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Abstract
The model of learning with local membership queries interpolates between the PAC model and the
membership queries model by allowing the learner to query the label of any example that is similar
to an example in the training set. This model, recently proposed and studied by Awasthi et al.
(2012), aims to facilitate practical use of membership queries.

We continue this line of work, proving both positive and negative results in the distribution free
setting. We restrict to the boolean cube {−1, 1}n, and say that a query is q-local if it is of a hamming
distance≤ q from some training example. On the positive side, we show that 1-local queries already
give an additional strength, and allow to learn a certain type of DNF formulas, that are not learnable
without queries, assuming that learning decision trees is hard. On the negative side, we show that
even

(
n0.99

)
-local queries cannot help to learn various classes including Automata, DNFs and

more. Likewise, q-local queries for any constant q cannot help to learn Juntas, Decision Trees,
Sparse Polynomials and more. Moreover, for these classes, an algorithm that uses

(
log0.99(n)

)
-

local queries would lead to a breakthrough in the best known running times.
Keywords: PAC Learning, Local Membership Queries, DNFs

1. Introduction

A child typically learns to recognize a cat based on two types of input. The first is given by her
parents, pointing at a cat and saying “Look, a cat!”. The second is given as a response to the child’s
frequent question “What is that?”. These two types of input were the basis for the learning model
originally suggested by Valiant (1984). Indeed, in Valiant’s model, the learner can randomly sample
labelled examples from “nature”, but it can also make a membership query (MQ) for the label of
any unseen example. Today, the acronym PAC stands for the restricted model in which MQ are
forbidden, while the full model is called PAC+MQ. Much work has been done investigating the
limits and the strengths of MQ. In particular, membership queries were proven stronger than the
vanilla PAC model (Angluin, 1987; Blum and Rudich, 1992; Bshouty, 1995; Jackson, 1994). Yet,
MQ are rarely used in practice. This is commonly attributed to the fact that MQ algorithms query
very artificial examples, that are uninterpretable by humans (e.g., Baum and Lang (1992)).

Awasthi et al. (2012) suggested a solution to the problem of unnatural examples. They con-
sidered a mid-way model that allows algorithms to make only local queries, i.e., query examples
that are close to examples from the sample set. Hopefully, examples which are similar to natural
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examples will appear natural to humans. Awasti et al. considered the case where the instance space
is {−1, 1}n and the distance between examples is the Hamming distance. They proved positive
results on learning sparse polynomials with O(log(n))-local queries under what they defined as lo-
cally smooth distributions1. They also proposed an algorithm that learns DNF formulas under the
uniform distribution in quasi-polynomial time using O(log(n))-local queries.

Our work follows Awasthi et al. and investigates local queries in the distribution free setting,
in which no explicit assumptions are made on the underlying distribution, but only on the learned
hypothesis. We prove both positive and negative results in this context:

• One of the strongest and most beautiful results in the MQ model shows that automata are
learnable with membership queries Angluin (1987). We show that unfortunately, this is prob-
ably not the case with local queries. Concretely, we show that even

(
n0.99

)
-local queries

cannot help to learn automata. Namely, such an algorithm will imply a standard PAC al-
gorithm for automata. As learning automata is hard under several assumptions Kearns and
Valiant (1994); Daniely and Shalev-Shwatz (2016), our result suggests that it is hard to learn
automata even with

(
n0.99

)
-local queries.

• We prove a similar result for several additional classes. Namely, we show that
(
n0.99

)
-local

queries cannot help to learn DNFs, intersection of halfspaces, decision lists, depth-d circuits
for any d ≥ 2, and depth-d threshold circuits for any d ≥ 2. Likewise, for any constant q,
q-local queries cannot help to learn Juntas, Decision Trees, Sparse polynomials, and Sparse
polynomial threshold functions. In fact, we show that even

(
log0.99(n)

)
-local queries are

unlikely to lead to polynomial time algorithms. Namely, any algorithm that uses
(
log0.99(n)

)
-

local queries will result with a PAC algorithm whose running time significantly improves the
state of the art in these well studied problems.

• On the positive side we show that already 1-local queries are probably stronger than the
vanilla PAC model. Concretely, we show that poly-sized DNF formulas in which every pair
of terms contains two opposite literals, are learnable with 1-local queries. Furthermore, we
show that without queries, learning this class is at least as hard as learning decision trees, that
are conjectured to be hard to learn.

