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Abstract
In the online version of the classic k-means clustering problem, the points of a dataset u1, u2, . . .
arrive one after another in an arbitrary order. When the algorithm sees a point, it should either add
it to the set of centers, or let go of the point. Once added, a center cannot be removed. The goal is
to end up with set of roughly k centers, while competing in k-means objective value with the best
set of k centers in hindsight.

Online versions of k-means and other clustering problem have received significant attention in
the literature. The key idea in many algorithms is that of adaptive sampling: when a new point
arrives, it is added to the set of centers with a probability that depends on the distance to the centers
chosen so far. Our contributions are as follows:

1. We give a modified adaptive sampling procedure that obtains a better approximation ratio (im-
proving it from logarithmic to constant).

2. Our main result is to show how to perform adaptive sampling when data has outliers (� k points
that are potentially arbitrarily far from the actual data, thus rendering distance-based sampling
prone to picking the outliers).

3. We also discuss lower bounds for k-means clustering in an online setting.
Keywords: Online algorithms, k-means clustering, Robust algorithms

1. Introduction

Clustering data is one of the fundamental subroutines in the analysis of large data. The general goal
is to partition the data into clusters so that points within a cluster are “more similar” to one another,
compared to points in different clusters. This intuitive requirement can be formalized in many
ways. Some popular notions include k-means, k-center, facility location, hierarchical clustering,
correlation clustering, etc. Each formulation has its merits, and the choice between them largely
depends on the application and the data itself. (E.g., see Dasgupta, 2016; Hastie et al., 2009).

The subject of this paper is k-means clustering. Here, we are given an integer k, and the goal is
to partition the data into k clusters, so as to minimize the sum of squared distances from the points
to the corresponding cluster centers. In the case of points in a Euclidean space, the cluster center is
simply the (empirical) mean of the points in a cluster. In general metric spaces, we need to designate
one point in a cluster to be the center. k-means clustering is well-studied from an algorithmic and
a complexity perspective. It is known to be APX-hard (i.e., hard to approximate to a factor > 1
assuming P 6= NP) (Bahmani et al., 2012; Krishnaswamy et al., 2018). The first constant factor
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ONLINE k-MEANS CLUSTERING

approximation is due to (Kanungo et al., 2004), who gave an algorithm based on local search. The
best known approximation algorithm is due to (Ahmadian et al., 2017).

On the practical side, there are many heuristics developed for the k-means problem. Lloyd’s
algorithm (Lloyd, 1982) (popularly known simply as the “k-means algorithm”) is an iterative EM-
style procedure that works quite well in practice. A better initialization for Lloyd’s algorithm was
proposed by (Arthur and Vassilvitskii, 2007), based on adaptive sampling (an idea which will fea-
ture prominently in our results). In order to deal with much larger datasets, distributed algorithms
for k-means have been extensively studied (see Ene et al., 2011; Balcan et al., 2013; Bateni et al.,
2014, and references therein).

Another well-studied setting for clustering problems is the data streaming model. Here, the
points of a dataset arrive one after another in arbitrary order. The algorithm must, in the end, arrive
at an approximately optimal solution to the k-means problem on the full dataset. The trivial solution
is to store all the points, and use an approximation algorithm in the end. The goal in streaming
algorithms is to do much better than this, in terms of both memory and time complexity. Specifically,
the goal is to use only roughlyO(k) memory, use as little computation as possible at each step (when
a point arrives), and in the end, obtain a constant factor approximation. Surprisingly, this turns out
to be possible, using a little more than k memory (see Guha et al., 2001; Ene et al., 2011).

Online model. We consider the online model of computation, which is more restrictive than
streaming. Here, points arrive one after another in an arbitrary order. Once a point arrives, the
algorithm must decide to keep it, or let it go (forever). Once a point is kept, it cannot be removed
(thus the decision making is done in a one-shot manner). The goal is similar: we wish to maintain
roughly k centers, whilst competing with the clustering objective for the best k centers in hindsight.
The online model is well studied for problems such as hiring (the so-called secretary problem, see
Babaioff et al., 2009), as well as submodular optimization (see Buchbinder et al., 2019). In the
context of clustering and facility location, online algorithms were first studied in the classic work
of (Meyerson, 2001). The motivation here was to open facilities so as to serve demands that ar-
rive online. In this context, it is also natural that once facility/clusters are opened, they cannot be
closed/moved without a cost. Later works of (Charikar et al., 2004) and (Liberty et al., 2016) studied
online clustering from an approximation perspective.

The work of (Liberty et al., 2016), which is inspired by the adaptive sampling ideas of (Mey-
erson, 2001) (see also Ostrovsky et al., 2013; Arthur and Vassilvitskii, 2007), shows that assuming
one has an estimate of the optimum k-means error (up to a constant factor), going over the points
and sampling them with probability proportional to the squared-distance to the points chosen so
far (scaled by the guess for the optimum) results in (a) choosing only O(k log n) points (assuming
that the guess for the optimum error was close), and (b) achieving an objective value that is at most
O(log n) · OPT.

Our contributions improve the understanding of the online k-means problem along many axes.
First, we improve the approximation factor of the k-means objective cost and study intrinsic lim-
itations in the online model. Next, we consider the problem in the presence of outliers (formally
defined below). Suppose we have z � k log n points that are outliers. Now, adaptive sampling can
choose these points with high probability, resulting in Θ(z) points being chosen. We show, via a
carefully designed algorithm, how we can mitigate the effect of outliers.
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1.1. Our results

Our first result is a new online algorithm for k-means clustering. It is based on adaptive sampling,
but done in phases. The algorithm achieves a log n factor improvement in the approximation ratio
compared to the prior work of (Liberty et al., 2016).

Theorem 1 Suppose the points V ⊂ Rd of a dataset arrive in an online manner. Let k ≥ 1, and
ξ > 0 and ε ∈ (0, 1) be given parameters. k is the desired number of clusters and ξ is the desired
clustering cost. Then there exists an algorithm, that after seeing ui, decides to either ignore it or
add it to a selection set C (which starts off empty), with the following properties:

1. The processing time per point is Õ(kd).

2. In the end |C| ≤ O
(
k
ε log n ·max

(
1, log OPT

ξ

))
, where OPT is the optimum k-means objec-

tive value for the full instance.

3. The k-means objective cost, defined as
∑

u∈V d
2(u,C), is ≤ O(1) · OPT + εξ.

Thus we obtain a bi-criteria approximation (use k′ > k centers), while obtaining a constant
approximation to the objective. As stated earlier, (Liberty et al., 2016) obtain a similar result, albeit
with aO(log n)(OPT+ξ) bound on the objective. We obtain this improvement via an idea introduced
in the recent work (Bhaskara et al., 2019) on online PCA. Adapted to our setting, it allows us to
analyze clustering cost in a novel way: when bounding the distance from a point u to the centers C,
we take into account not just the centers that have been chosen so far, but also the ones that are to
appear later.

We also note that the value of ξ plays an important role in the guarantees. As such, it is the
“desired” objective value (one might think of it as approaching zero). However, if ξ is too small,
we pay an additional log OPT

ξ in the bound for |C|. As long as we pick it to be OPT/poly(n), this
will only add a logarithmic term, and we thus do not expect it to be significant in practice. More
formally, ξ can be viewed as the permissible “additive” error in the clustering cost.

Our next (and main) result deals with k-means clustering, when the input also contains a certain
number of outliers. In this case, the goal is to discard some points as outliers, and minimize the k-
means objective on the remaining points. The problem, which we now define formally, has received
a lot of attention in the offline case.

Formulating clustering with outliers. Let KM-OPT(X) denote the optimum value of the k-
means objective on a set of points X . Given a set of points V and a bound on the number of
outliers z, the goal in clustering with outliers is to partition V = Vin∪Vout, such that |Vout| ≤ z, and
KM-OPT(Vin) is minimized.

