK(lm)α−2K
(
log 1

δ

)2K+1 ≤ C, (16)

proves that ∑∞
l=1 P (El), and hence P (E) is bounded from above by δ.

We refer the reader to Appendix C.5 for a proof of Theorem 13 and related results.

Proof for (13) in Theorem 10: To see that the sample complexity of AL1 matches lower bound
as δ → 0, i.e., (13) holds, first observe that our sampling algorithm ensures that fraction of times
each arm is pulled is close to its optimal proportion t∗a(µ). In particular,

10
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Lemma 14 For all a ∈ {1, . . . , K}, Na(lm)
lm

a.s.−→ t∗a(µ), as l → ∞.

The proof of Lemma 14 is given in Appendix C.6. It uses the fact that eventually all the samples
are allocated according to optimal proportions computed for the empirical distribution vector, µ̂,
which in turn converges to µ. We first heuristically argue that (13) holds. Let [K] denote the set
{1, . . . , K}. Recall that for β(lm, δ) defined in (10), the stopping time, τδ equals

inf
{

lm, max
a∈[K]

min
b 6=a

inf
x

{
Na(lm)

lm
KLinf(µ̂a(lm), x) +

Nb(lm)

lm
KLinf(µ̂b(lm), x)

}
≥ β(lm, δ)

lm

}
,

and satisfies

max
a∈[K]

min
b 6=a

inf
x

{
Na(τδ)

τδ
KLinf(µ̂a(τδ), x) +

Nb(τδ)

τδ
KLinf(µ̂b(τδ), x)

}
≈ β (τδ, δ)

τδ
. (17)

Furthermore, for sufficiently large l, with high probability, ∀a, µ̂a(lm) ≈ µa, and from Lemma
14, Na(lm)/lm ≈ t∗a(µ). When this is true, arm 1 is the best arm, and τδ satisfies

τδ ≈ β (τδ, δ)

(
min
b 6=1

inf
x

t∗a(µ)KLinf(µa, x) + t∗b(µ)KLinf(µb, x)
)−1

=
β (τδ, δ)

V(µ)
. (18)

With constants C and α as in (10), τδ that satisfies (18) is given by

τδ = log
(

Cδ−1
(

log Cδ−1
)α)

V(µ)−1 + o
(

log δ−1
)

. (19)

Dividing both sides of (19) by log(1/δ), we get τδ
log(1/δ)

≈ 1
V(µ)

, for sufficiently small δ.
Complement of this high-probability event contributes only lower order terms (with respect to

log(1/δ)) to Eµ(τδ). Combining these, we get an upper bound on Eµ(τδ) that asymptotically (as
δ→ 0) matches the lower bound in (5).

Rigorous proof of the sample complexity result in Theorem 10, i.e., proof for (13), is given in
the Appendix C.6. Our proof builds upon that in Garivier and Kaufmann (2016) where the authors
consider a restricted SPEF, while we allow arm distributions to belong to a more general class L.
Our proof differs in that we work in space of probability measures instead of Euclidian space. This
leads to additional nuances. To work in the space of probability measures, we use Wasserstein
metric to define continuity of functions and convergence of sequences in this space of probability
measures. Furthermore, we check for stopping condition only once in m samples, instead of doing
so in every sample, and construct the proof that allows for this flexibility.

5. Optimizing batch sizes and numerical results

We now discuss batch size selection in AL1 to minimize the overall experiment cost. Suppose that
the average cost of generating a sample is given by c1. This may be large when generating a sample
is costly, for instance, if that corresponds to an output of a massive simulation model, or a result of
a clinical trial. It may be small, e.g., in an online recommendation system. The cost of solving the
max-min problem (7) may be measured by the computational effort involved. The total experiment
cost of AL1 is the sum of the total cost of sampling (c1× number of samples generated) and the
total computational effort involved in solving the max-min optimization problems till termination.

11
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Recall that in order to efficiently solve the max-min problem iteratively (see Section 3), at each
stage when this evaluation is done, letting µ̂i denote the empirical distribution of arm i, we pre-
compute values of KLinf(µ̂i, y) for each y along a grid and linearly interpolate for values of y not in
the grid, for each arm i. Empirically we see that the the cost of computing KLinf increases linearly
with the number of samples of the corresponding empirical distribution (also see Cappé et al. (2013)
for similar observations). This suggests that the computational cost of AL1 increases linearly in the
total number of samples generated. To this end, we observe that the overall computational cost of
solving the max-min problem (7) is modelled well as c21 + c22n, where n denotes the total number
of samples generated by AL1 till that stage, and c21 and c22 are fitted to the data. In our numerical
experiment below, this cost is approximately (in computational time) 1854 + 0.6n seconds. Since,
n runs in many thousands in a typical setting, the linear term cannot be ignored.

To approximate the optimal batch size, we need to approximate the sample complexity. To this
end, let β̃(δ) , log

(
C/δ (log(C/δ))α) , where recall that C and α were defined in the stopping

rule for AL1. For small values of δ, the sample complexity of AL1 (see (78) in Appendix C.6),

Eµ (τδ) ≤ β̃(δ)V(µ)−1 + m + lower order terms, (20)

where m denotes the batch size. Equation (20), remains valid if we use log(1/δ) in place of
β̃(δ). However, for reasonable values of δ, the two may differ significantly, and empirically we
find that log(1/δ)V(µ)−1 + m substantially underestimates Eµ (τδ), while β̃(δ)V(µ)−1 + m is
much closer. Using β̃(δ)V(µ)−1 + m as a proxy for Eµ (τδ), and assuming that the total number of
batches till the stopping time is approximated by (β̃(δ)V(µ)−1 + m)m−1, the total cost C of AL1
approximately equals(

c1 + c21m−1
) (

β̃(δ)V(µ)−1 + m
)
+ 0.5 c22m−1

(
β̃(δ)V−1(µ) + m

)2
.

Observe that for m constant, independent of δ, C is Θ
(

log2(1/δ)
)

since β̃(δ) is Θ(log(1/δ)).

For m = Θ(log(1/δ)), it is Θ(log (1/δ)).
Optimizing over m to minimize C, we get

m∗ =
(

c21 β̃(δ)V(µ)−1 + 0.5 c22 β̃(δ)
2V(µ)−2

)0.5
(c1 + 0.5 c22)

−0.5 , (21)

i.e., m∗ = Θ (log (1/δ)). Notice that even though m = m∗ minimizes C, (20) suggests that with
this choice of m, the ratio of expected number of samples until termination for AL1 to the corre-
sponding max-min lower bound no longer converges to 1 as δ → 0, that is, (13) no longer holds.
It can however be seen that the δ-correct property still holds for AL1 even for m = Θ(log(1/δ)).
If, however, KLinf could be estimated using computational effort that is independent of the size of
the empirical distribution, that is, if c22 = 0, then m∗ = Θ

(
(log (1/δ))0.5), and AL1 is asymp-

totically optimal, so that (13) holds. One way to achieve this may be to approximate the empirical
distribution by a fixed size distribution (eg., by bucketing the generated samples into finitely many
bins). This may substantially reduce the computation time. The overall issue of developing efficient
implementations for the best arm problem for general distributions is an interesting area for further
research.

Numerical experiment: We consider a 4-arm bandit seeting. Each arm has a Pareto distribution
with pdf fα,β(x) = αβα

xα+1 , supported on [β, ∞). The parameters (α, β) of these arms are set to

12
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(4, 1.875), (4, 1.5), (4, 1.25), and (4, 0.75). The resulting arm-means are (2.5, 2.0, 1.67, 1.0). L
corresponds to f (y) = y2 and B = 9. In the Appendix C.7 we show that the average number
of samples needed by AL1, slowly approaches the lower bound as δ approaches zero (their ratio
equals 28 for δ = 0.001 and 16 for δ = 10−8). We also compute the average cost (averaged over 20
independent experiments) of AL1 measured as c1 times average sample complexity plus observed
average computational effort, as a function of the batch size and c1, for δ = 0.01. We observe that
for c1 = 0.0001 optimal batch size is approximately 30, 000. For c1 = 3 the optimal batch size is
close to 4, 000.
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Appendix A. Background and proofs related to the impossibility result

We first recall the Berge’s Maximum Theorem, which we use in our proofs that follow.

A.1. Berge’s Maximum Theorem

Berge’s maximum theorem (Sundaram (1996, Chapter 9), Berge (1997, Chapter 6)) provides condi-
tions for (upper and lower) continuity of the optimal value and set of optimizers with respect to the
underlying parameters in a constrained optimization problem. We first give some definitions before
stating the theorem.

Definition 15 A correspondence Γ from X to Y (denoted as Γ : X →→ Y) is a map from X to
the set of all non-empty subsets of Y. Γ is a compact (closed) valued correspondence if Γ(x) is a
compact (closed) subset of Y for each x.

Definition 16 For S ⊂ X, define Γ(S) :=
⋃

x∈S Γ(x). The correspondence Γ : X →→ Y is
upper-hemicontinuous at x ∈ X if for every open subset V ⊂ Y such that Γ(x) ⊂ V, ∃δ > 0 such
that Γ(Bδ(x)) ⊂ V, where Bδ(x) is a δ neighbourhood of x in X.

Definition 17 Correspondence Γ : X →→ Y is lower-hemicontinuous at x ∈ X if for every open
subset V ⊂ Y such that Γ(x) ∩V 6= ∅, ∃δ > 0 such that ∀z ∈ Bδ(x), Γ(z) ∩V 6= ∅.

Definition 18 Correspondence Γ : X →→ Y is continuous at x ∈ X if it is both upper and lower
hemicontinuous at x.

Theorem 19 (Berge’s Maximum Theorem) Let Θ and X be two metric spaces. Let Γ : Θ→→ X
be a compact valued correspondence, f : X×Θ −→ < be a real-valued function and

f ∗(θ) = max
x∈Γ(θ)

f (x, θ) and Γ∗(θ) = argmax
x∈Γ(θ)

f (x, θ).

• If f is lower semicontinuous on X × Θ and Γ is upper hemicontinuous, then f ∗ is lower
semicontinuous at θ.

• If f is a continuous function and Γ is continuous at θ ∈ Θ, then f ∗ is continuous at θ and Γ∗

is compact valued and upper-hemicontinuous at θ.
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A.2. Proof of Lemma 1

For notational ease, let probability measure η also denote the associated distribution function. Con-
sider a large y whose value will be fixed later. Furthermore, take γ ∈ (0, 1). Construct another
distribution function κ as follows: Set

κ(x) = (1− γ)η(x)

for all x ≤ y, and,
κ̄(x) = βη̄(x)

for x > y, where, κ̄(x) = 1− κ(x) and η̄(x) = 1− η(x).
Since κ(x) integrates to 1, β satisfies

β = 1 + γ
η(y)
η̄(y)

.

Since β > 1,

0 ≤
∫

x∈<
log
(

dη

dκ
(x)
)

dη(x) ≤ −η(y) log(1− γ). (22)

By selecting γ = 1− exp(−a), we get

−η(y) log(1− γ) ≤ a.

Also, for y such that η(y+) = η(y−),

m(κ) = (1− γ)
∫ y

−∞
xdη(x) +

(
1 + γ

η(y)
η̄(y)

) ∫ ∞

y
xdη(x)

≥ exp(−a)m(η) + (1− exp(−a))y.

Since, RHS increases to infinity as y→ ∞, one can select y sufficiently large so that m(κ) ≥ b. �

Appendix B. Proofs related to lower bound

B.1. Proof of Lemma 4

Clearly, L is a uniformly integrable family of measures (see, e.g., Williams (1991)).
Recall that L is a subset of P(<) and the topology on L is the subset topology correspond-

ing to that induced by Wasserstein metric on P(<). Furthermore, the topology generated by the
Wasserstein metric on P(<) is equivalent to that of the weak convergence of probability measures
(see, e.g., Theorem 7.12 in Villani (2003) for the equivalence). We first show that L is a closed and
relatively-compact and thus, compact (in the topology discussed) set of probability measures.

Consider a sequence of measures ηn ∈ L such that ηn converge weakly to some η̄ (denoted as

ηn
D
=⇒ η̄ ). To show that L is closed, it is sufficient to show that η̄ ∈ L, i.e., Eη̄( f (|X|)) ≤ B. Since

ηn and η̄ are measures on < and ηn
D
=⇒ η̄, there exist random variables Xn and X on < such that Xn

is distributed according to ηn and X according to η̄ and Xn
a.s.−→ X (by Skorohod’s Representation

Theorem. See, e.g., Theorem 6.7 Billingsley (2013)). Since f (|·|) is a continuous function, Xn
a.s.−→

17
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X implies that f (|Xn|)
a.s.−→ f (|X|). Applying Fatou’s Lemma (see, e.g., Williams (1991)) to the

sequence of non-negative random variables f (|Xn|),

E
(

lim inf
n→∞

f (|Xn|)
)
≤ lim inf

n→∞
E ( f (|Xn|)) . (23)

Since ηn ∈ L, r.h.s. of (23) is upper bounded by B. This gives Eη̄( f (|X|)) ≤ B, as desired.
Next, to show that L is a compact set under the topology generated by Wasserstein metric, let

Kε =

[
− f−1

(
B
ε

)
, f−1

(
B
ε

)]
,

where
f−1(x) = sup {y : f (y) ≤ x} .