2. Previous Work

Membership Queries Several concept classes are known to be learnable only if membership
queries are allowed: Deterministic Finite Automatons (Angluin, 1987), k-term DNF for k = log(n)

log(log(n))
(Blum and Rudich, 1992), decision trees and k-almost monotone-DNF formulas (Bshouty, 1995),
intersections of k-halfspaces (Baum, 1991) and DNF formulas under the uniform distribution (Jack-
son, 1994). The last result builds on Freund’s boosting algorithm (Freund, 1995) and the Fourier-
based technique for learning using membership queries due to (Kushilevitz and Mansour, 1993).
We note that there are cases in which MQ do not help. E.g., in the case of learning DNF and CNF
formulas (Angluin and Kharitonov, 1995), assuming that one way functions exist, and in the case
of distribution free agnostic learning (Feldman, 2009).

1. A distribution is locally α-smooth for α ≥ 1 if its density function is log(α)-Lipschitz.
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Local Membership Queries Awasthi et al. (2012) focused on O(log(n))-local queries. They
showed learnability of t-sparse polynomials under locally smooth distributions withO (log(n) + log(t))-
local queries, and that DNF formulas are learnable under the uniform distribution in quasi-polynomial
time (nO(log logn)) using O(log(n))-local queries. They also presented some results regarding the
strength of local MQ. They proved that under standard cryptographic assumptions, (r + 1)-local
queries are more powerful than r-local queries (for every 1 ≤ r ≤ n − 1). They also showed that
local queries do not always help. They showed that if a concept class is agnostically learnable under
the uniform distribution using k-local queries (for constant k) then it is also agnostically learnable
(under the uniform distribution) in the PAC model.

We remark that besides local queries, there were additional suggestions to solve the problem
of unnatural examples. For example, to allow “I don’t know” answers, or to be tolerant to some
incorrect answers Angluin and Slonim (1994); Angluin et al. (1997); Blum et al. (1995); Sloan and
Turán (1994); Bisht et al. (2008).

3. Setting

We consider binary classification where the instance space is X = Xn = {−1, 1}n and the label
space is Y = {0, 1}. The learner receives a training set

S = {(x1, h
?(x1)), (x2, h

?(x2)), . . . , (xm, h
?(xm))} ∈ (X × Y)m

where the xi’s are sampled i.i.d. from some unknown distribution D on X and h? : X → Y is
some unknown hypothesis. The learner is also allowed to make membership queries. Namely, to
call an oracle, which receives as input some x ∈ X and returns h?(x). We say that a membership
query for x ∈ X is q-local if there exists a training example xi whose Hamming distance from
x is at most q. The learner returns (a description of) a hypothesis ĥ : X → Y . The goal is to
approximate h?, namely to find ĥ : X → Y with loss as small as possible, where the loss is defined
as LD,h?(ĥ) = Prx∼D

(
ĥ(x) 6= h?(x)

)
. We will focus on the realizable case where h? is assumed

to be in a hypothesis class H, and will require algorithms to return a hypothesis with loss < ε in
time that is polynomial in n and 1

ε .

Definition 1 (Membership-Query Learning Algorithm) We say that a learning
algorithm A efficiently learnsH with q-local membership queries if

• There exists a functionmA (n, ε) ≤ poly
(
n, 1ε

)
, such that for every pair (D, h?) with h? ∈ H

and every ε > 0, if A is given access to membership queries, and a training sequence

S = {(x1, h
?(x1)), (x2, h

?(x2)), . . . , (xm, h
?(xm))}

where the xi’s are sampled i.i.d. fromD andm ≥ mA(n, ε), then with probability of at least2
3
4 (over the choice of S), the output ĥ of A satisfies LD,h?(ĥ) < ε.

• Given a training set of size m

– A asks at most poly(m,n) membership queries, all of them are q-local

– A runs in time poly(m,n).

2. The success probability can be amplified to 1− δ by repetition.
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– The hypothesis returned by A can be evaluated in time poly(m,n).

We remark that learning with 0-local queries is equivalent to PAC learning, while learning with
n-local queries is equivalent to PAC+MQ learning. We will also use a more general notion of a
learning problem that is not necessarily defined by a hypothesis class. Specifically, we define a
model class as a collection M of pairs (D, h?), where D is a distribution of {±1}n and h? is a
function from {±1}n to {0, 1}. Learnability of a model class is defined similarly to learnability
of a hypothesis class (definition 1), except that instead of requiring that h? ∈ H, we require that
(D, h?) ∈M.

4. A class for which local queries are useful

Our first results give an example to a hypothesis class that is not efficiently learnable without mem-
bership queries (assuming that it is hard to learn decision trees), yet it is efficiently learnable with
1-local queries. We define the class of strongly mutually exclusive DNFs, denoted SME−DNF, as
the class of functions computed by a poly-sized3 DNF formula, in which any pair of different terms
contain two opposite literals.

Theorem 2 SME−DNF is efficiently learnable with 1-local queries

Theorem 3 Learning SME−DNF (without queries) is as hard as learning decision trees.