The early work of (Charikar et al., 2001) studied the problem of k-median and facility location
in a similar setup. The recent work of (Gupta et al., 2017) gave a local search based algorithm
for the problem. Both these algorithms give bi-criteria approximations (where > z points are
discarded as outliers.). In practice, this corresponds to declaring a small number of the inliers
as outliers. In applications where the true clusters are sufficiently large, these guarantees are still
valuable. The recent result of (Krishnaswamy et al., 2018) (and the earlier result of Chen, 2008,
for k-median) made considerable progress, giving constant factor (∼ 50) approximation algorithms
without violating the constraint on z. These algorithms are intricate and are based on LP relaxations.
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Our main result shows that one can obtain approximation guarantees for k-means with outliers
even in an online model, via a slight variant of adaptive sampling. Intuitively, this is challenging
because if encounter a point that is far from all the previously stored points, we are not sure if it
represents a start of a new cluster, or if it is simply an outlier. Our result is the following:

Theorem 2 Suppose the points V ⊂ Rd of a dataset arrive in an online manner. Let k ≥ 1, and
ξ > 0, and L > 1 and ε ∈ (0, 1) be given parameters. Let Vin be the set of inlier points in V , k the
desired number of clusters and ξ the desired clustering cost over the inlier points in V . Then there
exists an algorithm, that after seeing ui, decides to either ignore it, or add it to a selection set C
(which starts off empty), or add it to the outlier set M with the following properties:

1. The processing time per point is Õ(kd).

2. In the end |C| ≤ O
(
k
ε (log n+ L) ·max

(
1, log OPT

ξ

))
, where OPT is the optimum k-means

objective value over the inlier points.

3. The k-means objective cost over the inlier points not marked as outliers, defined as
∑

u∈Vin\M d2(u,C),
is ≤ O(1) · OPT + εξ.

4. In the end |M | ≤ O
(
z
(
logn
L + 1

)
·max

(
1, log OPT

ξ

))
The algorithm has a parameter L, which features in the bounds. If we have an estimate for log n
(up to constants would suffice), the terms (log n)/L would reduce to O(1). Note also that the algo-
rithm discards more than z points as outliers. Assuming that L, ξ are good guesses for log n, OPT

respectively, the number of points discarded is O(z).

Lower bounds. Finally, it is natural to ask if our algorithms’ dependence on the various parame-
ters, k, z, etc. can be improved. Lower bounds have been extensively studied for online clustering
and facility location problems (Meyerson, 2001; Fotakis, 2007; Liberty et al., 2016). For k-means
clustering, the first question is if we can obtain an online algorithm that achieves a constant factor
approximation to the objective, while choosing onlyO(k) points in the end. It is easy to see that this
is impossible if we do not know either the number of points or an estimate of the optimum objective
value in advance: consider points in one dimension, where the ith point is ci, for i = 0, 1, . . . , c > 2
and k = 1. The optimum solution is to choose the last point, while an online algorithm, to remain
competitive, must end up keeping every point. (See Liberty et al., 2016, for a formalization of this.)
The recent work of (Moshkovitz, 2019) showed also established similar guarantees.

Our main result is that even when the optimum objective value is known up to a constant factor
(as is the case in our algorithm), we cannot avoid an overhead of log n in the number of centers. This
shows that the dependence in our algorithm is essentially tight. Formally, we show the following:

Theorem 3 For any constant C and parameter r ∈ N+, there is no randomized online algorithm
which, with no prior knowledge of the number of points, can obtain an expected approximation ratio
of C

2

16 for the objective, using fewer than r centers. Moreover, this holds even when the instance size
n is in the range [C8r, C16r] (in which case, logn

8 logC ≥ r ≥
logn

16 logC ).

In the instances we use for the lower bound, the optimum value is always Θ(r), thus we can
assume that we know it up to a constant; however, the instance size (total number of points) is not
known exactly.
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2. Notation and outline

We will use the following basic notation throughout the paper: given a set S and a point v, we
denote d2(v, S) = minx∈S ‖v − x‖2. If S = ∅, d2(v, S) is defined to be∞.

For consistency, we use C to denote the subset of points chosen by the algorithm (these are the
candidate cluster centers), and V to denote the original set of points. In many places, we use the
notation C∗ to denote the optimal centers for the corresponding problem. The quantity OPT will
always be used to denote the optimum objective value.

2.1. Outline of the paper

The paper is structured as follows. In Section 3, we present the algorithm for online k-means
(without outliers). This will illustrate our key idea of adaptive sampling in phases. We first present
a log n approximation to the objective (which is similar to the bound from prior work), and then in
§ 3.2, show how to improve this to a constant factor. A similar approach will be followed for the
algorithm when we have outliers (Section 4). Here we have a more involved notion of phases, and
the analysis is deferred to the Appendix.
Assumptions on ξ. On a technical note, throughout Sections 3 and 4, we assume that the tar-
get objective value (ξ in the statements of Theorem 1 and Theorem 2) satisfies ξ ≥ OPT. This
assumption will be removed in Section 5, which will then complete the proofs of Theorems 1 and 2.

3. Online k-means clustering

In this section, we present an algorithm for the online k-means clustering problem. The algorithm
assumes the knowledge of a guess ξ for the optimum error, and the parameter k. (It does not assume
any knowledge of n, the total number of points.)

Algorithm 1: Online k-means clustering
Input: A set of points V that arrive one by one, guess ξ for the optimum error, parameter k.
Output: A subset C of the points (to be cluster centers).
Initialize Cpre = ∅, Ccur = ∅ and running sum α = 0.;
while points u arrive do

Let pu := min(
k·d2(u,Cpre)

ξ , 1). ;
With probability pu, add u to Ccur ;
Increment α← α+ pu ;
If α ≥ 1, set Cpre := Cpre ∪ Ccur and reset α = 0, Ccur = ∅ (start new phase) ;

end
Output C = Cpre ∪ Ccur. ;

Description of Algorithm 1. The algorithm processes the points in phases. In every phase, the
algorithm builds a set Ccur (chosen centers in the current phase), by adding each point u to Ccur with
probability pu that depends on the distance from u to the set Cpre (which is the set of centers we
have accumulated until the beginning of the phase). Once the sum of the probabilities pu exceeds
1, the phase ends, and Ccur is added to Cpre.
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3.1. An O(log n) approximation to the objective

We start by showing the following theorem about the algorithm.

Theorem 4 Suppose the points of V arrive in an online manner, and suppose that the guess ξ
satisfies ξ ≥

∑
v∈V d

2(v, C∗), where C∗ is the optimal set of cluster centers. Then the algorithm
satisfies: w.p. at least 4

5 ,

1. The number of phases and consequently the number of chosen centers is ≤ O(k log n).

2. The k-means objective cost for the output centers C is ≤ ξ ·O (log n).

Definition 5 Let {ui}ri=1 be the points in a phase and let Ccur be the set of selected points. A phase
is said to be successful if:

1. At least one point is selected, i.e., |Ccur| ≥ 1.

2. For the optimal set of clusters C∗, we have∑
ui∈Ccur

1

pui
d2(ui, C

∗) < 4
∑
i∈[r]

d2(ui, C
∗)

3. For any point ui ∈ Ccur, we have pui ≥ 1/n2.

Lemma 6 A phase is successful with probability ≥ 1
4 (over the choice of Ccur).

Proof The proof is by simply bounding the probabilities of (1), (2) and (3) in the definition of a
successful phase. The details are deferred to § D.1.

The next lemma is the key step in the entire argument.

Lemma 7 The number of successful phases is O(k log n).

Proof We will prove the lemma via contradiction. Suppose we have t successful phases, and
suppose we choose one point from each successful phase. Let these points be v1, v2, . . . , vt.

By definition, the probability values pvi ∈ (1/n2, 1). Thus, by dividing (1/n2, 1) into 2 log n
intervals of the form (1/2i+1, 1/2i], we obtain that there exists some q such that t/(2 log n) of the
vi lie in the interval (q, 2q]. Let I denote the indices of these points.