For η̄ ∈ L and ε > 0, by Chebyshev’s inequality, 1− η̄(Kε) ≤ ε, and thus, L is a tight subset
of P(<). Furthermore, since L is closed, by Prokhorov’s theorem, L is a compact set under the
topology generated by the Wasserstein metric (see page 25,Villani (2003)).

Thus, L is a uniformly integrable, and compact collection of probability measures. Now, for
η ∈ P(<) and x such that f (|x|) < B, we prove the properties of KLinf(η, x) as a function of η
and x. We prove these only for the case when x ≥ m(η). Exactly the same proofs hold for the case
when x < m(η).

It is clear from the definition that KLinf(η, x) is non-decreasing for x > m(η) and non-
increasing for x < m(η). Next, recall that KL(η, η) = 0 for all η ∈ P(<). Furthermore,
KLinf(η, x) is non-negative for all feasible x and η. In particular, for η ∈ L, η is a feasible solution
and KLinf(η, m(η)) = 0.

To see the strict convexity of KLinf(η, x) in x, let x1 and x2 be such that f (|x1|) < B and
f (|x2|) < B. Let η ∈ P(<). Let κ∗1 and κ∗2 the denote optimal solutions for KLinf(η, x1) and
KLinf(η, x2), respectively (we show their existence in Section C.3). For λ ∈ [0, 1], let

κ12 = λκ∗1 + (1− λ)κ∗2 , and x12 = λx1 + (1− λ)x2.

Then, m(κ12) ≥ x12 and Eκ12( f (|X|)) ≤ B. Since κ12 ∈ L and KL(·, ·) is strictly-convex in the
second argument,

KLinf(η, x12) ≤ KL(η, κ12) < λ KL(η, κ∗1) + (1− λ)KL(η, κ∗2). (24)

Now, by optimality of κ∗1 and κ∗2 it follows that the r.h.s. of (24) equals λ KLinf(η, x1) + (1 −
λ)KLinf(η, x2) thus proving strict convexity of KLinf(η, x) in x. Similarly, by using joint convexity
of KL in both the arguments, one can show convexity of KLinf(η, x) in η.

Next, we show that for η ∈ L, KLinf(η, x) is bounded by f−1(B)
f−1(B)−x . Consider

κ :=
f−1(B)− x

f−1(B)−m(η)
η +

x−m(η)

f−1(B)−m(η)
δ f−1(B),

where δy denotes a point mass at y. Clearly, κ ∈ L and m(κ) = x. Thus,

KLinf(η, x) ≤ KL(η, κ) ≤
∫

Supp(η)

ln
(

f−1(B)−m(η)

f−1(B)− x

)
d(η(y)) ≤ f−1(B)

f−1(B)− x
.

18



OPTIMAL δ-CORRECT BEST-ARM SELECTION FOR HEAVY-TAILED DISTRIBUTIONS

To prove continuity of KLinf(η, x) in η for a fixed x, we show that it is both upper and lower
semi continuous function. Let

R , {κ ∈ L : m(κ) ≥ x}.
Recall that

KLinf(η, x) = inf
κ∈R

KL(η, κ).

Clearly, KL(·, ·) is a lower semicontinuous function from P(<)×P(<) to < (Posner, 1975, The-
orem 1) in topology of weak convergence on the domain. Define the correspondence Γ from P(<)
to L as Γ(η) = R for each η in P(<). Then, Γ is a compact valued correspondence. To see this,
consider a sequence of measures {κn} ∈ R weakly converging to κ ∈ L. Since L is a uniformly
integrable family, m(κn) −→ m(κ), (Billingsley (1971, Corollary 5, page 9)). From the definition
of set R,

m(κn) ≥ x =⇒ m(κ) ≥ x.

Thus, κ ∈ R and hence, R is a closed subset of L. Since L is a compact set, R is compact.
Furthermore, since Γ is a constant correspondence, it can easily be verified to be continuous. Now,
from Berge’s Theorem it follows that KLinf is lower semicontinuous in η.

Next, we show that KLinf(η, x) is upper semicontinuous in η. Key idea in proving upper semi-
continuity of KLinf in η is showing that it is continuous in the interior of P(<) (see, Charalambos
and Border (2006, Theorem 5.43)). Upper semicontinuity then follows since it is a convex function
over P(<).

To see continuity in interior of the domain, let C := P(<) and consider η0 ∈ Lo, where Lo

denotes relative interior of L in P(<). Furthermore, Lo ⊂ Co. Let

Bo(η0, y) = {η ∈ P(<) : dW(η0, η) < y}

denote an open ball in P(<), which is of radius y and is centered at η0. Since η0 ∈ Lo, there exists
Bo(η0, r) ⊂ Lo ⊂ Co. Next, consider κ1 ∈ Co. Since Co is convex, there exists κ2 ∈ Co such that

κ1 = (1− λ)η0 + λκ2, for some λ ∈ [0, 1].

It can be shown that for all κ in Bo(κ1, (1− λ)r) the function KLinf is bounded from above by

max {M, KLinf(κ2, x)}, where M = f−1(B)
f−1(B)−x . This then gives that KLinf is locally Lipschitz on

Co and hence, continuous. Since KLinf is convex on C and continuous on Co, it follows that it is
upper semicontinuous on C.

From Theorem 2.1 Fiacco and Ishizuka (1990),

∂ KLinf(η, x)
∂x

= λ∗1(x), (25)

where λ∗1(x) denotes the optimal dual parameter corresponding to the first-moment constraint in
the definition of KLinf (see Section C.3 for the dual representation of KLinf).

To prove double differentiability of KLinf(η, x) in x, it is sufficient to prove that λ∗1(x) is
differentiable function of x. For x 6= m(η), or x = m(η) and η 6∈ L, Theorem 12 (discussion and
proof in Section C.3) gives that the constraints are tight, i.e., if κ∗ denotes the optimal distribution
achieving the infimum in KLinf(η, x), then m(κ∗) = x and Eκ∗( f (|X|)) = B. Furthermore, let∫

Supp(η)

dκ∗(y) = p0.
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As shown in the Theorem 12, if p0 < 1 then there is a unique point, say y0, such that Supp(κ∗) =
Supp(η) ∪ {y0}. Then, using the form of κ∗ from Theorem 12 we get that y0, λ∗1 and λ∗2 solve

1− (y0 − x)λ∗1 − (B− f (|y0|))λ∗2 = 0,∫
<

ydη(y)
1− (y− x)λ∗1 − (B− f (|y|))λ∗2

+ y0(1− p0) = x,

and ∫
<

f (|y|) dη(y)
1− (y− x)λ∗1 − (B− f (|y|))λ∗2

+ f (|y0|) (1− p0) = B.

Using Implicit function theorem it can be shown that the dual variable λ∗1 is differentiable with
respect to the parameter x.

To see that partial derivative of KLinf(η, x) with respect to x, when η ∈ L and derivative is
evaluated at m(η) is 0, from (25), it is sufficient to show that λ∗1(m(η)) = 0. However, for η ∈ L,
KLinf(η, m(η)) = 0, with η being the minimizer. Using the form of the minimizer distribution
from Section C.3, it follows that λ∗1(m(η)) = 0. �

B.2. Proof of Theorem 5

To prove Theorem 5, we need a few other results, which we prove first. Let

Aj =

{
ν ∈ ML : m(νj) ≥ max

i 6=j
m(νi)

}
.

Also, recall that for µ ∈ (P(<))K, gj(t1, tj, x) = t1 KLinf(µ1, x)+ tj KLinf(µj, x) and Gj(t1, tj) =
inf

x∈[m(µj),m(µ1)]
gj(t1, tj, x).

Lemma 20 For t1, t2 such that max {t1, t2} > 0, infimum in expression for Gj(t1, tj) is achieved
at unique point, xj(t1, tj), and satisfies:

∂Gj(t1, tj)

∂t1
= KLinf(µ1, xj(t1, tj)),

∂Gj(t1, tj)

∂tj
= KLinf(µj, xj(t1, tj)). (26)

Furthermore, for t ∈ ΣK, minj Gj(t1, tj) is a strictly concave function of t.

Proof We first prove that the infimum over x of gj(t1, tj, x) is attained at a unique x, which satisfies
(26). To this end, we first argue that gj(t1, tj, x) is a strictly convex function of x, that has its unique
global minima in the region [m(µj), m(µ1)]. Furthermore, the global minima of a continuous and
strictly convex function should satisfy the first order conditions for the global optimality. Using
these first order conditions, we arrive at (26).

From Lemma 4, KLinf(µj, x) is continuous and strictly convex in x and hence, gj(t1, tj, x)
is continuous and strictly convex in x. Furthermore, for x > m(µ1) (or for x < m(µj)), both
KLinf(µ1, x) and KLinf(µj, x) are increasing (or decreasing) functions of x. Thus, gj(t1, tj, x) is
minimized for some x in [m(µj), m(µ1)], i.e.,

inf
x∈<

gj(t1, tj, x) = inf
x∈[m(µj),m(µ1)]

gj(t1, tj, x). (27)
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Since the above expression computes the infimum of a non-negative, continuous, and strictly-
convex function over a compact set, there exists a unique xj ∈ [m(µj), m(µ1)] that minimizes
gj(t1, tj, x), giving

Gj(t1, tj) = t1 KLinf(µ1, xj(t1, tj)) + tj KLinf(µj, xj(t1, tj)).

Furthermore, xj being point of global minima of gj, satisfies the following first order condition
for optimality:

t1
∂ KLinf(µ1, xj)

∂x
+ tj

∂ KLinf(µj, xj)

∂x
= 0. (28)

For (t1, tj) > 0, by Implicit Function Theorem, xj is a differentiable function of (t1, tj), denoted
by xj(t1, tj). Differentiating Gj with respect to tj,

∂Gj(t1, tj)

∂tj

= KLinf(µj, xj(t1, tj)) +

(
tj

∂ KLinf(µj, xj(t1, tj))

∂x
+ t1

∂ KLinf(µ1, xj(t1, tj))

∂x

)
∂xj(t1, tj)

∂tj
.

Using (28) in the above expression for the derivative, we get one term in (26). Similarly, differenti-
ating with respect to t1, one can get the other term in (26).

We now prove strict concavity in t of the function minj Gj(t1, tj). Consider t, t̃ ∈ ΣK such that
t 6= t̃. For λ ∈ [0, 1] and ∀j ∈ {2, . . . , K}, by linearity of gj(t1, tj, x) in the vector t,

Gj(λt1 + (1− λ)t̃1, λtj + (1− λ)t̃j) = inf
x∈[m(µj),m(µ1)]

{
λgj(t1, tj, x) + (1− λ)gj(t̃1, t̃j, x)

}
,

(29)
which in turn gives,

Gj(λt1 + (1− λ)t̃1, λtj + (1− λ)t̃j) ≥ λGj(t1, tj) + (1− λ)Gj(t̃1, t̃j). (30)

To prove strict concavity, it is sufficient to prove that the inequality above is strict for at least one j.
Let the unique point of infimum in (29) be x∗ and those for Gj(t1, tj) and Gj(t̃1, t̃j) in r.h.s. of (30)
be denoted by xj(t1, tj) and xj(t̃1, t̃j) respectively.

Suppose x∗ 6= xj(t1, tj) or x∗ 6= xj(t̃1, t̃j), then

Gj(λt1 + (1− λ)t̃1, λtj + (1− λ)t̃j) = λgj(t1, tj, x∗) + (1− λ)gj(t̃1, t̃j, x∗)

> λGj(t1, tj) + (1− λ)Gj(t̃1, t̃j).

Hence, if (30) holds as an equality for some j, then xj(t1, tj) = xj(t̃1, t̃j) = x∗ and these must
satisfy,

t1
∂ KLinf(µ1, x)

∂x

∣∣∣∣
x∗
+ tj

KLinf(µj, x)
∂x

∣∣∣∣
x∗

= t̃1
∂ KLinf(µ1, x)

∂x

∣∣∣∣
x∗
+ t̃j

KLinf(µj, x)
∂x

∣∣∣∣
x∗

= 0.