As we elaborate next, our positive result (theorem 2) is valid for a more general learning problem
(yet one that is not captured by a function class), which we call learning DNFs with representative
examples. When evaluating a DNF formula on a given example, we check a few conditions cor-
responding to the formula’s terms, and deem the example positive if one of them holds. We will
consider the case that for each of these conditions, there is a chance to see a “representative exam-
ple”, that satisfies it in a strong or clear way. Concretely, there is a a chance to see an example for
which this condition is the only one that is valid, and in a strong sense – no other condition can be
made true by flipping a single coordinate. In the sequel, we denote by hF : {−1, 1}n → {0, 1} the
function induced by a DNF formula F over n variables.

Definition 4 Let F = T1∨T2∨. . .∨Td be a DNF formula. We say that an example x ∈ {−1, 1}n is
representative for a term Ti (with respect to the formula F ) and denote Ti(x) ≡ 1 if (i) x satisfies Ti
and only Ti (In particular, hF (x) = 1), and (ii) if we denote x⊕j = (x1, . . . , xj−1,−xj , xj+1, . . . , xn),
then for every j ∈ [n], and term k 6= i, Tk(x⊕j) = 0.

Definition 5 Let h? be a function from {−1, 1}n to {0, 1}, let D be a distribution on {−1, 1}n,
and let F = T1 ∨ T2 ∨ . . . ∨ Td be a DNF formula. We say that (D, h?) is realized by F with
representative examples if h? = hF and for every term Ti, Prx∼D (Ti(x) ≡ 1|Ti(x) = 1) ≥ 1

poly(n) .
We denote by RDNF the collection of pairs (D, h?) that are realized by a poly-sized DNF formula
with representative examples.

Theorem 6 RDNF is efficiently learnable with 1-local queries.

3. The actual polynomial can be any polynomial. All the results are valid for any choice a polynomial. This comment
applies to any further definition that involves a polynomial without a concrete specification.
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It is not hard to see that if h? ∈ SME−DNF then for any D, (D, h?) ∈ RDNF . Hence,
theorem 6 implies theorem 2.

We next demonstrate that DNFs with representative example goes beyond SME−DNF. In-
deed, the following example shows that under the uniform distribution, read once DNFs4 with terms
of size log2(n) are realized by a poly-sized DNFs with representative examples. We note that such
formuals are known to be PAC learnable under the unform distribution (e.g. Schapire (1994)), but
with quite complex algorithms and analysis. Example 1 implies that once we have 1-local queries
at our disposal, we get a simple algorithm for the problem with a simple analysis.

Example 1 (Read once DNFs under the uniform distribution) Let F = T1 ∨ . . .∨ Td be a read
once DNF formula over n variables, where each Ti has log2(n) literals. For uniform x ∈ {±1}n,
we have

Pr (T1(x) ≡ 1|T1(x) = 1) =

d∏
i=2

Pr (x falsifies at least 2 literals in Ti)

=

(
1− 1

n
− log2(n)

n

)d−1
≥

(
1− 1

n
− log2(n)

n

)n
=

(
e−1 + o(1)

)log2(n)
= n− log2(e)+o(1)

≥ 1

poly(n)

4.1. An algorithm – proof of theorem 6

Theorem 7 Algorithm 1 learns with 1-local-queries poly-sized DNFs with representative exam-
ples.

Idea The algorithm is based on the following claim that follows easily from definition 4.

Claim 1 Let F = T1 ∨ T2 ∨ . . . ∨ Td be a DNF formula over {−1, 1}n. For every x ∈ {−1, 1}n
that satisfies a term Ti representatively (with respect to F ), and for every j ∈ [n] it holds that:

hF (x
⊕j) = 1⇐⇒ the term Ti does not contain the variable xj

By this claim, if x is a representative example for a certain term T , one can easily reconstruct T .
Indeed, by flipping the value of each variable and checking if the label changes, one can infer which
variables appear in T . Furthermore, the sign of these variables can be inferred from their sign in x.
Hence, after seeing a representative example for all terms, one can have a list of terms containing
all terms in the DNF. This list might have terms that are not part of the DNF. Yet, such terms can be
thrown away later by testing if they make wrong predictions.