Now, for any i, j ∈ I , we claim that d(vi, vj)
2 > ξq

k . This claim holds because of the following:

suppose i < j. Thus in the jth phase, vi was already present in Cpre. Thus, since pvj ≤
kd2(vj ,Cpre)

ξ ,

we have that pvj ≤
kd(vi,vj)

2

ξ . Since pvj > q, the claim follows.

Now, consider balls of squared-radius ξq
4k around each of the points vi (for i ∈ I), and denote

these balls byBi (respectively). The claim above implies that for any i, j ∈ I with i 6= j,Bi∩Bj =
∅.

Finally, we claim that |I| ≤ 33k. Suppose, for the sake of contradiction, that |I| > 33k. Then,
since the balls are all disjoint, we must have that for at least 32k of the ballsBi, C∗∩Bi = ∅ (where
C∗ is the optimal set of centers). Let J denote the set of i for which this holds. This means that for
any i ∈ J , d2(vi, C∗) > ξq

4k .
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Now, let us denote by Si the set of original points u that are in phase i. Since i is a successful
phase, we have (by condition (2) of the definition), that

4
∑
u∈Si

d2(u,C∗) ≥ 1

pi
d2(vi, C

∗) >
1

2q

ξq

4k
=

ξ

8k
.

Thus, if we have |J | ≥ 32k, this would let us conclude that the sum of the distances to the
optimal centers from the points in those phases is > ξ, a contradiction to the assumption that the
optimum objective value is ≤ ξ.

This implies that |J | ≤ 32k, and subsequently that |I| ≤ 33k, implying that the number of
phases t satisfies t ≤ 66k log n.

The two lemmas above now let us bound the number of phases in the algorithm.

Lemma 8 For any δ > 0, the total number of phases is O(k log n + log(1/δ), with probability at
least 1− δ.

The proof is intuitively easy, but needs some care since the points chosen in a phase depend on the
previously chosen points. This is deferred to Appendix E.

We can now complete the proof of Theorem 4.
Proof [of Theorem 4] First, we bound the size of C, the selected points, using the bound on the
number of phases. Suppose the number of phases is r. In each phase, the selection probabilities add
up to a quantity between 1 and 2. Thus, we have that Pr[|C| > 20r] ≤ 1/10. Setting δ = 1/10
in Lemma 8, we get that r ≤ O(k log n) with probability ≥ 9/10. Combining these, we have that
|C| ≤ O(k log n) with probability ≥ 4/5.

Next, we need to bound the total cost
∑

u d
2(u,C), where the sum ranges over all the points.

To bound this, we will bound the sum in each phase. To this end, let u1, . . . , ur be the points in a
phase, and let Cpre the set of chosen points at the start of the phase. We consider two cases.

Case 1: there is no i such that d2(ui, Cpre) >
ξ
k . In this case,∑

i∈[r]

d2(u,C) ≤
∑
i∈[r]

d2(u,Cpre) ≤
∑
i∈[r]

pui ·
ξ

k
≤ 2

ξ

k
.

The last inequality follows because the sum of the selection probabilities for points in any phase is
≤ 2

Case 2: there is an i such that d2(ui, Cpre) >
ξ
k . In this case, i must be r (as the phase ends at

that i). Furthermore, the point i is certainly included in Ccur, and hence is also in C. Thus, we have∑
i∈[r]

d2(u,C) =
∑

i∈[r−1]

d2(u,C),

which can then be bounded exactly as before. Thus in both cases, we have that
∑

i∈[r] d
2(u,C) ≤

2ξ/k. Combined with the bound on the number of phases, this completes the proof.
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Algorithm 2: Online k-means clustering: An O(1) Approximation
Input: A set of points V that arrive one by one, guess ξ, parameters k and ε > 0.
Output: A set C of the cluster centers.
Initialize Cpre = ∅, Ccur = ∅ and T = ∅ ;
while points u arrive do

Execute Algorithm 1 with input u; this updates Cpre and Ccur. ;

With probability pu := min(
40k.d2(u,Cpre)

εξ , 1), add u to T ;
end
Output C = Cpre ∪ T . ;

3.2. O(1) Approximation to the Objective

Description of the algorithm. When a point u arrives, we first run it through Algorithm 1 and
update the Cpre and Ccur as before. But additionally, we maintain another set T . With probability

pu = min(
40k·d2(u,Cpre)

εξ , 1), we add u to T . However, note that T is not used in any way in the
updates of Cpre and Ccur. The final output set is the union of Cpre and T . (See Algorithm 2.)

3.3. Analysis

We show the following theorem about the algorithm.

Theorem 9 Suppose the points of a V arrive in an online manner and suppose that the guess ξ
satisfies ξ ≥

∑
v∈V d

2(v, C∗). Then for any ε > 0, the algorithm satisfies:

1. w.p. at least 7
10 , the number of chosen centers is ≤ O(kε log(n)).

2. The k-means objective cost for the output centers C is ≤ O(1) · OPT + εξ where OPT is the
optimum k-means objective value for the full instance.

The main trick in the analysis is to move to a slightly different algorithm, one that can be viewed
as a “two-pass” procedure, and analyze that instead. Observe that in line 2 of the algorithm, we do
not use T in any way, and thus it proceeds precisely as in Algorithm 1. Let Cfirst denote the final
value (after we have seen all the points) of Cpre ∪ Ccur. Now, consider replacing the probability of
adding v to T (line 2) to min

(
1, 40k·d

2(v,Cfirst)
εξ

)
. This is no longer an online algorithm, but it is a

two-pass algorithm. The key observation is that the probability of adding u to T in our algorithm
is at least as large as the probability of adding u to T in the two pass algorithm. Thus, it suffices to
bound the error of the two-pass algorithm.

This is done by using the following lemma.

Lemma 10 Let S be any set of points in our metric space, and define Z :=
∑

v∈V d
2(v, S).

Suppose T is formed by adding every element v ∈ V independently with probability pv that satisfies
pv ≥ ck d

2(v,S)
Z . Then we have

E

[∑
v∈V

d2(v, S ∪ T )

]
≤ 16

∑
v∈V

d2(v, C∗) +
4Z

c
. (1)

8
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Remark. The lemma is reminiscent of the classic lemma of (Frieze et al., 2004) on “norm sam-
pling” (for matrix low rank approximation). While the statement for clustering is similar in spirit,
we are not aware of its proof in the literature (nor does it follow from the result of Frieze et al.,
2004, directly).

The proof of the lemma is somewhat involved, and is deferred to Section B. In analyzing the
two-pass algorithm, we apply Lemma 10 with S = Cfirst. Then we show that the condition pv ≥
ck d

2(v,S)
Z holds with c = 40Z

εξ . To see this, note that

pv =
40kd2(v, Cfirst)

εξ
=

40Z

εξ

kd2(v, Cfirst)

Z
.

Thus with probability at least 4
5 (over only the second pass), denoting by T the set of points

chosen in the second pass (using Markov’s inequality following (1)),∑
v∈V

d2(v, Cfirst ∪ T ) ≤ 160
∑
v∈V

d2(v, C∗) +
40Z

c
.

This results in ∑
v∈V

d2(v, Cfirst ∪ T ) ≤ 160
∑
v∈V

d2(v, C∗) + εξ.

Next, consider the expected size of the final set. This time, we need to analyze Algorithm 2 and
not the two-pass algorithm above. We have that

E[|T |] =
∑ 40kd2(v, Cpre)

εξ

By the bound on the total error from Theorem 4, we have that with probability ≥ 4
5 ,∑

d2(v, Cpre) ≤ O(ξ log(n))

Thus the above together with Markov’s inequality, we have that with probability ≥ 7
10 , |T | ≤

O(kε log(n)). This completes the proof of Theorem 9.

4. Online clustering in the presence of outliers

In this section, we present our main result: an online algorithm for the k-means problem when the
data has outliers. The algorithm assumes the knowledge of a guess ξ for the optimum error over
the inliers, an upper bound z on the number of outliers, and the parameter k (see Section 1.1 for a
discussion on the assumption on ξ). In the algorithm, L ≥ 1 is an arbitrary constant (for best results,
L must be a guess for log n).