This implies t1/tj = t̃1/t̃j. But t and t̃ are both distinct elements of ΣK. Hence ∃k ∈ {2, . . . K}
such that t1/tk 6= t̃1/t̃k and hence, the corresponding Gk(t1, tk) is strictly concave, proving the
lemma.
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B.2.1. PROOF OF (9) IN THEOREM 5

We first prove that,

inf
ν∈A

(
K

∑
a=1

ta KL(µa, νa)

)
= min

j 6=1
inf

ν∈Aj

(
K

∑
a=1

ta KL(µa, νa)

)
= min

j 6=1
Gj(t1, tj). (31)

The first equality above is trivial. Notice that infimum of the summation in the expression above in
the middle is achieved by some vector ν ∈ Aj such that νi = µi, for all i 6∈ {1, j}, since for any
other ν′ ∈ Aj not satisfying this, the value of this expression can be minimized by replacing ν′i by
µi for all i 6∈ {1, j}. This gives,

inf
ν∈Aj

K

∑
a=1

ta KL(µa, νa) = inf
ν∈Aj :νi=µi , i 6∈{1,j}

t1 KL(µ1, ν1) + tj KL(µj, νj)

= inf
x≤y

(
t1 KLinf(µ1, x) + tj KLinf(µj, y)

)
.

Also, notice that the infimum in the r.h.s. of above equation is attained at a common point
(x = y). Suppose not, i.e., suppose that the infimum is achieved at x∗ < y∗. Then, increasing
x∗ to x′ (or decreasing y∗ to y′, depending on whether x∗ < m(µ1) or y∗ > m(µj)) such that
x∗ < x′ < y∗ (or x∗ < y′ < y∗) reduces KLinf(µ1, x′) (or KLinf(µ

′
j, y′)) while keeping the

other term unchanged (see Lemma 4 for properties of KLinf), thus reducing the overall value of the
function. Thus,

inf
ν∈Aj

K

∑
a=1

ta KL(µa, νa) = inf
x

(
t1 KLinf(µ1, x) + tj KLinf(µj, x)

)
.

Substituting this into (31), we have the following equalities:

inf
ν∈A

(
K

∑
a=1

ta KL(µa, νa)

)
= min

j 6=1
inf

x

(
t1 KLinf(µ1, x) + tj KLinf(µj, x)

)
= min

j 6=1
Gj(t1, tj).

The last equality above follows from (27). This gives V(µ) = sup
t∈ΣK

minj Gj(t1, tj).

Furthermore, to prove that the set of maximizers in the expression above is a singleton, notice
that ∀j, Gj(t1, tj) ≤ max

{
KLinf(µ1, m(µj)), KLinf(µj, m(µ1))

}
. Finiteness of KLinf(µ1, m(µj))

follows from the definition of KLinf, and by considering measure µ′ = pµ1 + (1− p)δm(µj)−ε, for
some ε > 0 and p ∈ (0, 1) such that µ′ ∈ L and m(µ′) ≤ m(µj). Similarly, one can argue the
finiteness of KLinf(µj, m(µ1)). Hence, minj Gj(t1, tj) < ∞.

From Lemma 20, for t ∈ ΣK, minj Gj(t1, tj) is strictly concave function of t. Since ΣK is a
compact set, minj Gj(t1, tj) attains the maximum at a unique point t∗ ∈ ΣK. �

B.2.2. PROOF OF CHARACTERIZATION OF t∗(µ) IN THEOREM 5

For µ ∈ ML and t ∈ ΣK,
h(µ, t) = min

i∈{2,··· ,K}
Gi(t1, ti).
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Let t∗ be the unique optimizer in T(µ). For i 6= 1,

t∗i = 0 =⇒ Gi(t∗1 , t∗i ) = 0, and h(µ, t∗) = 0.

Similarly, h(µ, t∗) = 0 if t∗1 = 0. But if ti = 1/K for all i, h(µ, t) > 0 contradicting the optimality
of t∗. Hence t∗i > 0 for all i.

Since ∀i t∗i > 0, ∂Gi(t1, ti)/∂ti and ∂Gi(t1, ti)/∂t1 are as given in (26). Furthermore, by
Lemma 20, h(µ, t) is a strictly concave function of t. Hence, first order conditions are necessary
and sufficient to find its optimal solution. Re-writing maxt∈ΣK h(µ, t) as the following optimization
problem:

max z s.t. Gj(t1, tj) ≥ z, ∀j;
K

∑
i=1

ti = 1; tj ≥ 0, ∀j. (32)

From the first order conditions for (32), it follows that there exist (λj : j = 2, . . . , K) and γ
satisfying:

K

∑
j=2

λj = 1, λi
∂Gi(t1, ti)

∂ti

∣∣∣∣
t=t∗

= γ, i = 2, . . . , K, (33)

K

∑
i=2

λi
∂Gi(t1, ti)

∂t1

∣∣∣∣
t=t∗

= γ, λi(Gi(t∗1 , t∗i )− z) = 0, i = 2, . . . , K. (34)

Equation (33) implies that λi > 0 for some i. Also, since ∂Gi(t∗1 , t∗i )/∂ti > 0 for all i, it follows
that γ > 0 and hence each λi > 0.

Part 2 of the Theorem 5 follows from (33) and (34). Part 3 follows from (34).
To show continuity of optimal proportions t∗(µ) in µ, we use Berge’s Theorem (reproduced in

Appendix A.1) for the problem in (32), treating µ as a parameter.
Since KLinf(η, x) is continuous in η (Lemma 4), gj(t1, tj, x) is jointly continuous function of

(µ, t). Gj(t1, tj) being infimum over a compact set of continuous functions, is jointly continuous in
µ and t.

Let the correspondence Γ(µ) = ΣK for all µ. Clearly, Γ is a compact-valued correspondence.
Furthermore, since it is independent of µ, it can be easily verified to be both upper and lower
hemicontinuous, and hence is continuous in the parameter µ.

Berge’s Theorem then gives that the set T(µ) of optimal solutions to (32) is upper hemicon-
tinuous. However, T(µ) = {t∗(µ)} being singleton (Theorem 5) and upper hemicontinuous, we
conclude that t∗(µ) is continuous in µ (a correspondence Γ such that Γ(x) = {γ(x)} for some
function γ, is upper-hemicontinuous iff Γ(x) is lower-hemicontinuous and iff γ(x) is continuous).

B.3. Algorithm for solving the max-min lower bound

Recall that solving for the max-min lower bound efficiently is crucial to the performance of the
proposed δ-correct algorithm. Theorem 5 characterizes the solution to the max-min lower bound
problem, given that µ is known. As discussed earlier in Remark 6, we allow µ to lie not just inML,
but in (P(<))K.

In this section, we formally describe the algorithm for computing t∗ and V(µ) and prove the
monotonicity properties of the relevant equations in the characterization, that are used in the algo-
rithm. These are shown in Lemmas 21, 22, 23, and 24. Algorithm is presented in Section B.3.1.
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For fixed µ ∈ (P(<))K such that m(µ1) > maxj≥2 m(µj), define functions Ij : <×<+ → <
and Ĩj : <+ → <+ for j ∈ {2, . . . , K} as

Ij(x, y) = KLinf(µ1, x) + y KLinf(µj, x) and Ĩj(y) = inf
x∈<
Ij(x, y).

As in Lemma 20, with change of variables (set yj =
tj
t1

) and minor modifications, it can be seen
that there is a unique x, denoted by xj(y), that attains the infimum in Ĩj(y). Furthermore, xj(y)
belongs to the interval [m(µj), m(µ1)] and satisfies

∂ KLinf(µ1, x)
∂x

∣∣∣∣
xj(y)

+ y
∂ KLinf(µj, x)

∂x

∣∣∣∣
xj(y)

= 0. (35)

Below, we prove some monotonicity results, relevant for the algorithm.

Lemma 21 Ĩj(y) is a monotonically strictly increasing function of y.

Proof Let xj(y) denote the unique x attaining infimum in Ĩj(y). Then,

Ĩj(y) = KLinf(µ1, xj(y)) + y KLinf(µj, xj(y)).

Differentiating with respect to y and using (35),

∂Ĩj(y)
∂y

=
∂xj(y)

∂y

(
∂ KLinf(µ1, x)

∂x

∣∣∣∣
xj(y)

+ y
∂ KLinf(µj, x)

∂x

∣∣∣∣
xj(y)

)
+ KLinf(µj, xj(y))

= KLinf(µj, xj(y)) > 0.

Clearly, Ĩj(0) = KLinf(µ1, m(µ1)). Note that this may be non-zero if µ1 6∈ L. Furthermore,

Ĩj(y)
y→∞−−−→ dj, where

dj =

{
KLinf(µ1, m(µj)), if µj ∈ L
∞, otherwise.

From Lemma 21, the function Ĩj is invertible in [KLinf(µ1, m(µ1)), dj).
For c ∈ [KLinf(µ1, m(µ1)), dj), let yj(c) denote Ĩ−1

j (c), and let xj(c) denote the unique x
attaining infimum in Ĩj(yj(c)).

Lemma 22 yj(c) is a monotonically strictly increasing function of c in [KLinf(µ1, m(µ1)), dj) for
j ∈ {2, . . . , K}.

Proof Recall that xj(c) and yj(c) satisfy

KLinf(µ1, xj(c)) + yj(c)KLinf(µj, xj(c)) = c.

Differentiating the above equation with respect to c,(
∂ KLinf(µ1, xj(c))

∂x
+ yj(c)

∂ KLinf(µj, xj(c))
∂x

)
∂xj(c)

∂c
+ KLinf(µj, xj(c))

∂yj(c)
∂c

= 1.
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Since, xj(c) attains infimum in Ĩj(yj(c)), it satisfies the first order conditions for optimality. Thus,

∂yj(c)
∂c

=
1

KLinf(µj, xj(c))
> 0.

Recall that for x ≥ m(η), KLinf(η, x) is the optimal value of the following constrained opti-
mization problem,

min
κ∈P(<)

KL(η, κ) s.t. m(κ) ≥ x, Eκ( f (|X|)) ≤ B.

Let λ∗1,j(x) denote the optimal dual parameter corresponding to the first-moment constraint in
KLinf(µj, x) (dual formulation of KLinf and existence of optimal primal and dual variables is argued
in Section C.3). Then,

∂ KLinf(µj, x)
∂x

= λ∗1,j(x), (36)

(see, e.g., Fiacco and Ishizuka (1990, Theorem 2.1)). Furthermore, as argued above, xj(c), lies in
the interval [m(µj), m(µ1)]. Thus, from dual formulation of KLinf(µj, xj(c)) and KLinf(µ1, xj(c))
(Section C.3),

λ∗1,j(xj(c)) ≥ 0, and λ∗1,1(xj(c)) ≤ 0. (37)

Lemma 23 xj(c) is a monotonically-decreasing function of c in [KLinf(µ1, m(µ1)), dj), for all
j ∈ {2, . . . , K}.

Proof Recall from (35) and (36) that xj(c) and yj(c) satisfy,

λ∗1,1(xj(c)) + λ∗1,j(xj(c))yj(c) = 0.

Differentiating with respect to x and re-arranging terms,

∂xj(c)
∂c

=
−λ∗1,j(xj(c))∂yj(c)/∂c

∂2 KLinf(µ1, x)/∂x2 + yj(c)∂2 KLinf(µj, x)/∂x2 .

Since KLinf(·, x) is a strictly convex function of x, denominator is clearly positive. Non-
positivity of numerator follows from Lemma 22, and (37), thus giving:

∂xj(c)
∂t1

≤ 0.

Lemma 24
K
∑

j=2

KLinf(µ1,xj(c))
KLinf(µj,xj(c))

is a monotonically-increasing function of c in [KLinf(µ1, m(µ1)), d).
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Proof To show the required result, it is sufficient to show that each term in the summation is
monotonically-increasing in c. To this end, consider

Sj =
KLinf(µ1, xj(c))
KLinf(µj, xj(c))

.

The sign (denoted by Sgn) of derivative of Sj with respect to c equals product of

Sgn
(

KLinf(µj, xj(c))
∂ KLinf(µ1, xj(c))

∂x
−KLinf(µ1, xj(c))

∂ KLinf(µj, xj(c))
∂x

)
and

Sgn
(

∂xj(c)
∂c

)
.

Recall that xj(c) lies in the interval [m(µj), m(µ1)] and from (36) and (37),

∂ KLinf(µj, xj(c))
∂x

≥ 0 and
∂ KLinf(µ1, xj(c))

∂x
≤ 0.

Furthermore, using Lemma 23,

Sgn
(

∂Sj

∂t1

)
= − Sgn

(
∂xj(c)

∂c

)
≥ 0.