4. That is, DNF formulas in which any variable appears in at most a single term.
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Algorithm 1
Input: S1, S2 ∈ ({−1, 1}n × {0, 1})m
Output: A DNF formula H

Start with an empty DNF formula H
for all positive examples (x, y) ∈ S1 do

Define T = x1 ∧ x1 ∧ x2 ∧ x2 ∧ . . . ∧ xn ∧ xn
for 1 ≤ j ≤ n do

Query x⊕j to get h?(x⊕j)
if h?(x⊕j) = 1 then

Remove xj and xj from T
if h?(x⊕j) = 0 then

if xj = 1 then
Remove xj from T

if xj = 0 then
Remove xj from T

H = H ∨ T
for all T in H do

if T (x) = 1 but y = 0 for some (x, y) ∈ S2 then
Remove T from H

Return H

Proof (of Theorem 7) We will show that algorithm 1 learns with 1-local-queries any function that
is realized by a DNF of size ≤ n2 with representative examples. Adapting the proof to hold with
nc instead of n2, for any c > 0, is straight-forward. Likewise, we assume that for every term Ti,
Prx∼D (Ti(x) ≡ 1|Ti(x) = 1) ≥ 1

n . Again, adapting the proof to hold with nc instead of n2, for
any c > 0, is straight-forward. First, it is easy to see that this algorithm is efficient. Now, fix a
distribution D and let h? : {−1, 1}n → {0, 1} be a hypothesis that is realized, w.r.t. D, by a DNF
formula F = T1 ∨ T2 ∨ . . . ∨ Td, d ≤ n2 with representative examples. Let ε > 0, and sup-
pose we run the algorithm on two indepent samples from D, denoted S1 = {(xi, h?(xi)}m1

i=1 and
S2 = {(x′i, h?(x′i)}

m2
i=1. We will show that if m1 ≥ 32n3

ε log 32n2

ε ≥ 32nd
ε log 32d

ε and m2 ≥
32m1
ε log 32m1

ε then with probability of at least 3
4 , the algorithm will return a function ĥ with

LD,h?(ĥ) < ε. Let H be the DNF formula returned by the algorithm, and let ĥ be the function
induced by H . We have that

LD,h?(ĥ) = Pr
x∼D

(
h?(x) 6= ĥ(x)

)
= Pr

x∼D

(
h?(x) = 1 and ĥ(x) = 0

)
+ Pr

x∼D

(
h?(x) = 0 and ĥ(x) = 1

)
The proof will now follow from claims 2 and 3.

Claim 2 With probability at least 7
8 over the choice of S1, S2 we have

Pr
x∼D

(
h?(x) = 1 and ĥ(x) = 0

)
≤ ε

2
(1)

Proof We first note that if there is a representative example x for a term Ti in S1, then Ti will be
in the output formula. Indeed, in the for-loop that go over the examples in S1, when processing
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the example (x, h?(x)), it is not hard to see that Ti will be added. We furthermore claim that the
term Ti won’t be removed at the for loop that tests the terms collected in the first loop. Indeed, if
for some (x, h?(x)) ∈ S2 we have Ti(x) = 1, it must be the case that h?(x) = 1. Now, we say
that the term Ti is revealed if we see a representative example for this term in S1. We also denote
pi = Prx∼D (Ti(x) = 1). We have

Pr
x∼D

(
h?(x) = 1 and ĥ(x) = 0

)
≤

d∑
i=1

Pr
x∼D

(
Ti(x) = 1 and ĥ(x) = 0

)
≤

∑
i:Ti is not revealed

pi

Now, by the assumption that h? is realized with representative examples, the probability (over the
choice of S1, S2) that Ti is not revealed is at most

(
1− pi

n

)m1 . Hence, if we denote by Ai the event
that Ti is not revealed, we have

E
S1∼Dm1

[
Pr
x∼D

(
h?(x) = 1 and ĥ(x) = 0

)]
≤ ES1∼Dm1

[
d∑
i=1

pi · 1Ai

]

=
d∑
i=1

piES1∼Dm1 [1Ai ]

=
d∑
i=1

piPrS1∼Dm1 [Ai]

=

d∑
i=1

pi

(
1− pi

n

)m1

=
∑

i|pi< ε
32d

pi

(
1− pi

n

)m1

+
∑

i|pi≥ ε
32d

pi

(
1− pi

n

)m1

≤
∑

i|pi< ε
32d

ε

32d
+

∑
i|pi≥ ε

32d

(
1− pi

n

)m1

≤ d · ε

32d
+

∑
i|pi≥ ε

32d

e−
m1pi
n

≤ ε

32
+ d · e−

m1ε
32dn

Sincem1 ≥ 32dn
ε log 32d

ε the last expression is bounded by ε
16 . By Markov’s inequality we conclude

that the probabilty over the coice of S1, S2 that (1) does not lold is less than 1
8 . �

Claim 3 With probability at least 7
8 over the choice of S1, S2 we have

Pr
x∼D

(
h?(x) = 0 and ĥ(x) = 1

)
≤ ε

2
(2)

Proof Let T̂1, . . . , T̂r be the terms that were added to H at the first for-loop. Denote

qi = Pr
x∼D

(
T̂i(x) = 1 and h?(x) = 0

)
7
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We have

Pr
x∼D

(
h?(x) = 0 and ĥ(x) = 1

)
≤

∑
i : T̂i is not removed

qi

Now, the probability that T̂i is not removed is (1− qi)m2 . Hence, using an argument similar to the
one used in the proof of claim 2, and since m2 ≥ 32m1

ε log 32m1
ε ≥ 32r

ε log 32r
ε , the claim follows.