Description of Algorithm 3. The algorithm is broadly similar to Algorithm 1, and it processes the
points in phases. When a point u arrives, we assign a sampling probability pu, that is proportional
to the distance of u to the selected points in all previous phases and not the current phase. However,
the main difference now is that if the probability is above a threshold (kL/z), we handle them
separately. In this case, its probability is brought down to kL/z, and we add the points to a different
set. In the analysis, we introduce the notions of type A and type B points as well as phases. There
are two running sums, α and β. If either of them exceeds 1, the phase ends.

9
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Algorithm 3: Online k-means clustering
Input: A set of points V that arrive one by one, guess ξ for the optimum error over the inlier

points, an upper bound z on the number of outliers, and parameters k and L.
Output: A set C of the cluster centers. Initialize Cpre = ∅, Ccur = ∅, Tcur = ∅ and running

sums α = 0, and β = 0
while points u arrive do

Let pu := min(
k.d2(u,Cpre)

ξ , 1) ;
if pu < k.L

z then
With probability pu, add u to Ccur ;
Increment α← α+ pu ;
If α ≥ 1, set Cpre := Cpre ∪ Ccur ∪ Tcur and reset α = 0, Ccur = ∅ and β = 0, Tcur = ∅
(start new phase) ;

else
Let pu := k.L

z ;
With probability pu, add u to Tcur (i.e., decide to pick u) ;
Mark u as an outlier ;
Increment β ← β + pu ;
If β ≥ 1, set Cpre := Cpre ∪ Ccur ∪ Tcur and reset α = 0, Ccur = ∅ and β = 0, Tcur = ∅

(start new phase) ;
end

end
Output C = Cpre ∪ Ccur ∪ Tcur;

4.1. An O(log n) approximation

We start by showing the following theorem about Algorithm 3.

Theorem 11 Suppose the points of V arrive in an online manner and let Vin be the set of inliers in
V . Suppose that the guess ξ satisfies ξ ≥

∑
v∈Vin

d2(v, C∗), where C∗ is the optimal set of cluster
centers. Then the algorithm, on seeing a point vi either adds it to C, or ignores it, or marks it as an
outlier such that in the end we have, w.p. at least 4/5 and for any parameter L ≥ 1:

1. the number of phases to be ≤ O(k log n+ kL).

2. the number of selected centers (or points) is ≤ O(k log n+ kL).

3. the number of points marked as outliers is ≤ z ·O( lognL + 1)

4. the objective cost for the inlier points (ones not marked as outliers) is ≤ ξ ·O(log n+ L).

Definition 12 (Type A, B) First, we say that a point u is type A if kd2(u,Cpre)
ξ < kL

z , and we say
that it is type B otherwise.

Next, a phase is said to be type A if it terminates because α ≥ 1. Else, if it terminates because
of β ≥ 1, we say that it is type B. (The very last phase can be classified as type A.)

10
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Outline of the argument. At an intuitive level, the algorithm labels points as type B (and handles
them differently) as long as they are sufficiently far from the ones chosen so far. This is certainly
a reasonable way to handle outliers (in fact, the threshold is chosen precisely to ensure that the
number of type B phases, assuming only outliers are type B points, is roughly kL). The problem
is now that inliers (e.g., when a cluster is starting to be formed) can be type B points. We need to
ensure that there is still a sufficiently large probability that they will be chosen. This is done via
a “win-win” argument. If a cluster has more than z/k points (and assume for the sake of intuition
that they appear consecutively), then once z/kL of them are seen, there is a sufficient probability
of picking one of the points, and thus the cluster is covered. For the clusters with < z/k points, the
total number of points in these clusters is < z. Thus classifying the points as outliers only results
in a factor 2 increase in the number of outliers. (This is the intuitive reason we obtain a bi-criteria
bound.)

To carry this plan forth formally, we require carefully arguing that the number of phases of each
type is small. We also need to define the notion of successful phases more carefully (depending on
whether they are type A or B). The details are deferred to Appendix A.

4.2. An O(1) approximation in the presence of outliers

We will follow the main strategy from Section 4.1, where we kept a second sample T in the al-
gorithm (which allowed the interpretation as a two-pass algorithm), which led to a constant factor
approximation for the objective value. The details are deferred to Appendix A.1.

5. Setting the guess for optimum

Our theorems so far have assumed that the target error ξ is greater than the optimal error (OPT :=∑
u∈Vin

d2(u,C∗)). If this is not true, we show that a doubling procedure can be applied. The
description below will use Algorithm 1, but it can be replaced with any of the algorithms we have
seen.

Outline of the procedure. Suppose that we are given a target error ξ0. If ξ0 < OPT, the bounds
we have shown on the number of phases (in any of the algorithms above) does not hold. On the
other hand, if ξ0 ≥ opt, the bounds on the number of phases hold with high probability. Thus
the algorithm exceeding a certain number of phases can be used as a test to see if ξ0 is too small!
This suggests the following procedure: use the given value of ξ0. If the number of phases exceeds
ck log n (c is chosen using the guarantees of Algorithm 1), then we double the value of ξ, clear all
the parameters and repeat. The total number of phases in the new algorithm (which determines the
number of points in C in the end) will thus be O(k log n) · log

(
OPT
ξ0

)
. The total error behaves better

– it will turn out that the total error accumulated will increase geometrically as ξ doubles (as we use
the same number of iterations for each guess), and thus only the final value of ξ matters. But this is
precisely the first value where ξ ≥ OPT. In this case we are back to our earlier setting.

The formal execution of this procedure (using Algorithm 1) is done in Appendix C. This then
completes the proof of our main results (Theorem 1 and Theorem 2).

11
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6. Lower bounds on approximation

In this section we show that there are fundamental lower bounds that limit the performance of any
online algorithm. This will prove Theorem 3.
Proof [of Theorem 3] To prove this we rely on Yao’s principle and show that for any r ∈ N+ and
a constant C, there exists a probability distribution over instances such that the expected cost to
optimal cost ratio of any deterministic algorithm with the number of centers limited to r is > C2

16 .
Let us define a complete hierarchically separated tree (HST) with the following properties,

1. The fan-out of each vertex is 2r.

2. The root is labeled level 0, and for any i ≥ 0, the distance from a level i node to a descendant
at level i+ 1 is 1/Ci.

We define a probability distribution over instances obtained as follows. First, the depth d of the
tree is chosen u.a.r. in the interval [4r, 8r]. The points are then revealed as follows. First, one point
is placed at the root (v0). Next, a descendant of the root is chosen u.a.r. (denote it by v1), and C2

points are placed at that location.1 Next, a random descendant of v1 is chosen and C4 points are
placed there. This process continues until depth d (where C2d points are placed). The target value
of k (the number of centers in the optimum solution) is 1. For any such instance, in hindsight, the
best solution is to place a center at the last location. This results in a cost of d, which lies between
4r and 8r.

Now, consider any deterministic algorithmA. We can viewA as a function mapping the requests
so far to a set of centers to open, i.e.,A takes as input a sequence (v0, v1, . . . , vt) and outputs a subset
of vertices of the HST. Because A is an online algorithm, we also have that A(v0, . . . , vt−1) ⊆
A(v0, . . . , vt). For any such deterministic mapping, we now argue that the expected cost of the
solution (under our distribution over instances) is ≥ 1

2rC
2. As a first observation, note that we can

view A(v0, . . . , vt) as a function of vt alone, as vt−1, . . . , v0 are always the ancestors of vt in our
input distribution. Thus, let us write this as A〈vt〉.