B.3.1. ALGORITHM FOR SOLVING LOWER BOUND OPTIMIZATION PROBLEM

Now we formally describe the algorithm. Let t∗ ∈ ΣK denote the optimal weights vector and let c∗

denote the common value of Ĩj(t∗j /t∗1) for j ∈ {2, . . . , K}. Note that c∗ ∈ [KLinf(µ1, m(µ1)), dj)

for all j ∈ {2, . . . , K}. Let d = minj dj. Then, c∗ ∈ [KLinf(µ1, m(µ1)), d).

1. Fix c = KLinf(µ1, m(µ1)).

2. For a fixed c ∈ [0, d), and for each j ∈ {2, . . . , K}, solve the following for yj = yj(c) (set
y1(c) = 1) and let xj(c) for each j ≥ 2 denote the corresponding minimizer:

inf
x∈[m(µj),m(µ1)]

KLinf(µ1, x) + yj KLinf(µj, x) = c.

3. Line search for c∗ in the interval [KLinf(µ1, m(µ1)), d), so that with yj(c∗) and the corre-
sponding xj(c∗) computed using Step 2, the following holds:

K

∑
j=2

KLinf(µ1, xj(c∗))
KLinf(µj, xj(c∗))

= 1.

4. Output t∗j = yj(c∗)/∑K
i=1 yi(c∗) for all y ∈ {1, . . . , K} and V(µ) = c∗t∗1 .
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Appendix C. Proofs related to the sampling algorithm

We first prove that at the end of each interval of length m, say l, the sampling algorithm ensures a
minimum (

√
lm− 1) number of samples to each arm, i.e., Na(lm) ≥

√
lm− 1.

C.1. Proof of Lemma 8

The given statement is true for l = 1 as Na(m) ≥ m
K − 1 ≥ m1/2 − 1. Now suppose that at step

lm each arm has at least (lm)1/2− 1 samples, i.e., Na(lm) ≥ (lm)1/2− 1 for each arm a. Then, it
needs at most ((l + 1)m)1/2− (lm)1/2 samples to ensure that Na((l + 1)m) ≥ ((l + 1)m)1/2− 1.

Since lm ≥ K
(
(lm)1/2 − 1

)
, and m ≥ (K + 1)2, m1/2((l + 1)1/2 − l1/2) < m1/2/l1/2 <

m/K, where the first inequality is trivially true. Now, since the maximum number of samples
required is an integer, each arm requires at most

⌊m
K

⌋
samples and the algorithm has sufficient

samples to distribute. This guarantees that all arms reach the minimum threshold.

C.2. Simplification of stopping rule

Recall that Aj =
{

ν ∈ ML : m(νj) > maxi 6=j m(νi)
}

. Let Y a :=
(
Ya

i : 1 ≤ i ≤ Na(n)
)

denote
the Na(n) samples from arm a. For ν ∈ (P(<))K, let Lν(Y 1, . . . ,Y K) denote the likelihood of
observing the given samples under ν. Furthermore, if at stage n, m(µ̂j(n)) > maxi 6=j m(µ̂i(n)),
then the log of generalized likelihood ratio is given by

Zj(n) = log

 Lµ̂(n)
(
Y 1, . . . ,Y K

)
max
µ′∈Ac

j

Lµ′ (Y 1, . . . ,Y K)

 .

Since each sample is independent of all the other samples,

Zj(n) = log


K
∏

a=1

Na(n)
∏
i=1

µ̂a(n)
(
Ya

i
)

sup
µ′∈Ac

j

K
∏

a=1

Na(n)
∏
i=1

µ′a
(
Ya

i

)
 = inf

µ′∈Ac
j

K

∑
a=1

Na(n)

∑
i=1

(
log (µ̂a(n) (Ya

i ))− log
(
µ′a(Y

a
i )
))

= inf
µ′∈Ac

j

K

∑
a=1

Na(n)KL(µ̂a(n), µ′a).

C.3. Dual representation of KLinf

Let M+(<) denote the collection of all non-negative measures on <. Extend the Kullback-Leibler
Divergence to a function on M+(<)×M+(<), that is, KL : M+(<)×M+(<)→ < defined as:

KL(κ1, κ2) ,
∫

y∈<
log
(

dκ1

dκ2
(y)
)

dκ1(y).

Note that for κ1 ∈ P(<) and κ2 ∈ P(<), KL(κ1, κ2) is the usual Kullback-Leibler Divergence
between the probability measures.
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Recall that for η ∈ P(<), x ≥ m(η), and B > f (|x|), KLinf(η, x) is defined as the solution to
the following optimization problem, (O1):

infκ∈M+(<) KL(η, κ); s.t.
∫

y∈<
ydκ(y) ≥ x,

∫
y∈<

f (|y|)dκ(y) ≤ B,
∫

y∈<
dκ(y) = 1.

We point out that the results that we present below are for f−1(B) > x ≥ m(η). Symmetric
results hold when − f−1(B) < x ≤ m(η), with KLinf defined with the corresponding constraints.

Let λ = (λ1, λ2, λ3). For κ ∈ M+(<), the Lagrangian, denoted by L(κ,λ), for the Problem
(O1) is given by,

KL(η, κ) + λ3

1−
∫

y∈<

dκ(y)

+ λ1

x−
∫

y∈<

ydκ(y)

+ λ2

 ∫
y∈<

f (|y|)dκ(y)− B

 .

(38)

Define
L(λ) , inf

κ∈M+(<)
L(κ,λ). (39)

The Lagrangian dual problem corresponding to the Problem (O1) is given by the following problem:

max
λ3∈<,λ1≥0,λ2≥0

(
inf

κ∈M+(<)
L(κ,λ)

)
. (40)

Let Supp(κ) denote the support of measure κ,

h(y,λ) , −λ3 − yλ1 + f (|y|)λ2, Z(λ) = {y ∈ < : h(y,λ) = 0} ,

and

R3 =

{
λ ∈ <3 : λ1 ≥ 0, λ2 ≥ 0, λ3 ∈ <, inf

y∈<
h(y,λ) ≥ 0

}
.

Observe that for λ ∈ R3 Z(λ) is either a singleton or an empty set. This is easy to see since f (·)
is strictly convex and continuous function. In particular, if Z(λ) is non-empty, y0 that minimizes
h(y,λ) is the unique element in Z(λ).

Lemma 25 The Lagrangian dual problem (40) is simplified as below.

max
λ3∈<,λ1≥0,λ2≥0

(
inf

κ∈M+(<)
L(κ,λ)

)
= max
λ∈R3

(
inf

κ∈M+(<)
L(κ,λ)

)
.

We call the problem on right as O2.
Proof Let λ ∈ <3 \ R3. Then, there exists y0 ∈ < such that h(y0,λ) < 0. We show below that
for such a λ, L(λ) = −∞, where L(λ) is defined in (39). Thus, to maximize L(λ), it is sufficient
to consider λ ∈ R3.

For every M > 0, there exists a measure κM ∈ M+(<) satisfying κM(y0) = M and for
y ∈ Supp(η) \ {y0},

dη

dκM
(y) = 1.
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Then, (38) can be re-written as:

L(κM,λ) =
∫

y∈<

log
(

dη

dκM
(y)
)

dη(y)

︸ ︷︷ ︸
,A

+
∫

y∈<

h(y,λ)dκM(y)

︸ ︷︷ ︸
,B

+λ3 + λ1x− λ2B.

From above, it can be easily seen that L(κM,λ) M→∞−−−→ −∞, since A + B → −∞. Thus, for
λ ∈ <3 \ R3, L(λ) = −∞ and we get the desired result.

Lemma 26 For λ ∈ R3, κ∗ ∈ M+(<) that minimizes L(κ,λ), satisfies

Supp(κ∗) ⊂ {Supp(η) ∪ Z(λ)} . (41)

Furthermore, for y ∈ Supp(η), h(y,λ) > 0, and

dκ∗

dη
(y) =

1
−λ3 − λ1y + λ2 f (|y|) . (42)

Proof First observe that for λ ∈ R3, L(κ,λ) is a strictly convex function of κ and that M+(<) is a
convex set. Hence, if the minimizer of L(κ,λ) exists, it is unique. Next, we show that any measure,
say κ∗, satisfying (41) and (42) minimizes L(κ,λ). This combined with uniqueness of minimizer
in M+(<) ensures that any measure satisfying (41) and (42) minimizes L(κ,λ).

Let κ1 be any measure in M+(<) that is different from κ∗. Since M+(<) is a convex set, for
t ∈ [0, 1], κ2,t , (1− t)κ∗ + tκ1 belongs to M+(<). Since L(κ,λ) is convex in κ, to show that κ∗

minimizes L(κ,λ), it suffices to show

∂L (κ2,t,λ)
∂t

∣∣∣∣
t=0
≥ 0.

Substituting for κ2,t in (38),

L (κ2,t,λ) =
∫

y∈Supp(η)

log
(

dη

dκ2,t
(y)
)

dη(y) + (λ3 + λ1x− λ2B) +
∫
<

h(y,λ)dκ2,t(y).

Evaluating the derivative with respect to t at t = 0,

∂L (κ2,t,λ)
∂t

∣∣∣∣
t=0

=∫
y∈Supp(η)

dη

dκ∗
(y)(dκ∗ − dκ1)(y) +

∫
<

(λ3 + λ1y− λ2 f (|y|)) (dκ∗ − dκ1)(y).
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For y ∈ Supp(η), ∂η/∂κ∗ = h(y). Substituting this in the above expression, we get:

∂L (κ2,t,λ)
∂t

∣∣∣∣
t=0

=
∫

y∈Supp(η)

h(y)(dκ∗ − dκ1)(y)−
∫
<

h(y)(dκ∗ − dκ1)(y)

= −
∫

y∈{<\Supp(η)}

h(y)dκ∗(y) +
∫

y∈{<\Supp(η)}

h(y)dκ1(y)

≥ 0.

where, for the last inequality, we have used the fact that for y ∈ {Supp(κ∗) \ Supp(η)}, h(y) = 0
and h(y) ≥ 0, otherwise.

Now, we are ready to prove the dual representation of KLinf given in Theorem 12.

C.3.1. PROOF OF THEOREM 12

Let S denote the rectangle,

S =

[
0,

1
f−1(B)− x

]
×
[

0,
1

B− f (|x|)

]
,

andR2 ⊂ S denote the region:

R2 =

{
(λ1, λ2) : λ1 ≥ 0, λ2 ≥ 0, inf

y∈<
{1− (y− x)λ1 − (B− f (|y|))λ2} ≥ 0

}
. (43)

Furthermore, define

h̃(y, (λ1, λ2)) , 1− (y− x)λ1 − (B− f (|y|))λ2. (44)

To prove the alternative expression for KLinf given by this theorem, we first show that both the
primal and dual problems (O1 and O2, respectively) are feasible. Further, we argue that strong du-
ality holds for the ProblemO1 and show that the expression on the right in (14) is the corresponding
optimal Lagrangian dual.

Let δy denote a unit mass at point y. Since f (|x|) < B, there exists a positive ε such that
f (|x + ε|) < B. Consider κ0 = δx+ε. Consider distribution κ′ which is a convex combination
of η and κ0, given by: κ′ = pκ0 + (1− p)η, for p ∈ [0, 1] chosen to satisfy the following two
conditions.

p(x + ε) + (1− p)m(η) ≥ x and p f (|x + ε|) + (1− p)Eη( f (|X|)) ≤ B.

It is easy to check that such a p always exists. κ′ thus obtained satisfies the constraints of O1 and
KL(η, κ′) < ∞, since Supp(η) ⊂ Supp(κ′). Hence, primal problem O1 is feasible.

Next, we claim that λ1 = (0, 0,−1) is a dual feasible solution. To this end, it is sufficient to
show that minκ∈M+(<) L(κ, (0, 0,−1)) > −∞. Observe that for κ ∈ M+(<), KL(η, κ) defined
to extend the usual definition of Kullback-Leibler Divergence to include all measures in M+(<),
can be negative with arbitrarily large magnitude. From (38),

L(κ,λ1) = KL(η, κ)− 1 +
∫

y∈<
dκ(y).
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Let κ̃ denote the minimizer of L(κ,λ1). First, observe that Supp(κ̃) = Supp(η). If there
is a y in Supp(η) but outside Supp(κ̃), then L(κ̃,λ∗) is ∞. On the other hand, if there exists
y in {Supp(κ̃) \ Supp(η)} , it only contributes to increase the integral in the above expression
and thus increases L(κ̃,λ1). Thus, Supp(κ̃) = Supp(η). Furthermore, from Lemma 26, for
y in Supp(η), the optimal measure κ̃ must satisfy

dκ̃

dη
(y) = 1.