�
�

4.2. A lower bound – proof of theorem 3

In this section we provide evidence that the use of queries in our algorithm is crucial. We will
show that the problem of learning poly-sized decision trees can be reduced to the problem of learn-
ing strongly mutually exclusive DNFs. As learning decision trees is conjectured to be intractable,
this reduction serves as an indication that learning strongly mutually exclusive DNFs (and hence
learning DNFs with representative examples)is hard without membership queries. In the sequel
we denote by TREE the class of functions from {±1}n to {0, 1} that are realized by a poly-sized
decision tree.

Theorem 8 Learning SME−DNF is as hard as learning TREE.

We denote by hT the function induced by a decision tree T . The proof will use the following claim:

Claim 4 There exists a mapping (a reduction) ϕ : {−1, 1}n → {−1, 1}2n, that can be evaluated
in poly(n) time so that for every decision tree T over {−1, 1}n there exists a strongly mutually
exclusive DNF formula F over {−1, 1}2n such that the following holds:

1. The number of terms in F is upper bounded by the number of leaves in T

2. hT = hF ◦ ϕ

Proof Define ϕ as follows:

∀x = (x1, x2, . . . , xn) ∈ Xn ϕ(x1, x2, . . . , xn) = (x1, x1, x2, x2, . . . , xn, xn)

Now, for every tree T , we will build the desired DNF formula F as follows: First we build a DNF
formula F ′ over {−1, 1}n . Every leaf labeled ’1’ in T will define the following term- take the path
from the root to that leaf and form the logical AND of the literals describing the path. F ′ will be a
disjunction of these terms. Now, for every term T in F ′ we will define a term φ(T ) over X2n in the
following way: Let PT = {i ∈ [n] : xi appear in T} and NT = {i ∈ [n] : xi appear in T}. So

T =
∧
j∈PT

xj
∧
j∈NT

xj

Define

φ(T ) =
∧
j∈PT

x2j−1
∧
j∈PT

x2j
∧
j∈NT

x2j−1
∧
j∈NT

x2j

8
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Finally, define F to be the DNF formula over X2n given by

F =
∨
T∈F ′

φ(T )

We will now prove that ϕ and F satisfy the required conditions. First, ϕ can be evaluated in linear
time in n. Second, it is easy to see that hT = hF ◦ ϕ, and as every term in F matches one of
T ’s leaves, the number of terms in F cannot exceed the number of leaves in T . It is left to show
that F is strongly mutually exclusive. Indeed, if ϕ(T1) and ϕ(T2) are two terms in F , then T1
and T2 corresponds to two root-to-leaf paths P1,P2 in T . Now, the two variables in {±1}2n that
corresponds to the node in whichP1 andP2 fork, appear in both ϕ(T1) and ϕ(T2), but with opposite
signs. �

We are now ready to prove theorem 8.

Proof [of theorem 8] Suppose that A learns size-n strongly mutually exclusive DNFs. Using the
reduction from claim 4 we will build an efficient algorithm B that learns size-n decision trees. For
every training set

S = {(x1, h
?(x1)), (x2, h

?(x2)), . . . , (xm, h
?(xm))} ∈ (Xn × {0, 1})m

we define

ϕ(S) := {(ϕ(x1), h
?(x1)), (ϕ(x2)), h

?(x2)), . . . , (ϕ(xm), h
?(xm))} ∈ (X2n × {0, 1})m

The algorithm B will work as follows: Given a training set S, B will runA on ϕ(S), and will return
ĥ ◦ ϕ, where ĥ is the hypothesis returned by A. Since ϕ can be evaluated in poly(n) time and A is
efficient, B is also efficient. We will prove that B learns size-n trees. SinceA learns size-n strongly
mutually exclusive DNFs, there exists a function mA (n, ε) ≤ poly

(
n, 1ε

)
, such that if A is given a

training sequence

S = {(x1, h
?(x1)), (x2, h

?(x2)), . . . , (xm, h
?(xm))} ∈ (Xn × {0, 1})m

where the xi’s are sampled i.i.d. from a distribution D, h? is realized by a poly-sized strongly
mutually exclusive DNF, and m ≥ mA(n, ε), then with probability of at least 3