Now, we say that a vertex vt (at level t) is bad if A〈vt〉 does not contain any descendant of vt
(we will follow the convention that the set of descendants includes vt itself). We define pt to be the
fraction of bad vertices at level t in the HST. The first claim is that for all t ≤ 7r, pt < 1/10. To see
this, fix some t ≤ 7r. Now, there is a probability of 1/8 of having d ∈ [7.5r, 8r]. If the instance is
a descendant of a bad vertex vt at level t, then the 1-means objective cost for the instance will be at
least Cr. Thus, the overall expected cost is at least pt · 18C

r. If this needs to be ≤ C2 (and for C, r
large enough), then we must have pt < 1/10.

Next, we claim that for any t ≤ 7r, E[|A〈vt〉|] ≥ 4
10 + E[|A〈vt−1〉|]. I.e., the size of A〈vt〉 for

a random vertex at level t is at least 4/10 larger than the corresponding size for a random vertex at
level t− 1. This leads to a contradiction if we run t = 4r, . . . , 7r, as it leads to an average size > r.

To show the claim, consider all the descendants of some vt−1. At most r of the 2r descendants
can be (a) good, and (b) have A〈vt〉 = A〈vt−1〉 (since |A〈vt−1〉| ≤ r). Thus, since level t contains
2r times the number of vertices in level t− 1, and since at least 9/10 of them are good, on average,
at least 4/10 of the descendants of every vt−1 must be good without havingA〈vt〉 = A〈vt−1〉. Since
the former set is a super-set of the latter, the desired claim follows. This leads to a contradiction as
we mentioned earlier, thus completing the proof of the theorem.

1. We produce an instance where points have multiplicities. This can easily be removed by small perturbation.
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Appendix A. Analysis of k-means with outliers

We now present the full analysis of the algorithm in the presence of outliers. Our first goal will be
to prove Theorem 21.

Definition 13 (Majority outlier/inlier) A phase is said to be a majority outlier phase if one of the
following conditions hold:

1. The phase is Type A and the following inequality holds (where {ui}ri=1 are the Type A points
in the phase): ∑

i∈[r]∧ui∈V \Vin

kd2(ui, Cpre)

ξ
≥ 1

2
.

2. The phase is type B and the following holds (where {ui}ri=1 are the Type B points in the
phase):

∑
i∈[r]∧ui∈V \Vin

kL
z ≥

1
2 .

If a phase is not majority outlier, then it is said to be a majority inlier phase.

Next, as in Section 3.1, we define the notion of a successful phase.

Definition 14 (Successful phases) A phase is successful if one of the following holds:

1. (Majority outliers) If it is a majority outlier phase.

2. (Type A phases with majority inliers) Let the phase be a majority inlier phase of Type A. Let
{ui}ri=1 be the Type A points in the phase and let Ccur be the set of selected Type A points.
The phase is said to be successful if:

(a) At least one inlier point of Type A is selected, i.e., |Ccur ∩ Vin| ≥ 1

(b) For the optimal set of clusters C∗, we have∑
ui∈Ccur∩Vin

1

pi
d2(ui, C

∗) < 4
∑

i∈[r]∧ui∈Vin

d2(ui, C
∗)

(c) For any point point ui ∈ Ccur, we have pui ≥ 1/n3

3. (Type B phases with majority inliers) Let the phase be a majority inlier phase of Type B. Let
{ui}ri=1 be the Type B points in the phase and let Tcur be the set of selected Type B points.
The phase is said to be successful if:

(a) At least one inlier point of Type B is selected, i.e. |Tcur ∩ Vin| ≥ 1

(b) For the optimal set of clusters C∗, we have∑
ui∈Tcur∩Vin

1

pi
d2(ui, C

∗) < 4
∑

i∈[r]∧ui∈Vin

d2(ui, C
∗).

Lemma 15 A Type A phase with majority inliers, is successful with probability ≥ 1
8 (over the

choice of Ccur).
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Proof The proof is again by bounding the probabilities of (a), (b) and (c) in the definition of a
successful Type A phase with majority inliers.

First off, the probability that Ccur ∩ Vin = ∅ is at most∏
i∈[r]∧ui∈Vin

(1− pui) ≤ exp(−
∑

i∈[r]∧ui∈Vin

pui) ≤ 1/e
1
2 ,

since by the definition of a majority inlier Type A phase, the probabilities over the inliers, add up to
a quantity ≥ 1

2 .
Next, let Yi be an indicator random variable that is 1 if ui ∈ Ccur and 0 otherwise. Thus

Pr [Yi = 1] = pui . Define

X =
∑

i∈[r]∧ui∈Vin

Yi
1

pui
d2(ui, C

∗). (2)

By linearity of expectation, we have that

E [X] =
∑

i∈[r]∧ui∈Vin

E[Yi]
1

pui
d2(ui, C

∗) =
∑

i∈[r]∧ui∈Vin

d2(ui, C
∗).

Thus part (b) of the definition of a successful phase holds with probability ≥ 3/4, by Markov’s
inequality. For part (c), note that the probability of picking a point u with with probability < 1/n3

is at most 1/n2 (as there are at most n points in total).
Thus all the conditions hold with probability ≥ 1− 1

e
1
2
− 1

4 −
1
n2 > 1/8, for n > 8.

Lemma 16 A Type B phase with majority inliers, is successful with probability ≥ 1
8 (over the

choice of Tcur).

Proof The proof is by simply bounding the probabilities of (a), and (b) in the definition of a
successful Type B phase with majority inliers.

First off, the probability that Tcur ∩ Vin = ∅ is at most∏
i∈[r]∧ui∈Vin

(1− pui) ≤ exp(−
∑

i∈[r]∧ui∈Vin

pui) ≤ 1/e
1
2 ,

since by the definition of a successful Type B phase, the probabilities over the inliers, add up to a
quantity ≥ 1

2 .
Next, let Yi be an indicator random variable that is 1 if ui ∈ Tcur and 0 otherwise. Thus

Pr [Yi = 1] = pui . Define

X =
∑

i∈[r]∧ui∈Vin

Yi
1

pui
d2(ui, C

∗). (3)

By linearity of expectation, we have that

E [X] =
∑

i∈[r]∧ui∈Vin

E[Yi]
1

pui
d2(ui, C

∗) =
∑

i∈[r]∧ui∈Vin

d2(ui, C
∗).
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Thus part (b) of the definition of a successful phase holds with probability ≥ 3/4, by Markov’s
inequality.

Thus all the conditions hold with probability ≥ 1− 1

e
1
2
− 1

4 > 1/8.

There are two main steps in the analysis. First, we need to bound the number of phases in the
algorithm. This determines the expected number of selected columns. Next, we need to bound the
total error. The following lemmas capture these statements.

Lemma 17 The number of majority outlier phases, is O(kL).

Proof We will prove the lemma via contradiction. Suppose we have t successful phases because of
having majority outliers.

If we consider one of these phases, if the phase is of Type B and if the Type B points in
that phase are v1, v2, . . . , vr , by definition we would have

∑
i∈[r]∧ui∈V \Vin

kL
z > 1

2 and if the
phase is of Type A and if the Type A points in that phase are v1, v2, . . . , vr, we would have∑

i∈[r]∧ui∈V \Vin

kd2(ui,Cpre)
ξ > 1

2 and since kL
z ≥

kd2(ui,Cpre)
ξ , we can see that

∑
i∈[r]∧ui∈V \Vin

kL
z >

1
2 . Therefore we can see that in either case, the number of outlier points in a the phase is > z

2kL
Now, we claim that r ≤ 2kL. Suppose, for the sake of contradiction, that r > 2kL. Then,

since for each phase in this, the number of outlier points in a the phase is > z
2kL , we would have

the number of outliers > z, a contradiction to the assumption on the upper bound on outliers.
This implies r ≤ 2kL, implying that the number of phases successful because of having majority
outliers, is O(kL)

Lemma 18 The number of successful majority inlier phases of Type A, is O(k log n).

Proof We will prove the lemma via contradiction. Suppose we have t successful Type A phases,
and suppose we choose one Type A inlier point from each successful phase. Let these points
be v1, v2, . . . , vt. By definition, the probability values pvi ∈ (1/n3, kL/z). Thus, by dividing
(1/n3, kL/z) into 3 log n + log kL/z intervals of the form (1/2i+1, 1/2i], we obtain that there ex-
ists some q such that t/(3 log n + log kL/z) of the vi lie in the interval (q, 2q]. Let I denote the
indices of these points.