Thus, κ̃ = η and min
κ∈M+(<)

L(κ,λ1) = 0. This proves the feasibility of the dual problem O2.

Since both primal and dual problems are feasible, both have optimal solutions. Furthermore,
κ0 = δx+ε defined earlier, satisfies all the inequality constraints of (O1) strictly, hence lies in the
interior of the feasible region (Slater’s conditions are satisfied). Thus strong duality holds for the
problem (O1) and there exists optimal dual variable λ∗ = (λ∗1 , λ∗2 , λ∗3) that attains maximum in
the problem O2 (See Theorem 1, Page 224, Luenberger (1969)). Also, since the primal problem
is minimization of a strictly-convex function (which is non-negative on the feasible set) with an
optimal solution over a closed and convex set (see Lemma 4 for properties if the feasible regioin,
L), it attains its infimum within the set.

Strong duality implies

KLinf(η, x) = max
λ∈R3

inf
κ∈M+(<)

L(κ,λ).

Let κ∗ and λ∗ denote the optimal primal and dual variables. Since strong duality holds, and
the problem (O1) is a convex optimization problem, KKT conditions are necessary and sufficient
for κ∗ and λ∗ to be optimal variables (See page 224, Boyd and Vandenberghe (2004)). Hence
κ∗, λ∗3 ∈ <, λ∗1 ≥ 0, and λ∗2 ≥ 0 must satisfy the following conditions (KKT):

κ∗ ∈ M+(<),
∫
<

ydκ∗(y) ≥ x,
∫
<

f (|y|)dκ∗(y) ≤ B,
∫

y∈<

dκ∗(y) = 1, (45)

λ∗3

1−
∫
<

dκ∗(y)

 = 0, λ∗1

x−
∫
<

ydκ∗(y)

 = 0, λ∗2

∫
<

f (|y|)dκ∗(y)− B

 = 0, (46)

and
(λ∗1 , λ∗2 , λ∗3) ∈ R3. (47)

Furthermore, κ∗ minimizes L(κ,λ∗). From conditions (46), and Lemma 26,

L(κ∗,λ∗) = Eη (log (−λ∗3 − λ∗1X + λ∗2 f (|X|))) ,

where X is the random variable distributed as η.
Adding the equations in (46), and using the form of κ∗ from Lemma 26, we get

λ∗3 = −1− λ∗1 x + λ∗2 B.

With this condition on λ∗3 , the regionR3 reduces to the regionR2 defined earlier in (43).
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Since we know that the optimal λ∗ in R3 with the corresponding minimizer, κ∗, satisfies the
conditions in (46) and that λ∗3 has the specific form given above, the dual optimal value remains
unaffected by adding these conditions as constraints in the dual optimization problem. With these
conditions, the dual reduces to

max
(λ1,λ2)∈R2

Eη (log (1− (X− x)λ1 − (B− f (|X|)λ2))) ,

and by strong duality, this is also the value of KLinf(η, x).

Tightness of the constraint, m(κ∗) = x: Notice that if η does not have full support, κ∗ may have
support outside Supp(η). For some c ≥ 0 and x > m(η),

1− c = Eη

(
(1− (X− x)λ∗1 − (B− f (|X|))λ∗2)

−1
)

≥
(
1− (m(η)− x)λ∗1 − (B−Eη( f (|X|)))λ∗2

)−1 (48)

≥ (1− (m(η)− x)λ∗1)
−1 .

In (48) we use Jensen’s inequality. Furthermore, if η is a degenerate distribution, then c > 0,
otherwise (48) is strict inequality as 1/y is a strictly convex function of y. Thus,

1
1− (m(η)− x)λ∗1

< 1,

and hence, λ∗1 > 0. Condition (46) then implies m (κ∗) = x.

Tightness of the constraint, Eκ∗( f (|X|)) = B: Recall that for x > m(η) and η ∈ P(<),
λ∗1 > 0. Also, since (λ∗1 , λ∗2) ∈ R2, for all y in <, h̃(y, (λ1, λ2)) ≥ 0, where h̃(y, (λ1, λ2)) is
defined in (44). However, for y → ∞, h̃(y, (λ1, λ2)) < 0, iff λ2 = 0. Thus, λ2 > 0 and hence by
(46), Eκ∗( f (|X|)) = B.

C.4. Proofs of concentration result for KLinf

Let λ = (λ1, λ2), Xi denote the ith sample from the distribution κ, and recall from (44) that

h̃(X,λ) = 1− (X−m(κ))λ1 − (B− f (|X|))λ2,

and define

L(λ, m(κ), κ̂(n)) ,
1
n

n

∑
i=1

log
(
h̃(Xi,λ)

)
.

Since h̃(y,λ) is a linear function of λ, and log is a non-decreasing, concave function, L(λ, x, κ̂(n))
is a concave function of λ (see, e.g., Page 84, Boyd and Vandenberghe (2004)).

Recall that regionR2 ⊂ <2 is given by

R2 =

{
(λ1, λ2) : λ1 ≥ 0, λ2 ≥ 0, inf

y∈<
{1− (y− x)λ1 − (B− f (|y|))λ2} ≥ 0

}
, (49)

andR2 ⊂ S , where

S =

[
0,

1
f−1(B)−m(κ)

]
×
[

0,
1

B− f (|m(κ)|)

]
.

Proof of Theorem 11 uses Lemma 27, which we state below.
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Lemma 27 For κ ∈ L, λ1 > 0, λ2 > 0, u ≥ 0,

P (L(λ, m(κ), κ̂(n)) ≥ u) ≤ e−nu.

Proof Let X ∼ Xi, for some i. Observe that log
(
h̃(Xi,λ)

)
are i.i.d. For γ ≥ 0, exponentiating

and using Markov’s inequality,

P (L(λ, m(κ), κ̂(n)) ≥ u) ≤
n

∏
i=1

E
(

eγ log(h̃(Xi ,λ))
)

e−γnu =
(
E (h(X,λ))γ e−γu)n .

In particular, the above inequality holds for γ = 1. Furthermore, by Jensen’s inequality,

E(h̃(X,λ)) ≤ 1.

Thus, we have the desired inequality.

C.4.1. PROOF OF THEOREM 11

From Theorem 12, if m(κ̂(n)) ≤ m(κ),

KLinf(κ̂(n), m(κ)) = max
λ∈R2

L(λ, x, κ̂(n)),

where R2 is given in (49). In the other case, a symmetric dual representation for KLinf holds. We
work with only one of these. To get a bound on the probability of maximum of L(λ, m(κ), κ̂(n))
over the region R2, taking values away from 0, we divide the rectangular region, S , into a grid of
small rectangles and bound this probability within each rectangle in the grid that intersects withR2.

To this end, we first describe the grid of S that we consider. Let δ1 > 0 and δ2 > 0 be constants
denoting the side lengths of the rectangles in each direction. We will choose their values later. Let

Mδ1 =

⌊
1

δ1( f−1(B)−m(κ))

⌋
and Mδ2 =

⌊
1

δ2(B− f (|m(κ)|))

⌋
.

Let the rectangle points along λ1 axis be indexed by l1 and those along λ2 axis by l2, such
that l1 ∈ {0, . . . , Mδ1} and l2 ∈ {0, . . . , Mδ2}. For l1 ∈ {0, . . . , Mδ1} and l2 ∈ {0, . . . , Mδ2},
λ1,l1 , l1δ1 and λ2,l2 , l2δ2, and

λ1,Mδ1+1 ,
1

f−1(B)−m(κ)
and λ2,Mδ2+1 ,

1
B− f (|m(κ)|) .

Denote by Gl1,l2 the rectangle [λ1,l1 , λ1,l1+1]× [λ2,l2 , λ2,l2+1]. Then, using union bound,

P

(
max
λ∈R2

L(λ, m(κ), κ̂(n)) ≥ u
)
= P

Mδ2⋃
l2=0

Mδ1⋃
l1=0

{
max

λ∈Gl1,l2∩R2
L(λ, m(κ), κ̂(n)) ≥ u

}
≤

Mδ1

∑
l1=0

Mδ2

∑
l2=0

P

{
max

λ∈Gl1,l2∩R2
L(λ, m(κ), κ̂(n)) ≥ u

}
. (50)
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Let us now focus on the summand of the above expression. Note that if the rectangle Gl1,l2 does
not intersect with the region R2, then its contribution to the summation in the r.h.s. above is 0.
Thus, we only consider the rectangles that have a non-trivial intersection withR2. Using Markov’s
Inequality,

P

{
max

λ∈Gl1,l2∩R2
L(λ, m(κ), κ̂(n)) ≥ u

}

≤ Eκ

(
exp

{
max
λ∈Gl1,l2

n

∑
i=1

log (1− (Xi −m(κ))λ1 − (B− f (|Xi|))λ2)

})
e−nu. (51)

Observe that for Gl1,l2 ,

max
λ∈Gl1,l2

log (1− (Xi −m(κ))λ1 − (B− f (|X|))λ2)

≤ log (1− (Xi −m(κ))λ1,l1 − (B− f (|X|))λ2,l2 + |Xi −m(κ)| δ1 + |B− f (|Xi|)| δ2)
(52)

Using this in (51), P

{
max

λ∈Gl1,l2∩R2
L(λ, m(κ), κ̂(n)) ≥ u

}
can be bounded from above by e−nu

times

Eκ

(
n

∏
i=1

(1− (Xi −m(κ))λ1,l1 − (B− f (|Xi|))λ2,l2 + |Xi −m(κ)| δ1 + |B− f (|Xi|)| δ2)

)
.

The expectation above satisfies the following:

Eκ

(
n

∏
i=1

(1− (Xi −m(κ))λ1,l1 − (B− f (|Xi|))λ2,l2 + |Xi −m(κ)| δ1 + |B− f (|Xi|)| δ2)

)

=
n

∏
i=1

Eκ (1− (Xi −m(κ))λ1,l1 − (B− f (|Xi|))λ2,l2 + |Xi −m(κ)| δ1 + |B− f (|Xi|)| δ2)

≤ (1 + d1δ1 + d2δ2)
n ,

where d1 = Eκ(|X−m(κ)|) and d2 = Eκ(|B− f (|X|)|).
Set δ1 = 1

n( f−1(B)−m(κ))
and δ2 = 1

n(B− f (|m(κ)|)) . Let c1 = d1
( f−1(B)−m(κ))

and c2 = d2
(B− f (|m(κ)|))

and c1 + c2 = B̃1. Then,

P

{
max

λ∈Gl1,l2∩R2
L(λ, m(κ), κ̂(n)) ≥ u

}
≤
(

1 +
c1

n
+

c2

n

)n
e−nu ≤ eB̃1 e−nu.

Furthermore, from the choice of δ1 and δ2, Mδ1 ≤ n + 1, and Mδ2 ≤ n + 1. Substituting these
and the above inequality back into (50) gives:

P

(
max
λ∈R2

L(λ, x, κ̂(n)) ≥ u
)
≤ (n + 1)2eB̃1 e−nu.
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C.5. Proofs related to δ-correctness

Recall that to prove δ-correctness of the proposed algorithm, it is sufficient to prove Theorem 13,
i.e., for µ ∈ ML, n ∈N, and Γ > K + 1,

P

(
K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ eK+1

(
4n2Γ2 log(n)

K

)K

e−Γ
K

∏
a=1

eB̃a ,

where Na(n) is the number of times arm a has been pulled in n trials, µ̂a(n) is the empirical
distribution corresponding to Na(n) samples from arm a (distribution µa), m(µa) denotes the mean
of the distribution µa, and B̃a is a constant corresponding to arm a.

Some notation is needed to this end. For ẽ > 0, let D = dlog(n)/ log (1 + ẽ)e and D ={
d ∈NK s.t., ∀a 1 ≤ da ≤ D

}
. For d ∈ D, let

Cd =
K⋂

a=1

{
(1 + ẽ)da−1 ≤ Na(n) ≤ (1 + ẽ)da

}
=

K⋂
a=1

Cd
a ,

where Cd
a =

{
(1 + ẽ)da−1 ≤ Na(n) ≤ (1 + ẽ)da

}
. Let ta = (1 + ẽ)da−1 and ta = (1 + ẽ)da .