4 (over the choice
of S), the output ĥ of A satisfies LD,h?(ĥ) ≤ ε. Let D be a distribution on Xn and let hT be a
hypothesis that can be realized by a tree with ≤ n leafs. Define a distribution D̃ on X2n by,

˜(D)(z) =

{
D(x) if ∃x ∈ Xn such that z = ϕ(x)

0 otherwise

Now, since hT is realized by T , from the conditions that ϕ satisfies, we get that hT = h ◦ ϕ, where
h is realized by a strongly mutually exclusive DNF of size ≤ n. Now if S ∈ (Xn × {0, 1})m is an
i.i.d. sample with m ≥ mA(2n, ε) we have that with probability of at least 3

4 it holds that

9
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LD,hT (B(S)) = LD,hT (ĥ ◦ ϕ)
= Pr

x∼D
[hT (x) 6= ĥ ◦ ϕ(x)]

= Pr
x∼D

[h ◦ ϕ(x) 6= ĥ ◦ ϕ(x)]

= Pr
z∼D̃

[h(z) 6= ĥ(z)]

= LD̃,h(ĥ)

= LD̃,h(A(ϕ(S))) < ε

�

5. Conclusion and Future Work

We have shown that in the distribution free setting, for many hypothesis classes, local queries are not
useful. As our proofs show, this stems from the fact that learning these classes without queries can
be reduced to a case where local queries are pointless, in the sense that the answer to them is either
always 1, or the label of the closest training example. On the other hand, the learning problem of
DNFs with representative examples circumvents this property. Indeed, the underlying assumption
enforces that local changes can change the label in a non-trivial manner. While this assumption
might be intuitive in some cases, it is certainly very restrictive. Therefore, a natural future research
direction is to seek less restrictive assumptions, that still posses this property.

More concrete direction arising from our work concern classes for which we have shown that(
log0.99(n)

)
-local queries are unlikely to lead to efficient algorithms. We conjecture that for some

a > 0 even (na)-local queries won’t lead to efficient distribution free algorithms for these classes.
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Appendix A. Classes for which local queries are not useful

We first present a general technique to prove lower bounds on learning with local queries. For
A ⊂ Xn and q > 0 denote

B(A, q) = {x ∈ Xn | ∃a ∈ A, d(x,a) ≤ q}

We say that a mapping ϕ : {−1, 1}n → {−1, 1}n′ is a q-reduction of type A from a class H to a
classH′ if the following holds:

1. ϕ is efficiently computable.

2. For every h ∈ H there is h′ ∈ H′ such that

(a) h = h′ ◦ ϕ
(b) The restriction of h′ to B(ϕ(Xn), q) \ ϕ(Xn) is the constant function 1.

We say that a mappingϕ : {−1, 1}n → {−1, 1}n′ is a q-reduction of type B if the same requirements
hold, except that (2b) is replaced by the following condition: For every z ∈ B(ϕ(Xn), q) there is a
unique x ∈ Xn satisfying d(z, ϕ(x)) ≤ q, and furthermore, h′(z) = h(x).

Lemma 9 Suppose that there is a q-reduction ϕ from H to H′. Then, learning H′ with q-local
queries is as hard as PAC learningH.

Proof (sketch) Suppose that A′ learns H′ with q-local queries. We need to show that there is
an algorithm that learns H. Indeed, by an argument similar to the one in theorem 8, it is not
hard to verify that the following algorithm learns H. Given a sample {(x1, y1), . . . , (xm, ym)} ⊂
{−1, 1}n × {0, 1}, run A′ on the sample {(ϕ(x1), y1), . . . , (ϕ(xm), ym)} ⊂ {−1, 1}n

′ × {0, 1}.
Whenever A′ makes a q-local query for z ∈ {−1, 1}n′ , respond 1 if ϕ is of type A. If ϕ is of type
B, respond yi, where xi is the unique training sample satisfying d(z, ϕ(xi)) ≤ q. Finally, if A′
returned the hypothesis h′, return h′ ◦ ϕ. �
We next use Lemma 9 to prove that for several classes, local queries are not useful. Namely, if
the class is learnable with local queries then it is also learnable without queries. We will use the
following terminology. We say that q-local queries cannot help to learn a class H if H is learnable
if and only if it is learnable with q-local queries.

Corollary 10 For every ε0 > 0,
(
n1−ε0

)
-local queries cannot help to learn poly-sized DNFs,

intersection of halfspaces, decision lists, depth-d circuits for any d = d(n) ≥ 2, and depth-d
threshold circuits for any d = d(n) ≥ 2.