Now, for any i, j ∈ I , we claim that d(vi, vj)
2 > ξq

k . This claim holds because of the following:

suppose i < j. Thus in the jth phase, vi was already present in Cpre. Thus, since pvj ≤
kd2(vj ,Cpre)

ξ ,

we have that pvj ≤
kd(vi,vj)

2

ξ . Since pvj > q, the claim follows.

Now, consider balls of squared-radius ξq
4k around each of the points vi (for i ∈ I), and denote

these balls byBi (respectively). The claim above implies that for any i, j ∈ I with i 6= j,Bi∩Bj =
∅.

Finally, we claim that |I| ≤ 33k. Suppose, for the sake of contradiction, that |I| > 33k. Then,
since the balls are all disjoint, we must have that for at least 32k of the ballsBi, C∗∩Bi = ∅ (where
C∗ is the optimal set of centers). Let J denote the set of i for which this holds. This means that for
any i ∈ J , d2(vi, C∗) > ξq

4k .
Now, let us denote by Si the set of original points u that are in phase i. Since i is a successful

phase, we have (by condition (b) of the definition of Type A successful phase), that

4
∑

u∈Si∧u∈Vin

d2(u,C∗) ≥ 1

pi
d2(vi, C

∗) >
1

2q

ξq

4k
=

ξ

8k
.
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Thus, if we have |J | ≥ 32k, this would let us conclude that the sum of the distances to the
optimal centers from the inlier points in those phases is > ξ, a contradiction to the assumption that
the optimum objective value is ≤ ξ.

This implies that |J | ≤ 32k, and subsequently that |I| ≤ 33k, implying that the number of
phases t satisfies t ≤ 99k log n (Since kL/z is assumed to be < 1 we can drop that from the bound).

Lemma 19 The number of successful majority inlier phases of Type B, is O(k).

Proof We will prove the lemma via contradiction. Suppose we have t successful phases, and
suppose we choose one Type B inlier point from each successful phase. Let these points be
v1, v2, . . . , vt.

By definition, the probability values pui = kL
z and d2(ui, Cpre) ≥ ξL

z .
Now, for any i, j ∈ [t], we claim that d(vi, vj)

2 > ξL
2z . This claim holds because of the

following: suppose i < j. Thus in the jth phase, vi was already present in Cpre. Thus, since

pvj ≤
kd2(vj ,Cpre)

ξ , we have that pvj ≤
kd(vi,vj)

2

ξ . Since pvj >
kL
2z , the claim follows.

Now, consider balls of squared-radius ξL
8z around each of the points vi (for i ∈ [t]), and denote

these balls byBi (respectively). The claim above implies that for any i, j ∈ [t] with i 6= j,Bi∩Bj =
∅.

Finally, we claim that t ≤ 33k. Suppose, for the sake of contradiction, that t > 33k. Then,
since the balls are all disjoint, we must have that for at least 32k of the ballsBi, C∗∩Bi = ∅ (where
C∗ is the optimal set of centers). Let J denote the set of i for which this holds. This means that for
any i ∈ J , d2(vi, C∗) > ξL

8z .
Now, let us denote by Si the set of original points u that are in phase i. Since i is a successful

phase, we have (by condition (b) of the definition of Type B successful phase), that

4
∑

u∈Si∧u∈Vin

d2(u,C∗) ≥ 1

pi
d2(vi, C

∗) >
z

kL

ξL

8z
=

ξ

8k
.

Thus, if we have |J | ≥ 32k, this would let us conclude that the sum of the distances to the
optimal centers from the inlier points in those phases is > ξ, a contradiction to the assumption that
the optimum objective value is ≤ ξ. This implies that |J | ≤ 32k, and subsequently that t ≤ 33k.

Lemma 20 For any δ > 0, the total number of phases is O(k log n + kL + log(1/δ)), with
probability at least 1− δ.

The proof can be divided into two parts, first showing the for Type A and B phases each we could
argue the bounds for each case with probability 1 − δ/2, using Appendix E. We can see that the
probability of both bounds is ≥ (1 − δ/2)2 ≥ 1 − δ and thus w.p. at least 1 − δ the total nmber of
phases is O(k log n+ kL+ log(1/δ)).

We can now complete the proof of Theorem 11.
Proof [of Theorem 11] First, we bound the size of C, the selected points, using the bound on the
number of phases. Suppose the number of phases is r. In each phase, the selection probabilities add
up to a quantity between 1 and 2. Thus, we have that Pr[|C| > 20r] ≤ 1/10. Setting δ = 1/10 in
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Lemma 20, we get that r ≤ O(k log n + kL) with probability ≥ 9/10. Combining these, we have
that |C| ≤ O(k log n+ kL) with probability ≥ 4/5.

Next we bound the number of points marked as outliers. To bound this, we will bound the
number of points marked as outliers in each phase. Let the points marked as outliers be M . We
consider two cases.

Case 1: the phase is of Type A, ∑
i∈[r]∧u∈M

kL

z
≤ 1.

The inequality follows because the by definition, if the phase is of Type A then β < 1
Case 2: the phase is of Type B, ∑

i∈[r]∧u∈M

kL

z
≤ 2.

The inequality follows because the by definition, if the phase is of Type B then 1 ≤ β ≤ 2
Therefore, we can see that in either case |i ∈ [r]∧ u ∈M | ≤ 2z

kL . Combined with the bound on
the number of phases, this completes the shows that |M | ≤ 2z

kLO(k log n+ kL) ≤ O(z( lognL + 1)).
Next, we need to bound the total cost

∑
u∈Vin\M d2(u,C), where the sum ranges over the inlier

points of Type A. To bound this, we will bound the sum in each phase. To this end, let u1, . . . , ur be
the points in a phase, and let Cpre the set of chosen points at the start of the phase. We now consider
two cases,

Case 1: the phase is of Type A∑
i∈[r]∧ui∈Vin\M

d2(ui, C) ≤
∑

i∈[r]∧ui∈Vin\M

d2(ui, Cpre) ≤
∑

i∈[r]∧ui∈Vin\M

pui ·
ξ

k
≤ 2

ξ

k
.

The last inequality follows because the sum of the selection probabilities of Type A points in the
phase (α) for the inlier points in Ccur when the phase is of Type A phase is ≤ 2.

Case 1: the phase is of Type B∑
i∈[r]∧ui∈Vin\M

d2(ui, C) ≤
∑

i∈[r]∧ui∈Vin\M

d2(ui, Cpre) ≤
∑

i∈[r]∧ui∈Vin\M

pui ·
ξ

k
<
ξ

k
.

The last inequality follows because the sum of the selection probabilities of Type A points in the
phase (α) for the inlier points in Ccur when the phase is of Type B is < 1.

This implies that in either case the
∑

i∈[r]∧ui∈Vin
d2(ui, C) ≤ 2 ξk . Combined with the bound on

the number of phases, this shows that the total cost over the inlier points (not marked as outliers) is
ξO(log n+ L).

The Algorithm 3 performs well when the number of outliers are sufficiently large (z � k log n).
However even in the case where z is small, we can see that by controlling the parameter L we can
still get the algorithm to work well (at the cost of marking O(z · lognL ) many points as outliers).