Furthermore, for each arm a, let Sa denote the following rectangle:

Sa =

[
0,

1
f−1(B)−m(µa)

]
×
[

0,
1

B− f (|m(µa)|)

]
,

and let

Ra
2 =

{
(λ1, λ2) : λ1 ≥ 0, λ2 ≥ 0, inf

y∈<
{1− (y−m(µa))λ1 − (B− f (|y|))λ2} ≥ 0

}
. (53)

On set Cd
a , let there be a grid of the rectangular region Sa, for each a, similar to that in the proof

of Theorem 11, with

δa
1 =

1
ta ( f−1(B)−m(µa))

and δa
2 =

1
ta (B− f (|m(µa)|))

being the side lengths of each rectangle in the grid. Let a typical rectangle that intersects with the
regionRa

2, defined in (53), be denoted by Ga. Recall from Theorem 12 that to bound the probability
of empirical KLinf taking large values, it is sufficient to consider only such rectangles since, the
optimal dual parameters, (λa∗

1 , λa∗
2 ) lie inRa

2. Henceforth, in our discussion, we consider only such
rectangles.

Lemma 28 For any ua ∈ <, non-negative constants B̃a and rectangle Ga,

P

(
K⋂

a=1

{
max
λa∈Ga

L(λa, m(µa), µ̂a(n)) ≥ ua, Cd
a

})
≤

K

∏
a=1

eB̃a e−taua .

Proof Recall that Ga is a rectangle that intersects the region Ra
2. Let λa0 = (λa

10, λa
20) denote one

of the corner points of the rectangle Ga such that λa
10 > 0, λa

20 > 0. Let

Λa(θ,λa0) = log Eµa

(
e{θ log(1−(X−m(µa))λa

10−(B− f (|Xi |))λa
20+|X−m(µa)|δa

1+|B− f (|X|)|δa
2)}
)

,
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and
θa = argmax

θ≥0
{θua −Λa(θ,λa0)} .

Clearly, θa ≥ 0 and {θaua −Λa(θa,λa0)} ≥ 0. Let Sa(n,λa0) denote the sum below:

Na(n)

∑
i=1

log (1− (Xi −m(µa))λ
a
10 − (B− f (|Xi|))λa

20 + |X− x| δa
1 + |B− f (|X|)| δa

2) .

Observe from (52) that max
λa∈Ga

Na(n)L(λa, m(µa), µ̂a) ≤ Sa(n,λa0). Thus,

P

(
K⋂

a=1

{
max
λa∈Ga

L(λa, m(µa), µ̂a(n)) ≥ ua, Cd
a

})

≤ P

(
K⋂

a=1

{
Sa(n,λa0) ≥ Na(n)ua, Cd

a

})
≤ P

1Cd e

{
K
∑

a=1
θaSa(n,λa0)

}
≥ e

{
K
∑

a=1
θa Na(n)ua

} .

Multiplying by exp {−Na(n)Λa(θa,λa0)} on both sides of the inequality in the above expression,
the probability of intersection can be upper bounded by:

P

1Cd e

{
K
∑

a=1
θaSa(n,λa0)−Na(n)Λa(θa,λa0)

}
≥ e

{
K
∑

a=1
Na(n)(θaua−Λa(θa,λa0))

} . (54)

Since {θaua −Λa(θa,λa0)} is non-negative (by choice of θa), on set Cd
a ,

Na(n) {θaua −Λa(θa,λa0)} ≥ ta {θaua −Λa(θa,λa0)} .

Furthermore, let

G(n) = exp

{
K

∑
a=1

θaSa(n,λa0)− Na(n)Λa(θa,λa0)

}
.

Using these substitutions with Markov’s inequality in (54),

P

(
K⋂

a=1

{
max
λa∈Ga

L(λa, m(µa), µ̂a(n)) ≥ ua, Cd
a

})
≤ E (1Cd G(n)) e

{
−

K
∑

a=1
ta(θaua−Λa(θa,λa0))

}
.

Since G(n) is a mean-1 martingale, E(1Cd Gn) ≤ 1. Using definition of θa along with this, we get
the following:

P

(
K⋂

a=1

{
max
λa∈Ga

L(λa, m(µa), µ̂a(n)) ≥ ua, Cd
a

})
≤

K

∏
a=1

e

{
−ta sup

θ≥0
(θua−Λa(θ,λa0))

}
. (55)

Notice that Λa(1,λa0) equals

log
(
Eµa (1− (X−m(µa)) λa

10 − (B− f (|X|))λa
20 + |X−m(µa)| δa

1 + |B− f (|X|)| δa
2
)

,
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which is upper bounded by

log
(

1 +
ca

1
ta

+
ca

2
ta

)
,

where ca
1 = taδa

1Eµa (|X−m(µa)|) and ca
2 = taδa

2Eµa (|B− f (|X|)|). Let B̃a = ca
1 + ca

2. Substi-
tuting this back into (55) and choosing θ = 1 for all a, we get the following desired upper bound:

P

(
K⋂

a=1

{
max
λ1∈Ga

L(λa, m(µa), µ̂a(n)) ≥ ua, Cd
a

})
≤

K

∏
a=1

eB̃a e−taua . (56)

Using the above result, we prove following inequality, which will assist in the proof of Theorem 13.

Lemma 29 Let ẽ > 0. For ζa ≥ 0,

P

(
K⋂

a=1

{
Na(n)KLinf(µ̂a(n), m(µa)) ≥ ζa, Cd

a

})
≤

K

∏
a=1

{
(n + 1)2 eB̃a e−ζa/(1+ẽ)

}
.

Proof On set Cd
a ,

P

(
K⋂

a=1

{
Na(n)KLinf(µ̂a(n), m(µa)) ≥ ζa, Cd

a

})

≤ P

(
K⋂

a=1

{
KLinf(µ̂a(n), m(µa)) ≥

ζa

t̄a
, Cd

a

})
.

Recall that corresponding to KLinf(µ̂a(n), m(µa)),

Sa =

[
0,

1
f−1(B)−m(µa)

]
×
[

0,
1

B− f (|m(µa)|)

]
,

and

Ra
2 =

{
(λ1, λ2) : λ1 ≥ 0, λ2 ≥ 0, inf

y∈<
{1− (y−m(µa))λ1 − (B− f (|y|))λ2} ≥ 0

}
.

Let Gla
1 ,la

2
denote a rectangle in Sa that also intersects with the regionR2, and is given by

Gla
1 ,la

2
=
[
λ1,la

1
, λ1,la

1+1

]
×
[
λ2,la

2
, λ2,la

2+1

]
,

as in Theorem 11. Then,

P

(
K⋂

a=1

{
KLinf(µ̂a(n), m(µa)) ≥

ζa

t̄a
, Cd

a

})

= P

 K⋂
a=1

⋃la
1

⋃
la
2

max
λa∈
Gla1,la2

L(λa, m(µa), µ̂a(n)) ≥
ζa

t̄a
, Cd

a


 .
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Using union bound,

P

(
K⋂

a=1

{
KLinf(µ̂a(n), m(µa)) ≥

ζa

t̄a
, Cd

a

})

≤∑
l1
1

∑
l1
2

· · ·∑
lK
1

∑
lK
2

P

 K⋂
a=1

 max
λa∈Gla1,la2

L(λa, m(µa), µ̂a(n)) ≥
ζa

t̄a︸︷︷︸
:=ua

, Cd
a


 .

Recall that ta = (1 + ẽ)da−1 and ta = (1 + ẽ)da . Using Lemma 28, we upper bound the summand
in the above inequality, to get

P

(
K⋂

a=1

{
KLinf(µ̂a(n), m(µa)) ≥

ζa

t̄a
, Cd

a

})
≤∑

l1
1

∑
l1
2

· · ·∑
lK
1

∑
lK
2

(
K

∏
a=1

eB̃a e−taua

)
. (57)

Furthermore, choosing δa
1 = 1

ta( f−1(B)−x) and δa
2 = 1

ta(B− f (|x|)) gives taua = ζa
1+ẽ . Substituting

in inequality (57), we get the following desired inequality:

P

(
K⋂

a=1

{
Na(n)KLinf(µ̂a(n), m(µa)) ≥ ζa, Cd

a

})
≤

K

∏
a=1

{
(n + 1)2eB̃a e−

ζa
1+ẽ

}
.

Lemma 30

Pµ

(
1Cd

K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ e−

Γ
(1+ẽ)

(
eΓ

K(1 + ẽ)

)K K

∏
a=1

{
(n + 1)2eB̃a

}
.

Proof Proof of the Lemma depends on the concentration result of Theorem 11 and a careful use of
martingales. Let Y = {Y1, Y2, . . . , YK}, where Ya are i.i.d. distributed as Exp(1/ (1 + ẽ)). Then,
for non-negative xa,

P

(
K⋂

a=1

{Ya ≥ xa}
)

=
K

∏
a=1

e−
xa

1+ẽ .

Let X = {X1, X2, . . . , XK}, where Xa = 1Cd
a
Na(n)KLinf(µ̂a(n), m(µa)). Then, from Lemma

29, we have:

Pµ

(
K⋂

a=1

{Xa ≥ xa}
)
≤ P

(
K⋂

a=1

{Ya ≥ xa}
)

K

∏
a=1

{
(n + 1)2eB̃a

}
.

Let

R1(n) :=
n

∏
a=1

{
(n + 1)2eB̃a

}
.
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Define Z = {Z1, Z2, . . . , ZK}, where each Zi is a non-negative random variable, and for A ⊂
(R+)

K and 0 = (0, 0, . . . , 0), Z has a distribution given by:

P(Z ∈ A) =
1

R1(n)
P(X ∈ A) +

(
1− 1

R1(n)

)
1 {0 ∈ A} . (58)

Clearly, for all x ∈ RK,

P

(
K⋂

a=1

{Za ≥ xa}
)
≤ P

(
K⋂

a=1

{Ya ≥ xa}
)

.

Hence, (see Theorem 3.3.16, Müller and Stoyan (2002)) for all collections of non negative

increasing function f1, f2, . . . , fK we have E

(
K
∏

a=1
fa(Za)

)
≤ E

(
K
∏

a=1
fa(Ya)

)
. Consider fa(x) =

eθx. Clearly, fa(x) is non-negative and increasing in x. Using this, (58),

E

(
K
∏

a=1
eθXa

)
R1(n)

+

(
1− 1

R1(n)

)
= E

(
K

∏
a=1

eθZa

)
≤ E

(
K

∏
a=1

eθYa

)
,

which implies,

E

(
K

∏
a=1

eθXa

)
≤ R1(n)E

(
K

∏
a=1

eθYa

)
= R1(n)

K

∏
a=1

E
(

eθYa
)

. (59)

Let b = 1/(1 + ẽ). For 0 ≤ θ ≤ b, ∀a ∈ [K], observe that E
(
eθYa
)
= b

b−θ . Then, exponenti-
ating and using Markov’s Inequality, below:

P

(
1Cd

K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ E

(
K

∏
a=1

eθXa

)
exp {−θΓ} .

Using (59), we further upper bound the above quantity as:

P

(
1Cd

K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ R1(n)E

(
K

∏
a=1

eθYa

)
exp {−θΓ}

= exp {−θΓ} R1(n)
(

b
b− θ

)K

.

Letting θ = b− K/Γ, substituting for b and R1(n) in the above expression, we get:

P

(
1Cd

K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ exp {−bΓ} R1(n)

(
eΓb
K

)K

= e−
Γ

(1+ẽ)

(
eΓ

K(1 + ẽ)

)K K

∏
a=1

{
(n + 1)2eB̃a

}
.
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C.5.1. PROOF OF THEOREM 13

Recall that ẽ > 0, D = dlog(n)/ log (1 + ẽ)e and D =
{

d ∈NK s.t., ∀a 1 ≤ da ≤ D
}

. For
d ∈ D,

Cd =
K⋂

a=1

{
(1 + ẽ)da−1 ≤ Na(n) ≤ (1 + ẽ)da

}
=

K⋂
a=1

Cd
a ,

where Cd
a =

{
(1 + ẽ)da−1 ≤ Na(n) ≤ (1 + ẽ)da

}
. Clearly,

P

(
K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)

≤ ∑
d∈D

Pµ

(
K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ, Cd

)
,

which can be further upper-bounded by

DK max
d∈D

Pµ

(
1Cd

K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
. (60)

Lemma 30 bounds the term in the right hand side in the above expression. Using this, choosing
the free constant ẽ appropriately and making the necessary approximations, we get the upper bound
in Theorem 13.

Using (60) and Lemma 30,

P

(
K

∑
a=1

Na(n)KLinf(µ̂a(n), m(µa)) ≥ Γ

)
≤ e−

Γ
(1+ẽ)

(
DeΓ

K(1 + ẽ)

)K K

∏
a=1

{
(n + 1)2eB̃a

}
. (61)

Set
ẽ =

1
Γ− 1

,

and bound log (1 + ẽ) = − log (1/ (1 + ẽ)) ≥ 1/Γ to get an upper bound for D. Using these in
(61), the expression above can be further bounded by

e−Γ+1
K

∏
a=1

{
(eΓ log(n) + 1) (Γ− 1)

K
(n + 1)2eB̃a

}
.