Proof We will only prove the corollary for DNFs. The proofs for the remaining classes are sim-
ilar. Also, for simplicity, we will assume that ε0 = 1

3 . Consider the mapping ϕ : {−1, 1}n →
{−1, 1}n3

that replicates each coordinate n2 times. To establish the corollary, we show that ϕ is an(
(n′)

2
3 − 1

)
-reduction of type A from poly-sized DNF to poly-sized DNF.

Indeed, let F = T1 ∨ . . .∨Td be a DNF formula on n variables, consider the following formula
on the n3 variables {xi,j}1≤i≤n,1≤j≤n2 . Let,

T ′t({xi,j}i,j) = Tt(x1,1, . . . , xn,1)

G′({xi,j}i,j) = ∨ni=1 ∨n
2−1
j=1 (xi,j ∧ ¬xi,j+1) ∨ (xi,j+1 ∧ ¬xi,j)

F ′ =
(
T ′1 ∨ . . . ∨ T ′d

)
∨G′

12
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It is not hard to verify that hF = hF ′ ◦ ϕ. Moreover, if x = {xi,j}i,j ∈ B(ϕ(Xn), n2 − 1) \ ϕ(Xn)
then xi,j 6= xi,j+1 for some i, j, meaning that hG(x) = 1 and therefore also hF (x) = 1. �

Corollary 11 For every ε0 > 0,
(
n1−ε0

)
-local queries cannot help to learn poly-sized automata.

Proof Again, for simplicity, we assume that ε0 = 1
3 , and consider the mapping ϕ : {−1, 1}n →

{−1, 1}n3
that replicates each coordinate n2 times. To establish the corollary, we show that ϕ is an(

(n′)
2
3 − 1

)
-reduction of type A from poly-sized automata to poly-sized automata.

Indeed, let A be an automaton on n variables. It is enough to show that there is an automaton
A′ on the n3 variables {xi,j}1≤i≤n,1≤j≤n2 such that (i) the size of A′ is polynomial, (ii) A′ accepts
any string in B(ϕ(Xn), n2 − 1) \ ϕ(Xn), and (iii) A′ accepts ϕ(x) if and only if A accepts x. Now,
by the product construction of automatons Sipser, if A′1, A

′
2 are automata that induce the functions

hA′1 , hA′2 : {−1, 1}n3 → {0, 1}, then the function hA′1 ∨ hA′2 can be induced by an automaton of
size |A′1| · |A′2|. Hence, it is enough to show that there are poly-sized automata A′1, A

′
2 that satisfies

(ii) and (iii) respectively.
A construction of a sizeO(n2) automaton that satisfies (ii) is a simple exercise. We next explain

how to construct a poly-sized automatonA′2 satisfying (iii). The states ofA′2 will be the S(A)× [n2]
(here, S(A) denotes the set of states of A). The start state of A′2 will be (α0, 1), where α0 is the
start state of A, and the accept states of A′2 will be the cartesian product of the accept states of A
with [n2]. Finally if δ : S(A)× {−1, 1} → S(A) is the transition function of A, then the transition
function of A′2 is defined by

δ′((α, i), b) =

{
(α, i+ 1) 1 ≤ i < n2

(δ(α, b), 1) i = n2

It is not hard to verify that A′2 satisfies (iii). �

In the next corollary, a Junta of size t is a function h : {−1, 1}n → {0, 1} that depends on ≤ log(t)
variables. The rational behind this definition of size, is the fact that in order to describe a general
function that depends onK variables, at least 2K bits are required. Likewise, the sample complexity
of learning Juntas is proportional to t rather than log(t)

Corollary 12 For every constant q0 > 0, q0-local queries cannot help to learn poly-sized Juntas.

Proof Consider the mapping ϕ : {−1, 1}n → {−1, 1}(2q0+1)n that replicates each coordinate
2q0+1 times. To establish the corollary, we show that ϕ is a q0-reduction of type B from poly-sized
Juntas to poly-sized Juntas. Indeed, let h : {−1, 1}n → {0, 1} be a function that depends on K
variables. It is enough to show that there is a function h′ on the variables {zi,j}i∈[n],j∈[2q0+1] that
satisfies (i) h = h′ ◦ ϕ, (ii) for every x ∈ X , if z ∈ {−1, 1}(2q0+1)n is obtained from ϕ(x) by
modifying ≤ q0 coordinates, then h′(z) = h′(ϕ(x)) and (iii) h′ depends on (2q0 + 1)K variables.
It is not hard to check that the following function satisfies these requirements:

h′(z) = h (MAJ(z1,1, . . . , z1,2q0+1), . . . ,MAJ(zn,1, . . . , zn,2q0+1))

�

We remark that by taking q0 = log1−ε0(n) for some ε0 > 0, and using a similar argument, it can
be shown that an efficient algorithm for learning poly-sized Juntas with

(
log1−ε0(n)

)
-local queries

would imply a PAC algorithm for poly-sized Juntas that runs in time nO(log
1−ε0 (n)).