A.1. Improvement to a constant factor approximation

Next, we follow the ideas from Section 3.1, where we kept a second sample T (which was then
interpreted as a two-pass algorithm), which led to a constant factor approximation for the objective
value.
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Algorithm 4: Online k-means clustering O(1) Approximation
Input: A set of points V that arrive one by one, guess ξ for the optimum error over the inliers,
parameters k, L and ε.
Output: A set C of the cluster centers.
Initialize Cpre = ∅, Ccur = ∅, Tcur = ∅ and T = ∅ ;
while points u arrive do

Execute Algorithm 3 with input u; this updates Cpre, Ccur and Tcur ;

if k.d
2(u,Cpre)
ξ < k.L

z then
With probability pu := min(

40k.d2(u,Cpre)
εξ , 1), add u to T

end
end
Output C = Cpre ∪ T . ;

Description of Algorithm 4. As in Algorithm 2, we maintain a second set T to which we add
points independently. The key is that we do this only for type A points. (Intuitively, this is because
we declare type B points as outliers and we do not need to refine the cost we incur on them.) Thus
when a point u arrives, we first run it through Algorithm 3 and update the Cpre as necessary. Then

with a sampling probability pu = min(
40k·d2(u,Cpre)

εξ , 1), we assign u to set T . The output set C is
the union of these Cpre and T .

Theorem 21 Suppose the set of points V arrive in an online manner. Let k ≥ 1 be an integer, and
let ξ be a (given) parameter that satisfies

∑
v∈Vin

d2(v, C∗) ≤ ξ . Then for any ε > 0, the algorithm
satisfies:

1. w.p. at least 7
10 , the number of chosen centers is ≤ O(kε (log(n) + L)).

2. The k-means objective cost for the output centers C, over the points not marked as outliers is
≤ O(1) · OPT + εξ where OPT is the optimum k-means objective value over the inlier points.

A.2. Analysis

Once again, the idea is to view the algorithm as a “two-pass” procedure) and analyze that instead.
Once again, we observe that in line 4 of the algorithm, we do not use T in any way, and thus
it proceeds precisely as in Algorithm 3. Let Cfirst denote the final value (after we have seen all
the points) of Cpre ∪ Ccur ∪ Tcur. Now, let us replace the probability of adding v to T (line 4) to
min(1, 40k·d

2(v,Cfirst)
εξ ). This is no longer an online algorithm, but it is a two-pass algorithm. The

key observation is that the probability of adding u to T in our algorithm is at least as large as the
probability of adding u to T in the two pass algorithm. Thus, it suffices to bound the error of the
two-pass algorithm.

This is done by using the lemma 10. In this case we only take into account the set Vin \M ,
which contains the points that are not marked as outliers. (The points marked as outliers is denoted
by M )

In analyzing the two-pass algorithm, we apply Lemma 10 with S = Cfirst. Then we show that
the condition pv ≥ ck d

2(v,S)
Z holds with c = 40Z

εξ . To see this, note that
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pi =
40kd2(v, Cfirst)

εξ
=

40Z

εξ

kd2(v, Cfirst)

Z
.

Thus with probability at least 4
5 (over only the second pass), denoting by T the set of points

chosen in the second pass,∑
v∈Vin\M

d2(v, Cfirst ∪ T ) ≤ 160
∑

v∈Vin\M

d2(v, C∗) +
40Z

c

.
which results in, ∑

v∈Vin\M

d2(v, Cfirst ∪ T ) ≤ 160
∑

v∈Vin\M

d2(v, C∗) + εξ

Next, consider the expected size of the final set. This time, we need to analyze Algorithm 2 and
not the two-pass algorithm above. We have that

E[|T |] =
∑

v∈Vin\M

40kd2(v, Cpre)

εξ

By the bound on the total error from Theorem 11, we have that with probability ≥ 4
5 ,∑

v∈Vin\M

d2(v, Cpre) ≤ O(ξ(log(n) + L))

Thus the above together with Markov’s inequality, we have that with probability ≥ 7
10 ,

|T | ≤ O(
k

ε
(log(n) + L))

This completes the proof of Theorem 21.

Appendix B. “Norm sampling” for k-means

We will now prove Lemma 10. Before doing so, let us start with a simple technical lemma we will
need.

Lemma 22 Let α, δ1, δ2, . . . , δk be positive reals, and let
∑k

i=1 δi = 1. Then,

k∑
i=1

e−αkδiδi ≤
1

α

Proof Given that α, k, δi ≥ 0, we can see that e−αkδi ≤ 1
1+αkδi

. Therefore,

k∑
i=1

e−αkδiδi ≤
k∑
i=1

δi
1 + αkδi

≤
k∑
i=1

1

αk
=

1

α

We will also use the so-called parallel axis theorem, which can be stated as follows.
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Lemma 23 Let u1, u2, . . . , ur be a set of points and let µ be their mean. Let x be any other point.
Then we have ∑

i

d2(ui, x) =
∑
i

d2(ui, µ) + rd2(x, µ).

The proof follows by a direct computation. We are now ready to prove Lemma 10.
Proof [of Lemma 10.] Let Z =

∑
v∈V d

2(v, S) as in the statement. Let C1, C2, . . . , Ck be the
optimal clusters and let µ1, µ2, . . . , µk be their centers respectively. Define σ2i to be the average
squared distance from the points in cluster i to its center. I.e.,

σ2i =
1

|Ci|
∑
u∈Ci

d2(u, µi).

The rough idea of the proof is as follows. Our goal will be to argue that for every cluster, the
sampling procedure is quite likely to pick a point that is close to the center of the cluster. We then
argue that this leads to the value of d2(u, S ∪ T ) being relatively small (compared to the average
radius of the cluster). To this end, for every i, define

Di = {u ∈ Ci : d2(u, µi) ≤ 4σ2i }.

By a simple averaging (which can also be viewed as an application of Markov’s inequality), we
have that |Di| ≥ 3|Ci|/4 (i.e., Di contains at least 3/4th of the points of Ci). Next, for any S, we
will relate

∑
u∈Ci d

2(u, S) with
∑

u∈Di d
2(u, S). Specifically, we show that the former is not too

much larger than the latter. Let u′ = argminu∈Did
2(u, S). Then by definition, we have

d2(u′, S) ≤ 1

|Di|
∑
u∈Di

d2(u, S). (4)

Next, for any u ∈ Ci \ Di, we have d(u, S) ≤ d(u, u′) + d(u′, S), and thus d2(u, S) ≤
2(d2(u, u′) + d2(u′, S)). Similarly, we can use d(u, u′) ≤ d(u, µi) + d(u′, µi) to conclude that
d2(u, u′) ≤ 2(d2(u, µi) + d2(u′, µi)). Putting the two together and summing over all u ∈ Ci \Di,
we have ∑

u∈Ci\Di

d2(u, S) ≤ 2|Ci \Di|
(
d2(u′, S) + 2d2(u′, µi)

)
+ 4

∑
u∈Ci\Di

d2(u, µi).

Now, since u′ ∈ Di, we have d2(u′, µi) ≤ 4σ2i . Also,
∑

u∈Ci d
2(u, µi) = |Ci|σ2i by definition,

so we can use this as an upper bound for the last term above. Using these, together with |Ci \Di| ≤
|Ci|/4, we get: ∑

u∈Ci\Di

d2(u, S) ≤ |Ci|
2
d2(u′, S) + 4|Ci|σ2i + 4|Ci|σ2i .

Now using (4) along with |Di| ≥ 3|Ci|/4, we get:∑
u∈Ci\Di

d2(u, S) ≤ 2

3

∑
u∈Di

d2(u, S) + 8|Ci|σ2i (5)

=⇒
∑
u∈Ci

d2(u, S) ≤ 5

3

∑
u∈Di

d2(u, S) + 8|Ci|σ2i . (6)

22



ONLINE k-MEANS CLUSTERING

Next, call a cluster good if
∑

u∈Ci d
2(u, S) ≤ 16|Ci|σ2i , and bad otherwise. If a cluster is good,

we trivially have
∑

u∈Ci d
2(u, S ∪ T ) ≤ 16|Ci|σ2i . Thus, let us only focus on bad clusters. The

important observation is that by (6), if Ci is a bad cluster, then∑
u∈Di

d2(u, S) ≥ 3

10

∑
u∈Ci

d2(u, S).

Intuitively, this means that if one were to sample points inCi using weights proportional to d2(u, S),
there is at least a 3/10 probability of picking a point “close” to the center.