Upper bounding (n + 1) by 2n, and using (Γ− 1) (Γ log(n) + 1) ≤ Γ2 log(n), we get the desired
bound.

C.5.2. WHEN UNDERLYING DISTRIBUTIONS HAVE BOUNDED SUPPORT

If it is known apriori that the underlying distributions have bounded support, say [a, b], such that
max { f (|a|), f (|b|)} < B, then it is sufficient to consider a sub-class L of all the probability
distributions with support in [a, b], instead of class L. In this case, given a probability measure
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η ∈ P(<), and x such that m(η) ≤ x ≤ b, it can be shown that KLinf(η, x) has a simpler for-
mulation as a solution to a 1-dimensional convex optimization problem, which is maximization of
Eηlog (1− (X− x)λ) over λ in interval

[
0, 1

b−x

]
. We also get an exponentially decaying probabil-

ity of KLinf(η̂, x) taking positive values for m(η̂) ≤ x ≤ m(η), where η̂ is an empirical distribution
of samples from η (see Honda and Takemura (2015)). Furthermore, the algorithm AL1, with an ap-
propriate choice of β, acting on a vector of K distributions, each coming from class L, is δ-correct
and matches the lower bound asymptotically, as δ approaches 0.

C.6. Proofs related to sample complexity part of Theorem 10

In this section, we formally prove that the algorithm AL1 is asymptotically optimal, i.e., the ratio of
expected number of samples needed by the algorithm to stop and log(1/δ) equals the lower bound
of the quantity, asymptotically as δ→ 0.

To this end, we first show that the fraction of times AL1 pulls arm a is close to its optimal
proportion suggested by the lower bound, if the algorithm runs for sufficient time.

C.6.1. PROOF OF LEMMA 14

In order to show that Na(lm)/lm → t∗a(µ) as l → ∞, for n ∈ N, let Mn denote the set of indices
in [1, 2, . . . , n] where AL1 flipped the coins to decide which arm to sample from. Then, for l ∈ N,
from Lemma 8, lm− |Mlm| ≤ K

(√
lm− 1

)
, so that

|Mlm|
lm

a.s.−→ 1, as l → ∞. (62)

Further, let Ia(i) = 1 if arm a was sampled under AL1 at step i. Then, by law of large numbers for
Bernoulli random variables

1
|Mn| ∑

i∈Mn

(Ia(i)− t∗a(µ̂(i)))
a.s.−→ 0, as n→ ∞, (63)

where we set µ̂(i) = µ̂(lm) for i ∈ [lm, lm + 1, . . . , (l + 1)m− 1] for each l.
Further,

1
|Mn| ∑

i∈Mn

(t∗a(µ̂(i))− t∗a(µ))
a.s.−→ 0, as n→ ∞, (64)

since µ̂(n)→ µ as n→ ∞, and t∗ is a continuous function (Theorem 5).
Furthermore,

Na(lm)

lm
=

∑i∈Mlm
Ia(i)

lm
+

∑i∈[lm]\Mlm
Ia(i)

lm

=
∑i∈Mlm

Ia(i)
|Mlm|

|Mlm|
lm

+
∑i∈[lm]\Mlm

Ia(i)
lm− |Mlm|

lm− |Mlm|
lm

.

From above,
Na(lm)

lm
a.s.−→ t∗a(µ), as l → ∞.
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C.6.2. PROOF OF SAMPLE COMPLEXITY

We now prove that for algorithm AL1, lim supδ→0 Eµ(τδ)/ (log (1/δ)) ≤ V(µ)−1. Recall that
µ ∈ ML is such that m(µ1) > maxj 6=1 m(µj). Let ε > 0. By continuity of the optimal pro-
portions, t∗(µ), in µ (Theorem 5), ∃ζ(ε) ≤

(
m(µ1)−maxj 6=1 m(µj)

)
/4 (denoted by ζ) such

that

∀µ′ ∈ Iε, max
a∈[K]

∣∣t∗a(µ′)− t∗a(µ)
∣∣ ≤ ε, (65)

for Iε defined as follows:

Iε , Bζ(µ1)× Bζ(µ2)× . . .× Bζ(µK),

where
Bζ(µi) = {κ ∈ L : dW(κ, µi) ≤ ζ and m(κ) ∈ [m(µi)− ζ, m(µi) + ζ]},

and dW(κ, µi) is the Wasserstein metric on L. In particular, whenever µ̂(n) ∈ Iε, the empirical
best arm (ân) is arm 1. For T ≥ m, T ∈N, set

l2(T) ,
⌊

T
m

⌋
, l1(T) , max

{
1,
⌊

T3/4

m

⌋}
, and l0(T) , max

{
1,
⌊

T1/4

m

⌋}
,

and define

GT(ε) =
l2(T)⋂

l=l0(T)

{µ̂(lm) ∈ Iε}
l2(T)⋂

l=l1(T)

{
max
a≤K

∣∣∣∣Na(lm)

lm
− t∗a(µ)

∣∣∣∣ ≤ 4ε

}
.

Let µ′ be a vector of K, 1-dimensional distributions such that the 1st distribution has the maxi-
mum mean, and let t′ ∈ ΣK. Define the following:

g(µ′, t′) , min
b 6=1

inf
x∈[m(µ′b),m(µ′1)]

(
t′1 KLinf(µ

′
1, x) + t′b KLinf(µ

′
b, x)

)
. (66)

Note from Berge’s Theorem (reproduced in Appendix A.1) that g(µ, t) is a jointly continuous
function of the (µ, t). Let ‖.‖K be the maximum norm in <K, and

C∗ε (µ) , inf
µ′∈Iε

t′ :‖t′−t∗(µ)‖≤4ε

g(µ′, t′). (67)

Furthermore, set

T0(δ) = inf
{

T ∈N : l1(T)×m +
β(T, δ)

C∗ε (µ)
≤ T

}
.

Since τδ ≥ 0,

Eµ(τδ) =
∞

∑
T=0

Pµ(τδ ≥ T) ≤ T0(δ) + m +
∞

∑
T=T0(δ)+m+1

Pµ(τδ ≥ T).

From Lemma 31 and 32 below,

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ (1 + ẽ)

C∗ε (µ)
+ lim sup

δ→0

m
log (1/δ)

. (68)
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From continuity of g(µ′, t′) in (µ′, t′), it follows that C∗ε (µ)
ε→0−−→ V(µ). First letting ẽ → 0

and then letting ε→ 0, we get

lim sup
δ→0

Eµ(τδ)

log (1/δ)
≤ 1

V(µ)
+ lim sup

δ→0

m
log (1/δ)

. (69)

Since m = o(log(1/δ)), lim sup
δ→0

m
log 1/δ = 0. Using this in (69), we get (13).

Lemma 31

Eµ(τδ) ≤ T0(δ) + m +
∞

∑
T=T0(δ)+m+1

Pµ(Gc
T). (70)

Furthermore, for any ẽ > 0,

lim sup
δ→0

T0(δ)

log (1/δ)
≤ 1 + ẽ

C∗ε (µ)
. (71)

Lemma 32

lim sup
δ→0

∞
∑

T=m+1
Pµ(Gc

T(ε))

log (1/δ)
= 0.

C.6.3. PROOF OF LEMMA 31

Recall that on GT(ε), arm 1 has the highest empirical mean. This follows from choice of ζ and
definition of GT(ε). Hence on GT(ε), for t ≥ l0(T) × m, the log “generalized likelihood ratio”
statistic, used in the stopping rule, is given by, Z(t) = minb 6=1 Z1,b(t) where,

Z1,b(t) = t inf
x∈[m(µ̂b(t)),m(µ̂1(t))]

(
N1(t)

t
KLinf(µ̂1(t), x) +

Nb(t)
t

KLinf(µ̂b(t), x)
)

. (72)

In particular, for T ≥ m and l ≥ l1(T), on GT(ε)

Z(lm) = min
b 6=1

inf
x∈[m(µ̂b(lm)),m(µ̂1(lm))]

N1(lm)KLinf(µ̂1(lm), x) + Nb(lm)KLinf(µ̂b(lm), x)

= lm×min
b 6=1

inf
x

(
N1(lm)

lm
KLinf(µ̂1(lm), x) +

Nb(lm)

lm
KLinf(µ̂b(lm), x)

)
= lm× g

(
µ̂(lm),

{
N1(lm)

lm
, . . . ,

NK(lm)

lm

})
≥ lm× C∗ε (µ).

(73)
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Furthermore, the stopping time is at most m× inf {l ≥ l1(T) : Z(lm) ≥ β(lm, δ), l ∈N}. On
GT(ε),

min{τδ, T} ≤ l1(T)×m + m
l2(T)

∑
l=l1(T)+1

1 (lm < τδ)

≤ l1(T)×m + m
l2(T)

∑
l=l1(T)+1

1 (Z (lm) < β (lm, δ))

≤ l1(T)×m + m
l2(T)

∑
l=l1(T)+1

1

(
l <

β (lm, δ)

mC∗ε (µ)

)
≤ l1(T)×m +

β(T, δ)

C∗ε (µ)
.

(74)

Recall,

T0(δ) = inf
{

t ∈N : l1(t)×m +
β(t, δ)

C∗ε (µ)
≤ t
}

.

On GT, for T ≥ max {m, T0(δ)}, from (74) and definition of T0(δ),

min {τδ, T} ≤ l1(T)×m +
β(T, δ)

C∗ε (µ)
≤ T,

which gives that for such a T, τδ ≤ T. Thus, for T ≥ max {m, T0(δ)}, we have GT(ε) ⊂ {τδ ≤ T}
and hence, Pµ (τδ > T) ≤ Pµ(Gc

T). Since τδ ≥ 0,

Eµ(τδ) ≤ T0(δ) + m +
∞

∑
T=m+1

Pµ (Gc
T(ε)) . (75)

Now, to bound T0(δ)
log(1/δ)

as δ→ 0, let ẽ > 0 and define

C(ẽ) , inf
{

T ∈N : T −ml1(T) ≥
T

1 + ẽ

}
and T2(δ) , inf

{
T ∈N :

T
1 + ẽ

≥ β(T, δ)

C∗ε (µ)

}
.

Then,

T0(δ) ≤ inf
{

T ∈N : T − l1(T)×m ≥ T
1 + ẽ

≥ β(T, δ)

C∗ε (µ)

}
≤ C(ẽ) + T2(δ). (76)

From the definition of T2(δ) above and using the expression for β from (10),

T2 (δ) = (1 + ẽ)
log
(

C
δ

(
log C

δ

)α
)

C∗ε (µ)
+ O

(
log
(

log
1
δ

))
. (77)

Clearly,

lim sup
δ→0

T2(δ)

log 1/δ
=

1 + ẽ
C∗ε (µ)

and lim sup
δ→0

C(ẽ)
log 1/δ

= 0.

Taking limits in (76),

lim sup
δ−→0

T0(δ)

log (1/δ)
≤ (1 + ẽ)

C∗ε (µ)
. �
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Remark 33 Using (76), and (77) in (75), for small δ,

Eµ(τδ) ≤ (1 + ẽ)
log
(

C
δ

(
log C

δ

)α
)

C∗ε (µ)
+ m + o(log(1/δ)).

Since ẽ > 0 is arbitrary, Eµ(τδ) is bounded by
log( C

δ (log C
δ )

α
)

C∗ε (µ)
+ m + o(log(1/δ)). Now, letting ε

decrease to 0,

Eµ(τδ) ≤
log
(

C
δ

(
log C

δ

)α
)

V(µ)
+ m. (78)

We use the rhs in (78) as a proxy for Eµ(τδ) in our numerical experiments.

C.6.4. PROOF OF LEMMA 32

Fix T ≥ m + 1. Let

G1
T ,


l2(T)⋂

l′=l0(T)

µ̂(l′m) ∈ Iε

 .

Using union bounds,

Pµ(Gc
T(ε)) ≤

l2(T)

∑
l=l0(T)

Pµ (µ̂(lm) 6∈ Iε) +
l2(T)

∑
l=l1(T)

K

∑
i=1

P

(∣∣∣∣Ni(lm)

lm
− t∗i (µ)

∣∣∣∣ ≥ 4ε, G1
T

)
.