13
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Corollary 13 For every constant q0 > 0, q0-local queries cannot help to learn poly-sized decision
tress.

Proof As with Juntas, consider the mapping ϕ : {−1, 1}n → {−1, 1}(2q0+1)n that replicates each
coordinate 2q0 + 1 times. To establish the corollary, we show that ϕ is a q0-reduction of type B
from poly-sized decision trees to poly-sized decision trees. Indeed, let h : {−1, 1}n → {0, 1} be a
function that is realized by a decision tree T . It is enough to show that there is a function h′ on the
variables {zi,j}i∈[n],j∈[2q0+1] that satisfies (i) h = h′◦ϕ, (ii) for every x ∈ X , if z ∈ {−1, 1}(2q0+1)n

is obtained from ϕ(x) by modifying ≤ q0 coordinates, then h′(z) = h′(ϕ(x)) and (iii) h′ can be
realized by a tree of size |T |2q0+1. As we explain, this will hold for the following function:

h′(z) = MAJ (h(z1,1, . . . , zn,1), . . . , h(z1,2q0+1, . . . , zn,2q0+1))

It is not hard to check that h′ satisfies (i) and (ii). As for (iii), consider the following tree T ′.
First replicate T on the variables z1,1, . . . , zn,1. Then, on the obtained tree, replace each leaf by a
replica of T on the variables z1,2, . . . , zn,2. Then, again, replace each leaf by a replica of T on the
variables z1,3, . . . , zn,3. Continues doing so, until the leafs are replaced by a replica on the variables
z1,2q0+1, . . . , zn,2q0+1. Now, each leaf in the resulted tree corresponds to (2q0+1) root-to-leaf paths
in the original tree T . The label of such leaf will be the majority of the labels of these paths. �

As with Juntas, we remark that by taking q0 = log1−ε0(n) for some ε0 > 0, and using a similar ar-
gument, it can be shown that an efficient algorithm for learning poly-sized trees with

(
log1−ε0(n)

)
-

local queries would imply a PAC algorithm for poly-sized trees that runs in time nO(log
1−ε0 (n)).

In the sequel, we say that a function h : {−1, 1}n → {0, 1} is realized by a poly-sized polyno-
mial, if it is the function induced by a polynomial with polynomially many non-zero coefficient and
degree O (log(n)). A similar convention applies to the term poly-sized polynomial threshold func-
tion. We remark that the following corollary and its proof remain correct also if in our definition,
we replace the number of coefficients with the `1 norm of the coefficients vector.

Corollary 14 For every constant q0 > 0, q0-local queries cannot help to learn poly-sized polyno-
mials, as well as poly-sized polynomial threshold functions.

Proof We will prove the corollary for polynomials. The proof for polynomial threshold functions
is similar. Consider the mapping ϕ : {−1, 1}n → {−1, 1}(2q0+1)n that replicates each coordi-
nate 2q0 + 1 times. To establish the corollary, we show that ϕ is a q0-reduction of type B from
poly-sized polynomials to poly-sized polynomials. Indeed, let h : {−1, 1}n → {0, 1} be a poly-
sized polynomial. It is enough to show that there is a poly-sized polynomial h′ on the variables
{zi,j}i∈[n],j∈[2q0+1] that satisfies (i) h = h′ ◦ ϕ, and (ii) for every x ∈ X , if z ∈ {−1, 1}(2q0+1)n is
obtained from ϕ(x) by modifying ≤ q0 coordinates, then h′(z) = h′(ϕ(x)). As we explain next,
this will hold for the following polynomial:

h′(z) = h (MAJ(z1,1, . . . , z1,2q0+1), . . . ,MAJ(zn,1, . . . , zn,2q0+1))

It is not hard to check that h′ satisfies (i) and (ii). It remains to show that h′ is poly-sized. Indeed,
the majority function on 2q0+1 coordinates is a polynomial of degree≤ 2q0+1 with at most 22q0+1

non zero coefficients (this is true for any function on 2q0 + 1 coordinates). Hence, if we replace
each variable in h by a polynomial of the form MAJ(zi,1, . . . , zi,2q0+1), the degree is multiplied by
at most (2q0 + 1), while the number of non zero coefficients is multiplied by at most 22q0+1. �
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As with Juntas and decision trees, by taking q0 = log1−ε0(n) for some ε0 > 0, and using a similar
argument, it can be shown that an efficient algorithm for learning poly-sized polynomials or poly-
nomial threshold functions with

(
log1−ε0(n)

)
-local queries would imply a PAC algorithm for the

same problem that runs in time nO(log
1−ε0 (n)).
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