Let us now use this to reason about E[
∑

u∈Ci d
2(u, S ∪ T )]. We can bound it as follows. If the

sample T contains some point in x ∈ Di, then by the parallel axis theorem,∑
u∈Ci

d2(u, S ∪ T ) ≤
∑
u∈Ci

d2(u, x) ≤ |Ci|σ2i + 4|Ci|σ2i = 5|Ci|σ2i .

The probability that no point from Di is chosen is at most:
∏
u∈Di(1 − pu) ≤ exp(−

∑
u∈Di pu).

By the condition we have on pu, this can be bounded by

exp

−ck
Z

∑
u∈Di

d2(u, S)

 ≤ exp

− 3ck

10Z

∑
u∈Ci

d2(u, S)

 .

For notational convenience, define 1
Z

∑
u∈Ci d

2(u, S) = δi (thus
∑

i δi = 1). The above computa-
tion shows that the probability that T contains no point of Di is at most exp(−3ckδi/10). Thus we
can bound

E

∑
u∈Ci

d2(u, S ∪ T )

 ≤ 5|Ci|σ2i + Zδi · exp(−3ckδi/10).

Now, summing this over all the bad clusters, we can bound

E

[∑
u∈V

d2(u, S ∪ T )

]
≤ 16

∑
u∈V

d2(u,C∗) +
∑
i

Zδi · exp(−3ckδi/10).

Now, setting α = 3c/10, we can bound the second term by 10Z/3c. This gives the desired result.

Appendix C. Doubling argument for guessing ξ

We now formally describe the procedure from Section 5 (see Algorithm 5).
We have the following lemmas about Algorithm 5. These are tailored to the fact that we used

Algorithm 1. If we were to replace it with the other algorithms we have seen, we would obtain
corresponding guarantees.

Lemma 24 The number of phases of the Algorithm 5 is bounded by

O

(
k log n ·max

(
1, log

∑
v∈V d

2(v, C∗)

ξ0

))
.
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Algorithm 5: Doubling for small ξ
Input: A set of points V that arrive one by one, parameters k and ξ0
Output: A set Cfinal of the cluster centers.
Initialize C = ∅ and Cold = ∅ ;
while points u arrive do

Execute Algorithm 1 with input u; this updates C ;
if number of phases exceeds ck log n (c comes from the bounds for Algorithm 1) then

set Cold ← Cold ∪ C ;
set C = ∅, ξ ← 2ξ ;

end
end
Output Cfinal = Cold ∪ C

Proof Define OPT =
∑

v∈V d
2(v, C∗) as before. Now, if ξ0 ≥ OPT, then the algorithm would

not double its points and thus would only result in O(k log n) phases.2 Consider the case where
ξ0 < OPT. Since we stop and double the ξ value after ck log n rounds, the total number of phases is
clearly bounded above by k log n log OPT

ξ0
. Together, these cases imply the desired lemma.

The next lemma is more interesting: it shows that the error bound only increases by a constant
(and not a log OPT

ξ0
factor).

Lemma 25 The error of the Algorithm 5 (total squared distance from points u to the points chosen
in the end), is ≤ O(OPT · log n).

Proof The algorithm doubles the guess of ξ after ck log n phases. The total objective value for each
ξ is thus at most 2cξ log n. After the ith time ξ0 is doubled, we will have ξ = 2iξ0. Let t = log OPT

ξ0
be the bound on the number of times we double ξ. Then we have a bound on the objective value, of
2c log n(ξ0 + 2ξ0 + · · ·+ 2tξ0) = O(c log nOPT). This completes the proof.

Appendix D. Full proofs of lemmas

D.1. Proof of Lemma 6

First off, the probability that Ccur = ∅ is at most∏
i∈[r]

(1− pui) ≤ exp(−
∑
i∈[r]

pui) ≤ 1/e,

since by the definition of a phase, the probabilities add up to a quantity ≥ 1.
Next, let Yi be an indicator random variable that is 1 if ui ∈ Ccur and 0 otherwise. Thus

Pr [Yi = 1] = pui . Define

X =
∑
i∈[r]

Yi
1

pui
d2(ui, C

∗). (7)

2. Technically, this is always true – there is a failure probability of 1/10. However, we can carry forth this failure
probability into our procedure’s guarantee as well.
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By linearity of expectation, we have that

E [X] =
∑
i∈[r]

E[Yi]
1

pui
d2(ui, C

∗) =
∑
i∈[r]

d2(ui, C
∗).

Thus part (2) of the definition of a successful phase holds with probability ≥ 3/4, by Markov’s
inequality. For part (3), note that the probability of picking a point u with with probability < 1/n2

is at most 1/n (as there are at most n points in total).
Thus all the conditions hold with probability ≥ 1− 1

e −
1
4 −

1
n > 1/4, for n > 10.

Appendix E. Bounding number of phases and points

The following lemma is used to bound the number of phases in the algorithm. We note that the
lemma was already proved in (Bhaskara et al., 2019), and we include the proof here for complete-
ness.

Lemma 26 We toss a coin n times. The tosses are independent of each other and in each toss, the
probability of seeing a head is at least p. Let Hm and Tm denote the number of heads and tails we
observe in the first m ≤ n coin tosses. With probability 1 − δ, we have Hm ≥ pm

4 − d8 ln 2
δ/pe

for any 1 ≤ m ≤ n. We note that although the claim is about conjunction of all these n events, the
probability does not rely on n.

Proof We denote the expected number of heads in the first m tosses with µ which is at least pm.
Applying lower tail inequality of Theorem 4 in (Goemans, 2015) implies,

Pr[Hm < (1− 1

2
)µ] ≤ e−µ/8 ≤ e−pm/8

The error probability e−pm/8 is at most δ/2 for m ≥ m′ = d8ln(2/δ)/pe. Instead of summing
up the error bound for all values of m, we focus on the smaller geometrically growing sequence
M = {2lm′|l ∈ Z≥0 AND 2lm′ ≤ n}. Having the lower bound on Hm for every m ∈ M
helps us achieve a universal lower bound on any 1 ≤ m ≤ n as follows. For any m ≤ m′, the
bound Hm ≥ pm − m′ holds trivially. For any other m ≤ n, there exists an m′′ ∈ M such that
m′′ ≤ m ≤ 2m′′. By definition Hm is at least Hm′′ . Assuming Hm′′ ≥ pm′′/2 implies Hm is at
least pm/4 which proves the claim of the lemma. So we focus on bounding the error probabilities
only for values in set M. For m′, the error probability is at most δ/2. The next value in M is 2m′,
so given the exponential form of the error, it is at most (δ/2)2. Using union bound, the aggregate
error probability for set M does not exceed

δ

2
+

(
δ

2

)2

+

(
δ

2

)3

+ · · · ≤ δ/2

1− δ/2
≤ δ

Therefore with probability at least 1− δ we have for every m ∈M , Hm ≥ pm/2, and consequently
for every 1 ≤ m ≤ n, Hm ≥ pm

4 −m
′ which finishes the proof.

The next lemma allows us to go from a bound on the number of phases to a bound on the number
of points chosen.
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Lemma 27 Consider any of the algorithms 1, 2, 3, 4. If the number of phases is ≤ r, then with
probability ≥ 9

10 , the number of points selected is ≤ 20r.

Proof Assume we have p phases where p ≤ r, then Z =
∑

i∈[p]
∑

vj∈Phasei Yj is the number of
points selected. Then E(Z) = E(

∑
i∈[p]

∑
vj∈Phasei Yj) =

∑
i∈[p]

∑
vj∈Phasei E(Yj) ≤

∑
i∈[p] 2

(Since the expected number of points over a single phase is ≤ 2). Therefore E(Z) ≤ 2p ≤ 2r
and applying Markov’s Inequality with this we can see that Pr(Z ≥ 20r) ≤ Pr(Z ≥ 10E(Z)) ≤
1/10. Thus w.p. ≥ 9

10 , Z ≤ 20r.
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