The first term above can be bounded as:

Pµ (µ̂(lm) 6∈ Iε) ≤
K

∑
i=1

Pµ (dW(µ̂i(lm), µi) ≥ ζ)

+
K

∑
i=1

Pµ (m(µ̂i(lm)) 6∈ [m(µi)− ζ, m(µi) + ζ]) . (79)

For l ≥ 1, by Lemma 8, Na(lm) ≥
√

lm − 1 for each arm a. Let µ̂(a,s) denote the empirical
distribution corresponding to s samples from arm a. Using union bound,

Pµ (dW(µ̂i(lm), µi) ≥ ζ) = Pµ

(
dW(µ̂i(lm), µi) ≥ ζ, Ni(lm) ≥

√
lm− 1

)
≤

T

∑
s=
√

lm−1

Pµ

(
dW(µ̂(i,s), µi) ≥ ζ

)
.

By Sanov’s Theorem, there exist non-decreasing functions fi : < → < and gi : < → < which
satisfy lim

s→∞
log fi(s)/s→ 0 and lim

s→∞
gi(s)/s→ ci for some constants, ci and that

Pµ

(
dW(µ̂(i,s), µi) ≥ ζ

)
≤ fi(s)e−gi(s).

Let

f̃i(T) = max
j=−1,0,1,...,T−

√
lm

fi

(⌈√
lm
⌉
+ j
)

and g̃i(T) = min
j=−1,0,1,...,T−

√
lm

gi

(⌈√
lm
⌉
+ j
)

.
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Clearly, both f̃i and g̃i are non-decreasing and satisfy lim
s→∞

log f̃i(s)/s→ 0 and lim
s→∞

g̃i(s)/s→
c̃i for some constant c̃i. Further upper bounding (79) using these,

Pµ (dW(µ̂i(lm), µi) ≥ ζ) ≤
T

∑
s=
√

lm−1

fi(s)e−gi(s) ≤ T f̃i(T)e−g̃i(T). (80)

Recall that ρ(x, y) denotes the Kullback-Leibler divergence between Bernoulli random vari-
ables with mean x and y. Using union bound and Chernoff’s bound,

Pµ (m(µ̂i(lm)) ≤ m(µi)− ζ) = Pµ

(
m(µ̂i(lm)) ≤ m(µi)− ζ, Ni(lm) ≥

√
lm− 1

)
≤

T

∑
s=
√

lm−1

e−sd(m(µi)−ζ,m(µi))

≤ e−(
√

lm−1)×d(m(µi)−ζ,m(µi))

1− e−d(m(µi)−ζ,m(µi))
. (81)

Similarly we have the other inequality:

Pµ (m(µ̂i(lm)) ≥ m(µi) + ζ) ≤ e−(
√

lm−1)×d(m(µi)+ζ,m(µi))

1− e−d(m(µi)+ζ,m(µi))
. (82)

Define the following constants:

E2 := min
i

(min {d(m(µi)− ζ, m(µi)), d(m(µi) + ζ, m(µi))}) ,

F(T) := max
a

f̃a(T), G(T) := min
a

g̃a(T),

and

E1 :=
K

∑
i=1

(
ed(m(µi)−ζ,m(µi))

1− e−d(m(µi)−ζ,m(µi))
+

ed(m(µi)+ζ,m(µi))

1− e−d(m(µi)+ζ,m(µi))

)
.

Note that E1 and E2 are non-negative constants and F(T) and G(T) are also non-negative, non-
decreasing and satisfy lim

s→∞
log F(s)/s → 0 and lim

s→∞
G(s)/s → c for some non-negative constant

c. Then using (79), (80), (81) and (82) with the constants defined above,

l2(T)

∑
l=l0(T)

Pµ (µ̂(lm) 6∈ Iε) ≤
l2(T)

∑
l=l0(T)

E1 exp
(
−E2
√

lm
)
+

l2(T)

∑
l=l0(T)

K

∑
a=1

T f̃a(T) exp {−g̃a(T)}

≤ E1T
m

exp
(
−E2T1/8

)
+

T2K
m

F(T) exp {−G(T)} . (83)

To bound the other term in the probability of complement of good set, for l2(T) ≥ l ≥ l1(T),
let

A2 :=
1

lm ∑
j∈Mlm

|t∗i (µ̂(j))− t∗i (µ)| , and A3 :=
1

lm ∑
j 6∈Mlm

|Ii(j)− t∗i (µ)| .
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Observe that

P

(∣∣∣∣Ni(lm)

lm
− t∗i (µ)

∣∣∣∣ ≥ 4ε, G1
T

)
≤ P

 1
lm

∣∣∣∣∣ ∑
j∈Mlm

(Ii(j)− t∗i (µ̂(j)))

∣∣∣∣∣︸ ︷︷ ︸
:=A1

+A2 + A3 ≥ 4ε, G1
T

 .

Since |Ii(j)− t∗i (µ)| ≤ 1, and from Lemma 8, the sampling algorithm ensures that lm− |Mlm| ≤
K
√

lm, the term A3 in the above expression can be bounded from above as,

A3 ≤
lm− |Mlm|

lm
≤ K
√

lm
lm

=
K√
lm

,

If batch size m is proportional to log(1/δ) (see (21) and the associated discussion for the choice of
batch size) and decreases with increasing δ. Since we are only interested in values of δ close to 0,
A3 ≤ ε for all T. Next,

A2 =
1

lm ∑
j∈Mlm

j<l0(T)m

|t∗i (µ̂(j))− t∗i (µ)|+
1

lm ∑
j∈Mlm

j≥l0(T)m

|t∗i (µ̂(j)− t∗i (µ)| .

Observe that if l0(T) = 1, then the first term above is 0 since for j < m, the algorithm does not
flip any coins to decide the allocation of samples, and hence |Mm| = 0. On the other hand, if

l0(T) =
⌊

T1/4

m

⌋
, then l1(T) =

⌊
T3/4

m

⌋
and the first term being at most l0(T)m

l1(T)m
, is bounded by 1

T1/2 .

However, since T ≥ m + 1 and m ∝ log (1/δ), for δ close to 0, 1/m ≤ ε. Thus, the first term is
less than ε for all T ≥ m.

For the second term, for j ≥ l0(T)×m, µ̂(j) lies in Iε, and hence this term is bounded by ε.
This gives that A2 ≤ 2ε.

Thus, for T ≥ m, and l ≥ l1(T):

P

(∣∣∣∣Ni(lm)

lm
− t∗i (µ)

∣∣∣∣ ≥ 4ε, G1
T

)
≤ P

(
1

lm

∣∣∣∣∣ ∑
j∈Mlm

(Ii(j)− t∗i (µ̂(j)))

∣∣∣∣∣+ 2ε + ε ≥ 4ε, G1
T

)

≤ P

(∣∣∣∣∣ ∑
j∈Mlm

(Ii(j)− t∗i (µ̂(j)))

∣∣∣∣∣ ≥ lmε

)
.

Let Sn = ∑j∈Mn (Ii(j)− t∗i (µ̂(j))). Clearly, Sn being sum of zero-mean random variables, is
a martingale. Further, |Sn+1 − Sn| ≤ 1. Thus using Azuma-Hoeffding inequality,

P

(∣∣∣∣Ni(lm)

lm
− t∗i (µ)

∣∣∣∣ ≥ 4ε, G1
T

)
≤ 2 exp

(
− l2m2ε2

2 |Mlm|

)
≤ 2 exp

(
− lmε2

2

)
.

Summing over l and i, the above bounded from above by

l2(T)

∑
l=l1(T)

2K exp
(
− lmε2

2

)
≤ 2KT

m
exp

(
− l1(T)×mε2

2

)
. (84)

Combining (83) and (84), we get the desired result.

47



OPTIMAL δ-CORRECT BEST-ARM SELECTION FOR HEAVY-TAILED DISTRIBUTIONS

Figure 1: Ratio of average number of samples needed by the algorithm to stop and the lower bound
as a function of log (δ).

C.7. Numerical experiment

In this section we give the experimental results for the algorithm AL1 on the example discussed
in Section 5. Recall that we consider a 4-armed bandit, with each arm having a Pareto distribution
with parameters (α, β), that is supported on [β, ∞) and has pdf fα,β(x) = αβα

xα+1 . The four arms have
parameters set to (4, 1.875), (4, 1.5), (4, 1.25), and (4, 0.75). Also, recall that we choose L with
f (y) = y2 and B = 9.

We first test numerically that the expected number of samples until termination needed by AL1,
when the underlying distributions are unknown, approaches (as δ decreases to 0) the lower bound
on this quantity, which is computed assuming that the underlying distributions are known. To this
end, Figure 1 plots the ratio of average number of samples needed by AL1 to stop, and the lower
bound on this quantity, as a function of log (δ). As can be seen from the figure, as δ reduces from
10−3 to 10−8, this ratio decreases from 28 to 16.

Let c1 denote the average cost of generating a sample from the arms (measured in seconds per
sample). Let computational cost be the cost incurred by AL1 in solving the max-min optimization
problem (5) at the end of each batch until termination (again, measured in seconds). Then, we call
the sum of cost of generating all samples (c1 × number of samples) and the computational cost as
the total cost of AL1 measured in seconds.

In Figure 2, we demonstrate the total cost of AL1 as a function of the batch size, for a fixed δ (set
to 0.01). The horizontal axis in the figure denotes the batch size in thousands and both the vertical
axes correspond to average total cost, averaged across 20 independent experiments, performed on
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Figure 2: Total computational cost for different values of c1, as a function of batch size.

a standard desktop with 8 GB RAM running Linux operating system, using Python language for
simulations. Solving the max-min optimization problem once after generating 2000, 5000, 10000
and 20000 samples takes 35, 69, 135, and 192 minutes, respectively on this system. We plot the
total cost corresponding to two different values of c1. The left vertical axis corresponds to the
green curve, i.e., for c1 = 3 seconds. The right one denotes the value of average total cost when
c1 = 0.0001 seconds (orange curve).

The figure shows that the total cost initially comes down with an increase in the batch size. This
is because as the batch size increases, number of batches required for AL1 to terminate reduces,
decreasing the computational cost. Left most points in both the curves of Figure 2 correspond to the
batch size of 2000. On increasing the batch size from 2000 to 8000, the average number of batches
until termination reduces from 5.7 to 2, reducing the average total cost.

With a further increase in the batch size up to a point, the figure indicates an increase in the
total cost. This can be explained as follows: on increasing the batch size up to 17000, we observe
that AL1 still requires 2 batches (in all the 15 independent experiments) to terminate. However, due
to increase in batch size (from 8000 to 17000), there is an increase in delay in stopping, i.e., since
AL1 checks for the stopping condition only at the end of each batch, the algorithm samples more
than required number of samples in the last batch, thus increasing the overall sampling cost (c1 ×
number of samples until termination) for the algorithm. When c1 is high, this increase contributes
significantly to the total cost (green curve). There is another phenomenon that explains the increase
in total cost, especially when c1 is small (orange curve). Because of increase in the number of
samples per batch, at the end of each batch, AL1 solves the max-min problem for distributions that
have bigger support sizes. Since solution of the max-min problem involves computing KLinf whose
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computation time increases linearly with the support size of the distributions, computational cost of
AL1 increases.

Increasing the batch size beyond this point reduces the number of batches required and hence
a reduction in the computational cost and total cost is observed upto the point for which 1 batch is
sufficient (batch size of 30000). As the batch size increases beyond this, an increase in the total cost
is seen due to exactly the same reasons outlined in a previous paragraph.

In the figure, batch sizes of 8000, 17000 and 30000 correspond to the points of local minima,
maxima, and minima (from left to right), respectively. Figure 2 also shows that when the cost of
sampling is low (e.g., in online recommender systems), the optimal batch size is large (30000 for
orange curve) and one batch is sufficient for the algorithm to stop. This suggests that in such cases,
sampling uniformly from each arm minimizes the the total cost, even if the total number of samples
needed are high. However, when c1 is high (e.g., in the setting of clinical trials, where each sample
is very costly), optimal batch size is small (4000 for green curve) to minimize the over-sampling in
last batch.

50


	Introduction
	Background and the impossibility result
	Lower bound for a delta-correct algorithm
	The delta-correct algorithm
	Optimizing batch sizes and numerical results
	Background and proofs related to the impossibility result
	Berge's Maximum Theorem
	Proof of Lemma 1

	Proofs related to lower bound
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of (9) in Theorem 5
	Proof of characterization of optimal t in Theorem 5

	Algorithm for solving the max-min lower bound
	Algorithm for solving lower bound optimization problem


	Proofs related to the sampling algorithm
	Proof of Lemma 8
	Simplification of stopping rule
	Dual representation of KLinf
	Proof of Theorem 12

	Proofs of concentration result for KLinf
	Proof of Theorem 11

	Proofs related to delta-correctness
	Proof of Theorem 13
	When underlying distributions have bounded support

	Proofs related to sample complexity part of Theorem 10
	Proof of Lemma 14
	Proof of sample complexity
	Proof of Lemma 31
	Proof of Lemma 32

	Numerical experiment


